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HOMOTOPICAL NILPOTENCE OF THE SEVEN SPHERE
WILLIAM J. GILBERT!

ABSTRACT. We prove that the homotopical nilpotence of S7is 3,
with respect to any of its 120 H-space multiplications.

The homotopical nilpotence of S2 has been calculated by Porter [4]
for the standard multiplication and by Arkowitz and Curjel [1] for all of
its twelve H-space multiplications. Arkowitz and Curjel mention that
their methods lead to results on the multiplications on S7 but do not calcu-
late its homotopical nilpotence. By modifying their arguments with the
Samelson products we obtain the results on S7 easily.

We will denote the collection of homotopy classes of basepoint pre-
serving maps from A to B by [4, B] and we will not distinguish notation-
ally between a map and its homotopy class. The multiplication and inverse
in the unit Cayley numbers induce the standard multiplication me[S7 x S7,
§7] and two sided homotopy inverse v€[S?, $7] on the space S”. For the
H-space (57, m, v) we define a commutator map ¢:S7 x S"—S" by ¢(x, y)=
(xy)-(x~*y~1) using the multiplication m and inverse ». Recall that the
Cayley multiplication is not associative but is diassociative, i.e. any two
elements generate an associative subalgebra. We now make a choice in
bracketing to define inductively the k-fold commutator map ¢:(S7)k—S7
by ¢=do(¢;,_; x 1) where ¢, =1, the identity map on S7. It is well known
that ¢, induces a unique homotopy class y,€[A* S7, S7] with peq, =4,
where A*S7 is the k-fold smash product of S7 (homeomorphic to S7) and
qr: (S7)Y—>A*S" is the projection map. The homotopical nilpotence of the
H-space (S7, m, v) written nil(S7, m, v), is the least integer k such that
ér11 (and hence y,,,) is nullhomotopic.

THEOREM. nil(S7, m, v)=3.

PrROOF. James [2, p.176] proves that y, generates m,(S7)=2Z,, sO
that in Toda’s notation [§] its 2-component is ¢’, its 3-component is o,(7)
and its S-component is o,(7). Now

pys=yoWAl)=ypolweny,(S) =2, Z,
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and its 2-component is ¢'oX70'=20¢"00,,#0 [5]. The element «, is
defined in terms of a Toda bracket and so the 3-component of y; is

5(7) o ay(14) € {2,(7), 3419, 2, (10)} 0 a5(14)
< {oay(7), 3ty, 2, (10) 0 25(13)} = 0

since o,;(10)oxy(13)=0 by Lemma 13.8 of [5]. Hence y; has only a 2-
component and

Yy = Y3° THy e myy(S7) = Zy @ Z, by {3]

and so y,=40"c014°0,,=0 which proves the theorem.

There are 120 different homotopy classes of multiplications on S7 and
as in Lemma 2 of [1] it can be shown that they can be written additively in
the form

m =m+ tpe ST x 8§57, 57, t=0,1,-+-,119.

Also as in Lemma 3 of [1], » is a homotopy inverse for each of these
multiplications.

COROLLARY. nil(S7, m¥, v)=3 for t=0,1,- -+, 119.

PrOOF. Denote by p{’e[A* S7, S7] the r-fold smash commutator map
defined on the H-space (S7, m‘?, »). Then James [2, p. 176] and Arkowitz
and Curjel [1, Lemma 4] prove that ¢’ = (2/+1)y,. Hence 3" is nonzero
and v} is zero, which proves the corollary.

Changing the choice of bracketing in the definition of the k-fold com-
mutator map will at most affect a sign change in %, so that the homotopy

nilpotence is independent of the choice of bracketing.
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