Theorem: superdense coding (Bennett-Wiesner 93)

Suppose Alice and Bob share the state $\frac{1}{\sqrt{s}} \sum_{i=1}^{s} |i\rangle \otimes |i\rangle$ and Alice can send an s-dimensional quantum system to Bob. Then, Alice can communicate $t = s^2$ messages to Bob!
Theorem: superdense coding (Bennett-Wiesner 93)

Suppose Alice and Bob share the state \(\frac{1}{\sqrt{s}} \sum_{i=1}^{s} |i\rangle \otimes |i\rangle \) and Alice can send an \(s \)-dimensional quantum system to Bob. Then, Alice can communicate \(t = s^2 \) messages to Bob!

How to think about quantum protocols:
Which party has what classical information?

Which party has what quantum system?

What operations he/she is allowed to do?
Theorem: superdense coding (Bennett-Wiesner 93)

Suppose Alice and Bob share the state $\frac{1}{\sqrt{s}} \sum_{i=1}^{s} |i\rangle \otimes |i\rangle$ and Alice can send an s-dimensional quantum system to Bob. Then, Alice can communicate $t = s^2$ messages to Bob!

How to think about quantum protocols:

Which party has what classical information?

Alice has a message $v \in \{0,x,y,z\}$. Bob has nothing.

Which party has what quantum system?

Initially, Alice (Bob) has the 1st register A (B) of the shared state. Alice also has another s-dim system C. She sends C to Bob. Then, Bob has both B and C.
Theorem: superdense coding (Bennett-Wiesner 93)

Suppose Alice and Bob share the state \(\frac{1}{\sqrt{s}} \sum_{i=1}^{s} |i\rangle \otimes |i\rangle \) and Alice can send an \(s \)-dimensional quantum system to Bob. Then, Alice can communicate \(t = s^2 \) messages to Bob!

How to think about quantum protocols:

What operations he/she is allowed to do?

Before Alice sends \(C \) to Bob, she can apply any operation on \(AC \) that depends on \(v \). \(C \) depends on \(A \) and \(v \), and \(C \) can be \(A \) itself.

After Bob receives \(C \) from Alice, he can apply any operation on \(AC \) that does not depend on \(v \).
Proof: for simplicity, first consider $s=2$.
Suppose Alice & Bob share the state
\[|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \]
so that Alice (Bob) holds the first (second) qubit A (B).
Proof: for simplicity, first consider $s=2$.
Suppose Alice & Bob share the state $|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$ so that Alice (Bob) holds the first (second) qubit A (B).

Recall the Pauli matrices:
\[\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]
Proof: for simplicity, first consider $s=2$.
Suppose Alice & Bob share the state $|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$ so that Alice (Bob) holds the first (second) qubit.

Recall the Pauli matrices:

$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Suppose Alice wants to communicate a message v from the set $\{0, x, y, z\}$.

If her message is v, she applies σ_v to A.

The shared state $|\Phi_0\rangle$ on AB is transformed by $\sigma_v \otimes I$.
These 4 states are mutually orthogonal, forming the "Bell basis". Note that Alice operates on a 2-dim system A, but the shared state on AB traverses to 1 out of 4 possible distinguishable (ortho) states.

For \(|\Phi_o\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \)

\[6_o = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad 6_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad 6_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad 6_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

\[|\Phi_o\rangle = 6_o \otimes I \quad |\Phi_o\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \]

\[|\Phi_x\rangle = 6_x \otimes I \quad |\Phi_o\rangle = \frac{1}{\sqrt{2}} (|10\rangle + |01\rangle) \]

\[|\Phi_y\rangle = 6_y \otimes I \quad |\Phi_o\rangle = \frac{1}{\sqrt{2}} (|1\rangle |0\rangle - i |0\rangle |1\rangle) \]

\[|\Phi_z\rangle = 6_z \otimes I \quad |\Phi_o\rangle = \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle) \]
For \(|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \)

\[\begin{align*}
\mathbf{e}_0 &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}, & \mathbf{e}_x &= \begin{pmatrix} 0 \\ 1 \end{pmatrix}, & \mathbf{e}_y &= \begin{pmatrix} 0 \\ i \end{pmatrix}, & \mathbf{e}_z &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\end{align*} \]

\(|\Phi_0\rangle = 6_0 \otimes \mathbb{I} \) \(|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \)

\(|\Phi_x\rangle = 6_x \otimes \mathbb{I} \) \(|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|11\rangle + |10\rangle) \)

\(|\Phi_y\rangle = 6_y \otimes \mathbb{I} \) \(|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|01\rangle - i|10\rangle) \)

\(|\Phi_z\rangle = 6_z \otimes \mathbb{I} \) \(|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|10\rangle - |11\rangle) \)

These 4 states are mutually orthogonal, forming the "Bell basis". Note that Alice operates on a 2-dim system A, but the shared state on AB tranverses to 1 out of 4 possible distinguishable (ortho) states.

