Graeme Smith:

1. \(Q''''(N \otimes A) \) additive
2. Private capacity of \(\mathcal{Q} \) channel
3. PPT states + privacy
4. Superactivation of \(\mathcal{Q} \) capacity:
 \[Q(N_1 \otimes N_2) > 0, \quad Q(N_1) = 0 \]
5. Erasure channel.
\[A : \mathcal{V} | (i,j) \rangle \rightarrow \sum_l |i\rangle |j\rangle + |i\rangle |j\rangle \tfrac{1}{2} \]

\[A(p) = \text{Tr}_2 \mathcal{V}_p \mathcal{V}^+ \]

Define \(Q_{\text{SS}}^{(0)}(N) = Q^{(0)}(N \otimes A) \)

Then we have the following lemmas:

1. \(Q_{\text{SS}}^{(1)}(N \otimes M) = Q_{\text{SS}}^{(1)}(N) + Q_{\text{SS}}^{(1)}(M) \)

2. Recall coherent info for channel \(N \):

\[\max_{\phi} \left[S(\phi) - S(E) \right] \]

3. \(Q_{\text{SS}}^{(1)}(N) = Q^{(1)}(N \otimes A) \)

\[= \max_{\phi} \left[I^{\text{coh}}(N \otimes A, \phi) \right] \]

\[= \max_{1(\phi) \text{AA}_A^B} \left[I(A > B | E) \right] \]

\[= \max_{\phi \text{AA}_A^B} \left[I(A > B | E) \right] \]
Lemma 2

\[Q_{SS} (N) = \max_{P_{AA'F'}} \frac{1}{2} \left[I(A \rightarrow BF) - I(A \rightarrow EF) \right] \]

Why?

Pushing \(P_{AA'F'} \) as \(\{Y\} AA'FF' \).

\[\Rightarrow \max_{\{Y\} AA'FF'} \frac{1}{2} \left[I(A \rightarrow BF) + I(A \rightarrow BF') \right] \]

\[\{Y\} AA'FF' \]

Proof:

\[P_{AA'FF'} \]

\[I(A \rightarrow BF) + I(A \rightarrow BF') \]

\[\frac{1}{2} \left[I(A \rightarrow BF) + I(A \rightarrow BF') \right] \]

\[I(A \rightarrow BF) \]

\[I(A \rightarrow BF') \]

\[I(A \rightarrow BF) \]
 Feed A' to Channel 1:

\[P_{AA', A} = \frac{1}{2} \left[P_{AA}, f_1 \otimes |0\rangle \otimes |1\rangle + P_{AA'}, f_2 \otimes |1\rangle \otimes |1\rangle \right] \]

\[\Sigma (A) B f_a \]

\[= \frac{1}{2} \left[\Sigma (A) B f + \Sigma (A) B f' \right] \]

By Lemma 10:

(17)

\[\text{ISS} (N_1 \otimes N_2) : \]

\[f_{AA, A2, f} \]

\[\perp \]

\[N_1 \perp N_2. \]
\[N_0 = \frac{1}{2} \left[I_c(A > B_1 B_2 F) - I_c(A > E_1 B_2 F) \right] \]

\[= \frac{1}{2} \left[I_c(A > B_1 B_2 F) - I_c(A > E_1 B_2 F) \right] \]

\[+ I_c(A > E_1 B_2 F) - I_c(A > E_1 E_2 F) \]

\[\text{cancel out} \]

\[\leq Q_{ss}^{(1)} (N_1) \]

\[\leq Q_{ss}^{(1)} (N_2) \]

\[\text{But the top line, otherwise, is } Q_{ss}^{(1)} (N_1 \cup N_2) \]

\[\leq Q_{ss}^{(1)} (N_1) + Q_{ss}^{(1)} (N_2) \]
The opposite direction:

\[x_{ss} (N_1 \otimes N_2) > q_{ss} (N_1) + q_{ss} (N_2) \]

is easy, by choosing a particular input for the coherent info \(\Phi_{AA,F_i} \otimes \Phi_{\tilde{A}_2,F_2} \)

where \(\Phi_{AA,F_i} \) is obtained for \(N_i \)

\(\Phi_{\tilde{A}_2,F_2} \) - - - - - \(N_2 \).

\[\text{Lemma 1 holds.} \]

NB: max should be \(\leq \dim F \) is not unknown here.
Private capacity of a channel.

