HOMOTOPICAL NILPOTENCE OF THE SEVEN SPHERE

WILLIAM J. GILBERT1

ABSTRACT. We prove that the homotopical nilpotence of S^7 is 3, with respect to any of its 120 *H*-space multiplications.

The homotopical nilpotence of S^3 has been calculated by Porter [4] for the standard multiplication and by Arkowitz and Curjel [1] for all of its twelve H-space multiplications. Arkowitz and Curjel mention that their methods lead to results on the multiplications on S^7 but do not calculate its homotopical nilpotence. By modifying their arguments with the Samelson products we obtain the results on S^7 easily.

We will denote the collection of homotopy classes of basepoint preserving maps from A to B by [A, B] and we will not distinguish notationally between a map and its homotopy class. The multiplication and inverse in the unit Cayley numbers induce the standard multiplication $m \in [S^7 \times S^7,$ S^7] and two sided homotopy inverse $\nu \in [S^7, S^7]$ on the space S^7 . For the H-space (S^7, m, ν) we define a commutator map $\phi: S^7 \times S^7 \to S^7$ by $\phi(x, y) =$ $(x \cdot y) \cdot (x^{-1} \cdot y^{-1})$ using the multiplication m and inverse v. Recall that the Cayley multiplication is not associative but is diassociative, i.e. any two elements generate an associative subalgebra. We now make a choice in bracketing to define inductively the k-fold commutator map $\phi: (S^7)^k \to S^7$ by $\phi_k = \phi \circ (\phi_{k-1} \times 1)$ where $\phi_1 = 1$, the identity map on S^7 . It is well known that ϕ_k induces a unique homotopy class $\psi_k \in [\bigwedge^k S^7, S^7]$ with $\psi_k \circ q_k = \phi_k$, where $\bigwedge^k S^7$ is the k-fold smash product of S^7 (homeomorphic to S^{7k}) and $q_k: (S^7)^k \to \bigwedge^k S^7$ is the projection map. The homotopical nilpotence of the H-space (S^7, m, ν) written $nil(S^7, m, \nu)$, is the least integer k such that ϕ_{k+1} (and hence ψ_{k+1}) is nullhomotopic.

THEOREM. $nil(S^7, m, \nu) = 3$.

PROOF. James [2, p.176] proves that ψ_2 generates $\pi_{14}(S^7) = Z_{120}$ so that in Toda's notation [5] its 2-component is σ' , its 3-component is $\alpha_2(7)$ and its 5-component is $\alpha_1(7)$. Now

$$\psi_3 = \psi \circ (\psi \wedge 1) = \psi \circ \Sigma^7 \psi \in \pi_{21}(S^7) = \mathbf{Z}_{24} \oplus \mathbf{Z}_4$$

Received by the editors June 21, 1971.

AMS 1970 subject classifications. Primary 55D45.

Key words and phrases. Homotopical nilpotence, H-space, commutator map.

¹ Supported in part by a National Research Council grant.

and its 2-component is $\sigma' \circ \Sigma^7 \sigma' = 2\sigma' \circ \sigma_{14} \neq 0$ [5]. The element α_2 is defined in terms of a Toda bracket and so the 3-component of ψ_3 is

$$\alpha_2(7) \circ \alpha_2(14) \in \{\alpha_1(7), 3\iota_{10}, \alpha_1(10)\} \circ \alpha_2(14)$$

$$\subseteq \{\alpha_1(7), 3\iota_{10}, \alpha_1(10) \circ \alpha_2(13)\} = 0$$

since $\alpha_1(10)\circ\alpha_2(13)=0$ by Lemma 13.8 of [5]. Hence ψ_3 has only a 2-component and

$$\psi_4 = \psi_3 \circ \Sigma^{14} \psi \in \pi_{28}(S^7) = Z_6 \oplus Z_2$$
 by [3]

and so $\psi_4 = 4\sigma' \circ \sigma_{14} \circ \sigma_{21} = 0$ which proves the theorem.

There are 120 different homotopy classes of multiplications on S^7 and as in Lemma 2 of [1] it can be shown that they can be written additively in the form

$$m^{(t)} = m + t\phi \in [S^7 \times S^7, S^7], \quad t = 0, 1, \dots, 119.$$

Also as in Lemma 3 of [1], ν is a homotopy inverse for each of these multiplications.

COROLLARY.
$$nil(S^7, m^{(t)}, \nu) = 3 \text{ for } t = 0, 1, \dots, 119.$$

PROOF. Denote by $\psi_k^{(t)} \in [\Lambda^k S^7, S^7]$ the *r*-fold smash commutator map defined on the *H*-space $(S^7, m^{(t)}, \nu)$. Then James [2, p. 176] and Arkowitz and Curjel [1, Lemma 4] prove that $\psi_k^{(t)} = (2t+1)\psi_k$. Hence $\psi_3^{(t)}$ is nonzero and $\psi_4^{(t)}$ is zero, which proves the corollary.

Changing the choice of bracketing in the definition of the k-fold commutator map will at most affect a sign change in ψ_k , so that the homotopy nilpotence is independent of the choice of bracketing.

REFERENCES

- 1. M. Arkowitz and C. R. Curjel, Some properties of the exotic multiplications on the three-sphere, Quart. J. Math. Oxford Ser. (2) 20 (1969), 171-176. MR 40 #2066.
- 2. I. M. James, On H-spaces and their homotopy groups, Quart. J. Math. Oxford Ser. (2) 11 (1960), 161-179. MR 24 #A2966.
- 3. M. Mimura, On the generalized Hopf homomorphism and the higher composition. II, $\pi_{n+i}(S^n)$ for i=21 and 22, J. Math. Kyoto Univ. 4 (1965), 301-326. MR 31 #1676.
- **4.** G. J. Porter, *Homotopical nilpotence of S*³, Proc. Amer. Math. Soc. **15** (1964), 681–682. MR **29** #6496.
- 5. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, no. 49, Princeton Univ. Press, Princeton, N.J., 1962. MR 26 #777.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, CANADA