If Alice sends C=A to Bob, he has AB in the state \(|\Phi_v\rangle \).
He can measure AB along the Bell basis to find \(v \)!
Communication protocol:

|Φ₀⟩

1. Initial state shared between Alice and Bob. Alice is holding system A; Bob is holding system B.
Communication protocol:

1. Initial state shared between Alice and Bob. Alice is holding system A; Bob is holding system B.

2. If Alice wants to communicate "v" ∈ {0, x, y, z} to Bob, she applies 6_v to qubit A. (4 possibilities)
Communication protocol:

1. Initial state shared between Alice and Bob. Alice is holding system A; Bob is holding system B.

2. If Alice wants to communicate "v" ∈ {0,x,y,z} to Bob she applies 6υ to qubit A. (4 possibilities)

3. Alice sends system A to Bob (2-dim).
Initial state shared between Alice and Bob. Alice is holding system A; Bob is holding system B.

If Alice wants to communicate \(\epsilon \{0, x, y, z\} \) to Bob she applies \(\mathcal{E}_v \) to qubit A. (4 possibilities)

Having both systems A & B, Bob measures along the Bell basis. Outcome is \(v \) with certainty.

Alice sends system C=A to Bob (2-dim).
Thoughts:

1. Entanglement enables the operation on a 2-dim system to map the shared state over 4 dimensions.

2. Bob has a 4-dim system (AB) after the channel transmission, so superdense coding is consistent with Holevo's bound.

3. Is there a catch? Does Alice also need to prepare the entangled state in AB and send B to Bob before superdense coding so altogether she sends 4 dims?

Not really. Bob can prepare the entangled state in AB and send A to Alice instead, or a common friend Charlie can prepare the entangled state and send A to Alice and B to Bob.

SD turns entanglement or back quantum comm into increased forward classical communication !!
Theorem: superdense coding (Bennett-Wiesner 93)

Suppose Alice and Bob share the state $\frac{1}{\sqrt{s}} \sum_{i=1}^{s} |i\rangle \otimes |i\rangle$ and Alice can send an s-dimensional quantum system to Bob. Then, Alice can communicate $t = s^2$ messages to Bob!

Converting the units of various resources:

s-dim quantum state = $\log s$ qubits
s^2 classical messages = $2 \log s$ bits
max entangled state of local dim $s = \log s$ "ebits"

$$\frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)_{A_1 B_1} \otimes \cdots \otimes \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)_{A_n B_n} = \frac{1}{\sqrt{2^n}} \sum_{u \in \{0,1\}^n} |u\rangle \otimes |u\rangle$$

Dividing everything by $\log s$, on average, SD coding uses 1 ebit and sends 1 qubit to communicate 2 bits (doubling the rate).
What if Alice wants to communicate a quantum state to Bob by sending only classical data?

For simplicity, she wants to communicate a qubit $|\psi\rangle = a|0\rangle + b|1\rangle$ to Bob.

Case (i): Alice knows a,b (she authors the message)
She can send approximations of a and b to Bob. For Bob to decode a qubit closer and closer to $|\psi\rangle$ she has to send more and more bits.

Case (ii): Alice is given the state to be communicated (she runs Qedex, usual setting)
She does not know a,b, and cannot know more than 1 bit of information about them by Holevo's bound.

Can't comm quantum states by sending classical data.
Free entanglement is like free love
-- it changes the world.

Charles Bennett, Cambridge, 1999
Teleportation

Alice can communicate a qubit to Bob if (1) she can send 2 classical bits to Bob, and (2) they share the ebit $|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$.

How to think about quantum protocols:
Which party has what classical/quantum information?
Which party has what quantum system?
What operations he/she is allowed to do?
Teleportation

Alice can communicate a qubit to Bob if (1) she can send 2 classical bits to Bob, and (2) they share the ebit $|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$.