Ref: Csiszar & Körner 78
"broadcast channels with confidential messages"

Devetak 03 04 17

\[
P^{(1)}(N) = \max_{\{p_{X,Y}, q_Y\}} \left[I(X;B) - I(X;Z) \right]
\]

Evaluated on
\[
\sum_x p_x p_x |x| x |x| x |U_N \otimes \phi_x \otimes U_N^x|
\]
Intuition:

Output space of channel $S(B)$

$$\phi_1, \phi_2, \ldots, \phi_n$$

How much space? $nS(B|x)$

Can code $\frac{2^n S(B)}{nS(B|x)} \approx 2^{nI(X;B)}$ messages.

\mathcal{D}
Transmission to Bob requires his spheres don't overlap.

Privacy: collect different spheres in bins as a message for Bob.

Idea: how many spheres per bin?

If we put \(\left\lfloor \frac{\ln n}{\ln 2} \right\rfloor \) in a single bin, each bin fills Bob's space, so she may find out.
(3) PPT states.

HHHO 2003

\[|\Phi^+\rangle = \frac{1}{\sqrt{2}} \left(|10\rangle_{AB} + |11\rangle_{AB} \right) \]

If A & B each measure in computation basis, each gets to same outcome & no one else knows. (Eaves QKD)

\[|\Phi^+\rangle \otimes \left(|\psi^+\rangle^{AB} + |\psi^-'\rangle^{AB} \right) \quad \text{for } \quad |\psi^+\rangle = \frac{\phi^+}{\sqrt{2}} \]

Same as before.

\[U^{ABab} = \sum_{i,j} \begin{bmatrix} |i\rangle \langle j| \end{bmatrix}^{AB} \otimes \begin{bmatrix} \phi^+ \end{bmatrix}^{ab} \]

for \[U^{ABab} = \sum_{i,j} \begin{bmatrix} |i\rangle \langle j| \end{bmatrix}^{AB} \otimes \begin{bmatrix} \phi^+ \end{bmatrix}^{ab} \]

\[|\Phi^+\rangle \]

State given to Alice & Bob.
Measuring ρ_{AB} basis on A & B.

Commutes with the unitary.

Sam out came

also does NOT leak info to Eve!

So the state has "privacy" but little
for properly chosen \mathcal{U}_{ABAB}, has little distillable
entanglement.

Now add a little separable state δ.

St. $\rho + \delta$ is PPT,

the bipartite yet there is residual privacy.
\[\exists N \text{ s.t. } Q(N) = 0 \quad \& \quad P^{(1)}(N) > 0. \]

See Pankowski, H., H., 1966.

2 qubits x 2 qubits.

(4) Entropy activation.

Consider
\[Q_{ss}(N) = \max \frac{1}{2} \left[\log \frac{1}{P_{A \rightarrow B | F}} - \log (A \rightarrow F) \right] \]
\[P_{A \rightarrow F} \]

\[= \max \frac{1}{2} \left[-S(A \mid B F) + S(A \mid E F) \right] \]

\[= \max \frac{1}{2} \left[-S(A \mid B F) + S(A \mid E F) \right] \]

\[= \max \frac{1}{2} \left[-S(A \mid B) + S(A \mid E F) \right] \]

\[-S(A \mid F) - S(A \mid E). \]
\[P^{(1)}(N) = \max \left\{ I(X;F) - I(X;E) \right\} \]

\[\sum_x p_x f_x \chi_x \phi_x \]

= above with final F, and without \(\frac{1}{2} \) factor.

\[P^{(1)}(N) \leq 2 \times Q^{(1)}_{ss}(N) \]

\[= 2 Q^{(1)}(N \setminus A) \]

Take the N s.t. \(Q(N) = 0 \) & \(P^{(1)}(N) > 0 \).

Note also \(Q(A) = 0 \).

\[0 \leq Q^{(0)}(N \setminus A) \leq Q(N \setminus A) \]

Can use erasure channel (50-50) with in place of\(\text{ instead of } A \).