Schematic diagram to be completed:

$|\psi\rangle = a|0\rangle + b|1\rangle$

$|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$

- Black: Alice's
- Red: Bob's
- Blue: classical message from Alice to Bob
Main mathematical tool:
Expressing an 8-dim quantum state in 2 ways.

\[
(a|0\rangle + b|1\rangle)_{M} \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)_{AB}
\]

\[
= (a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)_{MAB} \frac{1}{\sqrt{2}}
\]
Main mathematical tool:
Expressing an 8-dim quantum state in 2 ways.

\[(a|0\rangle + b|1\rangle)_{M} \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)_{AB}\]

\[= (a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)_{MAB} \frac{1}{\sqrt{2}}\]

\[= \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)_{MA} (a|0\rangle + b|1\rangle)_{B} \frac{1}{2}\]

\[+ \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)_{MA} (a|0\rangle - b|1\rangle)_{B} \frac{1}{2}\]

\[+ \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)_{MA} (a|1\rangle + b|0\rangle)_{B} \frac{1}{2}\]

\[+ \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)_{MA} (a|1\rangle - b|0\rangle)_{B} \frac{1}{2}\]
Main mathematical tool: Expressing an 8-dim quantum state in 2 ways.

\[(a|0\rangle + b|1\rangle)_M \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)_AB\]

\[= (a|0000\rangle + a|0111\rangle + b|1000\rangle + b|1111\rangle)_MAB \frac{1}{\sqrt{2}} \]

\[= \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)_MA (a|0\rangle + b|1\rangle)_B \frac{1}{2} \]

\[+ \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)_MA (a|0\rangle - b|1\rangle)_B \frac{1}{2} \quad \{ \text{no cross terms gives } a|0000\rangle + b|1111\rangle \}

\[+ \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)_MA (a|1\rangle + b|0\rangle)_B \frac{1}{2} \]

\[+ \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)_MA (a|1\rangle - b|0\rangle)_B \frac{1}{2} \]
Main mathematical tool:
Expressing an 8-dim quantum state in 2 ways.

\[
\begin{align*}
(a|00\rangle + b|11\rangle)_M & \quad \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)_A B \\
= (a|000\rangle + a|011\rangle + b|100\rangle + b|111\rangle)_M A B & \quad \frac{1}{\sqrt{2}} \\
= \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)_M A (a|0\rangle + b|1\rangle)_B & \quad \frac{1}{2} \quad \text{no cross terms gives } a|000\rangle + b|111\rangle \\
+ \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)_M A (a|0\rangle - b|1\rangle)_B & \quad \frac{1}{2} \quad \text{no cross terms gives } a|011\rangle + b|100\rangle \\
+ \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)_M A (a|1\rangle + b|0\rangle)_B & \quad \frac{1}{2} \\
+ \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)_M A (a|1\rangle - b|0\rangle)_B & \quad \frac{1}{2}
\end{align*}
\]
Pauli's: $\sigma_o = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Bell basis:

$|\Phi_o\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$, $|\Phi_y\rangle = \frac{1}{\sqrt{2}} (|10\rangle - i|01\rangle)$

$|\Phi_x\rangle = \frac{1}{\sqrt{2}} (|10\rangle + |01\rangle)$, $|\Phi_z\rangle = \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)$
Pauli's: $\sigma_\varnothing = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\sigma_\chi = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_\gamma = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_\zeta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Bell basis:

$|\Phi_r\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$, $|\Phi_y\rangle = \frac{1}{\sqrt{2}} (\gamma |10\rangle - \gamma |01\rangle)$

$|\Phi_x\rangle = \frac{1}{\sqrt{2}} (|10\rangle + |01\rangle)$, $|\Phi_z\rangle = \frac{1}{\sqrt{2}} (|10\rangle - |01\rangle)$
Pauli's: $\sigma_x = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Bell basis: $|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$, $|\Phi_y\rangle = \frac{1}{\sqrt{2}} (|\Bar{1}10\rangle - i|10\rangle)$

$|\Phi_z\rangle = \frac{1}{\sqrt{2}} (|10\rangle + |01\rangle)$, $|\Phi_x\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$
If Alice measures \(MA \) along the Bell basis, each outcome \(k \in \{0, x, y, z\} \) occurs with prob 1/4, and postmeasurement state is \(|\Phi_k\rangle_{MA} \otimes 6_k |\psi\rangle_B \).
If Alice measures MA along the Bell basis, each outcome \(k \in \{0, x, y, z\} \) occurs with prob \(1/4 \), and postmeasurement state is \(|\bar{\Psi}_k\rangle_{MA} \otimes |\psi\rangle_B \).

If Alice sends \(k \) to Bob, he can apply \(\zeta_k \) to B, turning \(\zeta_k |\psi\rangle_B \) to \(|\psi\rangle_B \).
Teleportation

Alice can communicate a qubit to Bob if (1) she can send 2 classical bits to Bob, and (2) they share the ebit $|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$.

Schematic diagram:

$$|\psi\rangle = a|00\rangle + b|11\rangle$$

$$|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$
Teleportation

Alice can communicate a qubit to Bob if (1) she can send 2 classical bits to Bob, and (2) they share the ebit $|\overline{\Phi}_0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$.

Exercise: verify the following specific implementation

Here, k is given by 2 bits (v,w). Note also $\delta y = 6_z \cdot 6_x$.
General: \(|\psi\rangle = \sum_\ell a_\ell |\ell\rangle |\eta_\ell\rangle \) on RS.

real ortho-normal unit vector on S

For any measurement on S given by projectors \(\{ P_k \} \)

\[I \otimes P_k |\psi\rangle = \sum_\ell a_\ell |\ell\rangle \otimes P_k |\eta_\ell\rangle \]

\[pr(k) = \| I \otimes P_k |\psi\rangle \|^2 = \sum_\ell a_\ell^2 \| P_k |\eta_\ell\rangle \|^2 \]

\[= \sum_\ell a_\ell^2 \text{ tr} P_k |\eta_\ell\rangle \langle \eta_\ell | P_k \]

\[= \sum_\ell a_\ell^2 \text{ tr} P_k |\eta_\ell\rangle \langle \eta_\ell | \]

\[= \text{ tr} P_k \left(\sum_\ell a_\ell^2 |\eta_\ell\rangle \langle \eta_\ell | \right) \text{ where } a_\ell |\eta_\ell\rangle_S = \langle \ell | \otimes I |\psi\rangle. \]

\(\rho_S : \) density matrix on S

\[\text{dxd} \text{d} if \ d = \text{dim}(S) \]

trace 1, positive semidefinite
Revised formulation of QM:

Revised description of quantum state:

\[|\psi\rangle = \sum_i a_i |i\rangle |\eta_i\rangle \rightarrow |\psi\rangle \langle \psi| \rightarrow \sum_i a_i^2 |\eta_i\rangle \langle \eta_i| = \int_S \]

1. outer product 2. partial trace

revised description of measurement:

\[\text{pr}(k) = || I \otimes P_k |\psi\rangle ||^2 \rightarrow \text{pr}(k) = \text{tr} P_k \int_S \]

Define partial trace (describing a state on S from a state on RS) so postmeasurement states & dynamics also makes sense.
The partial trace

Recall the trace of a matrix M is the sum of all the diagonal elements. In the Dirac notation:

$$\text{tr} \ M = \text{tr}(M \sum_{i=1}^{d} \vert i \rangle \langle i \vert) = \sum_{i=1}^{d} \langle i \vert M \vert i \rangle$$

Definition: the partial trace of system B, denoted tr_B, is defined on matrices acting on systems AB as

$$\text{tr}_B \ M = \sum_{i=1}^{d} (I \otimes \langle i \vert) M (I \otimes \vert i \rangle)$$
The partial trace (example for 2 qubits)

\[I \otimes \langle 0 | = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} [1 & 0] & [0 & 0] \\ [0 & 0] & [1 & 0] \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

\[I \otimes \langle 1 | = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} [0 & 1] & [0 & 0] \\ [0 & 0] & [0 & 1] \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[(I \otimes \langle 0 |) \mathbf{M} (I \otimes |0\rangle) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{13} \\ m_{31} & m_{33} \end{bmatrix} \]

\[(I \otimes \langle 1 |) \mathbf{M} (I \otimes |1\rangle) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} m_{22} & m_{24} \\ m_{42} & m_{44} \end{bmatrix} \]

\[\dagger \text{tr}_B \mathbf{M} = \sum_{i=1}^{d} (I \otimes \langle i |) \mathbf{M} (I \otimes |i\rangle) = \begin{bmatrix} m_{11} + m_{22} & m_{13} + m_{24} \\ m_{31} + m_{42} & m_{33} + m_{44} \end{bmatrix} \]
\[\text{tr}_B M = \begin{pmatrix} \text{tr} \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} & \text{tr} \begin{pmatrix} m_{13} & m_{14} \\ m_{23} & m_{24} \end{pmatrix} \\ \text{tr} \begin{pmatrix} m_{31} & m_{32} \\ m_{41} & m_{42} \end{pmatrix} & \text{tr} \begin{pmatrix} m_{33} & m_{34} \\ m_{43} & m_{44} \end{pmatrix} \end{pmatrix} = M \]

Exercise:

\[\text{tr}_A M = \text{tr}_A \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} + \begin{pmatrix} m_{33} & m_{34} \\ m_{43} & m_{44} \end{pmatrix} \]
Example: A, B are 3- and 2-dim respectively. \((M: 6 \times 6)\)

\[
M = \begin{pmatrix}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{pmatrix}
\]

Each \(M_{i,j}\) is a 2x2 matrix.

\[
\text{tr}_A M = M_{11} + M_{22} + M_{33}
\]
(note, the reduced matrix on B is 2x2)

\[
\text{tr}_B M = \begin{pmatrix}
\text{tr} M_{11} & \text{tr} M_{12} & \text{tr} M_{13} \\
\text{tr} M_{21} & \text{tr} M_{22} & \text{tr} M_{23} \\
\text{tr} M_{31} & \text{tr} M_{32} & \text{tr} M_{33}
\end{pmatrix}
\]
(note, the reduced matrix on A is 3x3)
Remark:

The trace of an r-dim system is a linear map from r x r matrices to real numbers.

The partial trace of an r-dim system is a linear map from rs x rs matrices to s x s matrices where the trace is applied to R, and the identity map on S. It acts on tensor product matrices as:

\[\text{Tr}_R M_R \otimes M_S = (\text{Tr} M_R) \cdot M_S \]

and extends to any rs x rs matrix.
What is the most general transformation allowed by QM?

Any reasonable transformation \(N \) should take quantum states to quantum states!

Viewing \(N \) as a mapping from matrices to matrices:

1. \(N \) is linear (QM is)
2. \(N \) is trace preserving: \(\text{tr}(N(M)) = \text{tr}(M) \) (conservation of probability when \(M = \rho \))
3. \(N \) is completely positive: \(M \geq 0 \Rightarrow I \otimes N(M) \geq 0 \)

\(N \) applied to 1 out of 2 systems takes a valid initial joint state \(\rho \geq 0 \) to a valid new joint state \(I \otimes N(\rho) \geq 0 \).

E.g., hold for conjugation by unitaries and partial trace.
The identity map:
Consider the map \(\mathbb{I}(M) = M \). It is linear, trace preserving and completely positive. It represents the evolution in which nothing happens.

The identity map is most often used when one of two system is being transformed.

On a tensor product input, \(\mathbb{I} \otimes N(6 \otimes \xi) = 6 \otimes N(\xi) \).
Then, linearity allows the most general \(\mathbb{I} \otimes N(\rho) \) to be computed.
Definition: a quantum operation is a mapping from matrices to matrices that is linear, trace-preserving, and completely positive.

Synonyms: quantum channel, TCP map ...

Fairly immediate from the definition:

1. Composition of two quantum ops is a quantum op. (All 3 properties are preserved by composition.)

2. Tensor product of two quantum ops (applied to two disjoint systems) is a quantum op.
Example 1: Conjugation by unitary $N(\rho) = U \rho U^+$
Example 2: Partial trace $N(\rho) = \operatorname{tr}_R \rho_{RS}$.

Example 3: $N(\rho) = \operatorname{tr}_E (U \rho \otimes 1 \otimes 1_E U^+)$ is a quantum operation for any system E and any U.

Proof: by examples 1-2 and composition.

Extensions: E can start in any other density matrix uncorrelated with ρ, and partial trace can be taken over a system of any size.
Example: amplitude damping channel

We can define U by its action on a pure qubit state:

$$U(a|10\rangle + b|11\rangle)_{A} = a|100\rangle_{EB} + b(\sqrt{1-\delta} |01\rangle_{EB} + \sqrt{\delta} |10\rangle_{EB})$$

the excitation is transferred from A to E

NB A, B, E all 2-dim.
Example: amplitude damping channel

We can define U by its action on a pure qubit state:

$$
U (a |0\rangle + b |1\rangle) = a |00\rangle_E^B + b (\sqrt{1-\alpha} |10\rangle_E^B + \sqrt{\alpha} |11\rangle_E^B)
$$

$$
U = \begin{pmatrix}
1 & 0 \\
0 & \sqrt{1-\alpha} \\
0 & \sqrt{\alpha} \\
0 & 0
\end{pmatrix}
$$

the excitation is transfered from A to E

NB A, B, E all 2-dim.
Example: amplitude damping channel

We can define U by its action on a pure qubit state:

$$U(a|0\rangle + b|1\rangle) = a|0\rangle_E + b\left(\sqrt{1-\delta} |0\rangle + \sqrt{\delta} |1\rangle\right)_E$$

$$U = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-\delta} \\ 0 & \sqrt{\delta} \\ 0 & 0 \end{pmatrix}$$

the excitation is transferred from A to E

NB A, B, E all 2-dim.

On a general density matrix $\rho = \begin{bmatrix} c & d \\ e & f \end{bmatrix}$,

$$U \rho U^+ = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-\delta} \\ 0 & \sqrt{\delta} \\ 0 & 0 \end{pmatrix} \begin{bmatrix} c & d \\ e & f \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \sqrt{1-\delta} & 0 & 0 \\ 0 & 0 & \sqrt{\delta} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{bmatrix} c \sqrt{1-\delta} & \sqrt{\delta}d & 0 \\ \sqrt{1-\delta}e & (1-\delta)f & \sqrt{\delta}f \\ \sqrt{\delta}e & \sqrt{\delta}f & (1-\delta)f \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
\[tr_{E} U \circ U^{+} = tr_{E} \left(\begin{array}{cccc}
 c & \sqrt{f_{d}} & s & 0 \\
 \sqrt{f_{e}} e^{(H_{e})f} & \sqrt{f_{d}} f & 0 \\
 \sqrt{f_{e}} s & \sqrt{f_{d}} f & 0 \\
 0 & 0 & 0 & 0 \\
\end{array} \right) \]

\[= \left(\begin{array}{c}
 c \sqrt{f_{d}} \\
 \sqrt{f_{e}} e^{(H_{e})f} \\
\end{array} \right) + \left(\begin{array}{cc}
 0 & 0 \\
\end{array} \right) \]

\[= \left(\begin{array}{c}
 c + rf \sqrt{f_{d}} \\
 \sqrt{f_{e}} e^{(H_{e})f} \\
\end{array} \right) \]
\[\text{tr}_E \ U \rho \ U^+ = \text{tr}_E \begin{pmatrix} c & \sqrt{rf}d & \sqrt{rf}d & 0 \\ \sqrt{rf}e & (rf)f & \sqrt{rf}f & 0 \\ \sqrt{rf}e & \sqrt{rf}f & rf & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

\[= \begin{pmatrix} c & \sqrt{rf}d \\ \sqrt{rf}e & (rf)f \end{pmatrix} + \begin{pmatrix} rf & 0 \\ 0 & 0 \end{pmatrix} \]

\[= \begin{pmatrix} c + rf & \sqrt{rf}d \\ \sqrt{rf}e & (rf)f \end{pmatrix} \]

So, the channel takes \(\rho = \begin{pmatrix} c & d \\ e & f \end{pmatrix} \) to \(\begin{pmatrix} c + rf & \sqrt{rf}d \\ \sqrt{rf}e & (rf)f \end{pmatrix} \)

A fraction \(\chi \) of the (1,1) entry is moved to the (0,0) entry, and the off diagonal terms are diminished.
What is $N(\rho)$ in terms of U?

Let

$$U = \sum_{j=0}^{d_E-1} \sum_{k=0}^{d_E-1} |j \times k|_E \otimes U_{jk} = \begin{pmatrix} U_{00} & U_{01} & U_{02} & \cdots \\ U_{10} & U_{11} & U_{12} & \cdots \\ U_{20} & U_{21} & U_{22} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

E: 1st register.
What is \(N(\rho) \) in terms of \(U \)?

Let

\[
U = \sum_{j=0}^{d_{E-1}} \sum_{k=0}^{d_{E-1}} |j\rangle \langle k|_E \otimes U_{jk} = \begin{pmatrix}
U_{00} & U_{01} & U_{02} \\
U_{10} & U_{11} & U_{12} \\
U_{20} & U_{21} & U_{22} \\
\vdots & \vdots & \vdots
\end{pmatrix}
\]

\(E \): 1st register.

\[
N(\rho) = \text{tr}_E \left(U \rho \otimes 1_0 \otimes 1_E \right) U^+
\]

\[
= \text{tr}_E \left(\sum_{j=0}^{d_{E-1}} \sum_{k=0}^{d_{E-1}} |j\rangle \langle k|_E \otimes U_{jk} \right) \left(|0\rangle \langle 0|_E \otimes \rho \right) \left(\sum_{j'=0}^{d_{E-1}} \sum_{k'=0}^{d_{E-1}} |k'\rangle \langle j'|_E \otimes U^*_{j'k'} \right)
\]
What is $N(\rho)$ in terms of U?

Let

$$U = \sum_{j=0}^{d_{E-1}} \sum_{k=0}^{d_{E-1}} |j \rangle \langle k|_E \otimes U_{jk}$$

E: 1st register.

$$N(\rho) = \text{Tr}_E \left(U \rho \otimes 1 \otimes 0 \otimes 1 \otimes U^* \right)$$

$$= \text{Tr}_E \left(\sum_{j=0}^{d_{E-1}} \sum_{k=0}^{d_{E-1}} |j \rangle \langle k|_E \otimes U_{jk} \right) \left(|0 \rangle \langle 0|_E \otimes \rho \right) \left(\sum_{j'=0}^{d_{E-1}} \sum_{k'=0}^{d_{E-1}} |k' \rangle \langle j'|_E \otimes U^*_{j'k'} \right)$$

$$= \text{Tr}_E \left(\sum_{j=0}^{d_{E-1}} |j \rangle \langle j|_E \otimes U_{j0} \right) (1 \otimes \rho) \left(\sum_{j=0}^{d_{E-1}} \langle j'|_E \otimes U^*_{j'0} \right)$$

Isometry

1-dim

Can be omitted.
What is $N(\rho)$ in terms of U?

Let $U = \sum_{j=0}^{d_{E-1}} \sum_{k=0}^{d_{E-1}} 1_j X 1_k |E \times \otimes U_{jk} = E: 1\text{st register.}$

$N(\rho) = \text{tr}_E (U \rho \otimes 1 E \otimes U^+)$

$= \text{tr}_E \left(\sum_{j=0}^{d_{E-1}} \sum_{k=0}^{d_{E-1}} 1_j X 1_k |E \otimes U_{jk} \right) \left(1 \times 0 |E \otimes \rho \right) \left(\sum_{j'=0}^{d_{E-1}} \sum_{k'=0}^{d_{E-1}} 1_{j'} X 1_j |E \otimes U_{j'k'}^+ \right)$

$= \text{tr}_E \left(\sum_{j=0}^{d_{E-1}} 1_j |E \otimes U_{j0} \right) \left(1 \otimes \rho \right) \left(\sum_{j=0}^{d_{E-1}} \langle j' |E \otimes U_{j0}^+ \right) \text{ isometry}$

$= \sum_{j=0}^{d_{E-1}} U_{j0} \rho U_{j0}^+ \text{ mixture of states } \frac{U_{j0} \rho U_{j0}^+}{\text{tr} U_{j0}^+ U_{j0} \rho}$

not nec unitary

\[\text{isometry} \]

\[\begin{pmatrix}
U_{00} & U_{01} & U_{02} & \cdots \\
U_{10} & U_{11} & U_{12} & \cdots \\
U_{20} & U_{21} & U_{22} & \cdots \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{pmatrix} \]
More generally, let U be an isometry taking system A to system BE (dims of A, B, and E are arbitrary).

$$U = \begin{pmatrix} \bar{A}_1 & \bar{A}_2 & \cdots & \bar{A}_K \\ \bar{A}_K & \bar{A}_K & \cdots & \bar{A}_K \\ \vdots & \vdots & \ddots & \vdots \\ \bar{A}_{d_E} & \bar{A}_{d_E} & \cdots & \bar{A}_{d_E} \end{pmatrix}$$

d_E blocks each taking d_A to d_B dims

$$U = \sum_{k=1}^{d_E} |k\rangle_E \otimes A_k$$

Stinespring dilation, isometric extension
More generally, let U be an isometry taking system A to system BE (dims of A, B, and E are arbitrary).

$$U = \uparrow \begin{array}{c} A_1 \\ A_2 \\ \vdots \\ A_k \\ \vdots \\ A_{d_E} \end{array} \downarrow \begin{array}{c} d_B \\ d_B \\ \vdots \\ d_B \end{array}$$

$$N(\rho) = \operatorname{Tr}_E \left(U \rho U^+ \right) = \sum_{k=1}^{d_E} A_k \rho A_k^+$$

Kraus representation of N A_k's: Kraus operators

not A_k^+'s

Stinespring dilation, isometric extension

$$U = \sum_{k=1}^{d_E} |k\rangle_E \otimes A_k$$
More generally, let U be an isometry taking system A to system BE (dims of A, B, and E are arbitrary).

$$U = \begin{array}{c|c|c}
A_1 & & d_B \\
\hline
A_2 & & d_B \\
\hline
A_K & d_E & d_E \\
\hline
A_{d_E} & &
\end{array}$$

$$d_B d_E$$

Each taking d_A to d_B dims

$$d_E$$ blocks

$$N(\rho) = tr_E(\rho U U^\dagger) = \sum_{k=1}^{d_E} A_K \rho A_K^\dagger$$

Kraus representation of N

A_K's: Kraus operators

* A map w/ Kraus representation is linear and completely positive

$$U = \sum_{k=1}^{d_E} |k\rangle_E \otimes A_K$$

Stinespring dilation, isometric extension
More generally, let U be an isometry taking system A to system BE (dims of A, B, and E are arbitrary).

$$U = \begin{array} \end{array}$$

$$U = \sum_{k=1}^{d_E} |k\rangle_E \otimes A_k$$

Stinespring dilation, isometric extension

$$N(\rho) = \text{tr}_E (U \rho U^+) = \sum_{k=1}^{d_E} A_k \rho A_k^+$$

Kraus representation of N

A_k's: Kraus operators

* A map w/ Kraus representation is linear and completely positive

* U isometry $\iff U^+U = I_A$

$\iff \sum_{k=1}^{d_E} A_k^+ A_k = I_A$

$\iff N$ trace preserving
Example: amplitude damping channel

\[U = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-x} \\ 0 & \sqrt{x} \\ 0 & 0 \end{pmatrix} \qquad A_0 = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-y} \end{pmatrix} \qquad A_1 = \begin{pmatrix} 0 & \sqrt{x} \\ 0 & 0 \end{pmatrix} \]

\[N(\rho) = A_0 \rho A_0^\dagger + A_1 \rho A_1^\dagger \]

Ex: check \(A_0^\dagger A_0 + A_1^\dagger A_1 = I \)
Example: amplitude damping channel

\[
U = \begin{pmatrix}
1 & 0 \\
0 & \sqrt{1-\gamma} \\
0 & \sqrt{\gamma} \\
0 & 0
\end{pmatrix}
\quad A_0 = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{bmatrix}
\quad A_1 = \begin{bmatrix} 0 & \sqrt{\gamma} \\ 0 & 0 \end{bmatrix}
\]

\[N(\rho) = A_0 \rho A_0^\dagger + A_1 \rho A_1^\dagger\]

Ex: check \[A_0^\dagger A_0 + A_1^\dagger A_1 = I\]

If the initial state is \[|\psi\rangle = a |0\rangle + b |1\rangle \quad (\rho = |\psi\rangle \langle \psi|)\]
output is the mixture of two unnormalized states:

\[A_0 |\psi\rangle = a |0\rangle + \sqrt{1-\gamma} b |1\rangle\]
\[A_1 |\psi\rangle = \sqrt{\gamma} b |1\rangle\]
Example: amplitude damping channel

\[U = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \\ 0 & \sqrt{\gamma} \\ 0 & 0 \end{pmatrix} \]

\[A_0 = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{pmatrix} \]

\[N(\rho) = A_0 \rho A_0^\dagger + A_1 \rho A_1^\dagger \]

Ex: check \(A_0^\dagger A_0 + A_1^\dagger A_1 = I \)

If the initial state is \(|\psi\rangle = a |0\rangle + b |1\rangle \) (\(\rho = \langle \psi | \psi \rangle \)) output is the mixture of two unnormalized states:

\[A_0 |\psi\rangle = a |0\rangle + \sqrt{1-\gamma} b |1\rangle \]

\[A_1 |\psi\rangle = \sqrt{\gamma} b |1\rangle \]

Interpretation: \(|0\rangle \) : ground state

\(|1\rangle \) : excited state

\(A_1 \) : de-excitation (with prob \(\gamma \))

\(A_0 \) : no de-excitation, but diminished amplitude for \(|1\rangle \)
Exercise: evaluate $N\left(\frac{1}{2}I + aX + bY + cZ\right)$ and find how N transform the Bloch sphere.

The ground state $|\psi\rangle\langle\psi|$ is a fixed point of N. N is not unital (taking the identity matrix to itself).
Theorem: any quantum operation N from system A to system B can be represented as $N(\rho) = \text{tr}_E (U \rho U^\dagger)$ for some system E and some Stinespring dilation U.

Proof omitted. See arxiv.org/abs/quant-ph/0201119
Representations of quantum operations:

1. Unitary representation

\[N(\rho) = \text{Tr}_E (U \rho U^+) \]

\[\rho \xrightarrow{A} U \xrightarrow{B} N(\rho) \]

\[\leftarrow \text{partial trace} \]

2a. Kraus rep: \[N(\rho) = \sum_{k=1}^{d_E} A_k \rho A_k^+ \], \[\sum_{k=1}^{d_E} A_k^+ A_k = I_A \]

2b. Conversely, given \(d_E \) operators \(A_k \) mapping from system A to B satisfying

\[\sum_{k=1}^{d_E} A_k^+ A_k = I_A \]

\[U = \sum_{k=1}^{d_E} |k\rangle_E \otimes A_k \]

is an isometry, and \(\text{Tr}_E (U \rho U^+) = \sum_{k=1}^{d_E} A_k \rho A_k^+ \)

3. \(N(\rho) \) as an explicit function of \(\rho \) e.g. \[
\begin{pmatrix}
 c & d \\
 e & f
\end{pmatrix} \rightarrow
\begin{pmatrix}
 c+if & \text{Tr}(\rho) \cdot d \\
 \text{Tr}(\rho) \cdot e & \text{Tr}(\rho) \cdot f
\end{pmatrix}
\]

4. Choi matrix (reading)