Def. A classical channel N is specified by:

- an input alphabet X
- an output alphabet Y
- a distribution $p(y | x)$ for each $x \in X$.

Example 1: Binary symmetric channel (BSC)

$X = Y = \{0, 1\}$, input "flipped with probability p".

- $p(y = 0 | x = 1) = 1 - p$
- $p(y = 1 | x = 0) = p$.

Example 2: Erasure channel

$X = \{0, 1\}$, $Y = \{0, 1, \text{?}\}$.

Input sent up $1 - p$ replaced by "?" with probability p.

Diagrams:

1. Binary symmetric channel (BSC) diagram showing the probability of error.
2. Erasure channel diagram showing the probability of erasure and the correct symbol replacement.
Main focus:

1. Asymptotic rate of comm
 - can use channel many (n) times
 - allow a very small error rate

2. Discrete memoryless channels (DMC):
 - each use independent & identical:

 \[
 \text{Input} = X_1, X_2, \ldots, X_n \quad \text{Output} = Y_1, Y_2, \ldots, Y_n \quad \text{Up to} \quad \frac{1}{P_1} P(Y_i | X_i).
 \]

Aside: sensible channels not of the above type.

Eg 1. Missing-symbol channel
\[
X_1, X_2, \ldots, X_n \rightarrow Y_1, Y_2, \ldots, Y_m
\]

obtained by \(X_1 \ldots X_n\)
by deleting \(n-m\) symbols.

Don't know which symbols are missing.

Eg 2. Channel
\[
X_1, X_2, \ldots, X_i, X_{i+1}, \ldots, X_n \rightarrow X_1, X_2, \ldots, X_i, X_{i+1}, \ldots, X_n
\]

Symbols can emerge out of order.

Eg 3. Burst errors
\[
X_1, X_2, \ldots, X_n \rightarrow X_1, X_2, \ldots, X_m.
\]

Missing a large contiguous block of symbols.

Eg someone pulled off a page in a book.
DMC from now on:

Use error correcting codes:

eg. Repetition code

- **Message** → **Code word**
 - 0 → 0 0 ... 0
 - 1 → 1 1 ... 1

- **Decoding** → majority of ⌈k times ⌉

The code: set of legitimate code words (a subset of all possible messages).

Rate: \(\frac{k}{n} \)

Prob error: \(p^k \) for erasure channel

eg. Hamming code \(A \times 2 \)

- **Encodes** \(k = 2^r - 1 \) in \(n = 2^r - 1 \) bits

- **Rate**: \(\frac{k}{n} = 1 - \frac{1}{2^r - 1} \)

- Can correct 1 error in BSC.

eg. Hadamard code

- Take Hadamard matrix:

- Bit flip error (up to \(\frac{n}{2} - 1 \)) can be corrected. **Rate**: \(\frac{k = \log n}{n} \rightarrow 0 \) as \(n \rightarrow \infty \).
Geometric interpretation.

For simplicity, take $k=1$.

\[X^m = Y^m \]

Using only codewords to represent messages, they can be recovered if at most k errors happen and if Hamming spheres don't overlap.

\[\text{If few enough codewords} \]
Qn:

1. For a fixed message size, to have smaller & smaller error prob. need bigger & bigger rate

 but that means more & more errors.

 Can error prob → 0?
 Will the rate → 0?

2. For growing message size, how prob. for each segment → 0, can the entire message be sent correctly up to 1?
Sending messages through a noisy channel:

\[\begin{array}{c}
\text{Sender's lab} \\
\xrightarrow{m} \text{Encoder} \xrightarrow{E_n} \begin{array}{c} y_1 \\ \vdots \\ y_n \end{array} \\
\xrightarrow{\text{Decoder}} \xrightarrow{D_n} \text{Receiver's lab} \\
\end{array} \]

An "\((M, n)\)" code consists of:

1. an index set \(M = \{1, 2, \ldots, M\}\)
2. an encoding function \(E_n : M \rightarrow X^n\)
3. a decoding function \(D_n : Y^n \rightarrow M\)

* The code = \(\{E_n(1), E_n(2), \ldots, E_n(M)\}\)

* Rate of \((M \times n)\) code = \(\frac{1}{n} \log_2 M\).

* For each \(m\), \(m'\) follows a distribution (Randomness introduced by noisy channel).

* Define \(P_e(m) := \text{Prob}(m' \neq m|m)\).

* Define \(P_e := \max_{m \in M} P_e(m)\) \(\text{worse case error}\).

* Define \(\bar{P}_e := \frac{1}{M} \sum_{m \in M} P_e(m)\) \(\text{average error}\).
Def. An achievable rate J:

For a channel N, a rate R is achievable if a sequence of $(\frac{1}{2}^n R, n)$ codes C_n s.t. $Pe(C_n) \to 0$ as $n \to \infty$.

Def. The capacity of N, $C(N)$, is the supremum over achievable rates.

NB: If $C(N) > 0$, the entire message (longer & larger, $2^n R$ bits) comes out correctly (in each symbol) almost surely!

\[
\text{Thm (Shannon's noisy coding theorem)}
\]

\[
C(N) = \max_{p_X} I(X;Y)
\]

where $p_{Y|X}(y|x) = p(y|x)$.

\[
\text{with respect to Channel}
\]

\[
\text{comes in}
\]

NB1. LHS is an asymptotic quantity. No direct relation.

RHS is a "single-letter" formula — involving only 1 copy of N.

NB2. Since works in worst case, message need not follow any distribution. (Will see when goes wrong.)
\[C(n) = 0 \quad \text{iff} \quad p(x, y) = p(x) \cdot p(y|x) = p(x) \cdot p(y). \]

So all other channels have \(C(n) > 0 \).}

\[I(x:y) = H(y) - H(y|x) \quad \text{for} \quad H(x) \]

Choose \(p(x) \) to max \(H(Y) \)

\[H(Y|x) = \frac{p(x)}{p(x)} \]

\[I(x:y) = H(x) - H(x|y) = 1 - p \]

Choose \(p(x) \) to

\[H(x|1) = 0 \]

\[H(x|0) = 1 \]

\[I(x|y) = p \]
Note zero error channel capacity.
How to prove (1)?

1. Prove a converse:

 i.e. at any higher rate, $P_e \to 0$

 [Thus $C(N) \leq \max_{p(x)} I(x:y)$]

2. Prove a direct coding theorem:

 i.e. given any $p(x)$,

 Show 3 codes achieving the rate $I(x:y)$

 + error analysis $P_e \to 0$

 [Thus $C(N) \geq \max_{p(x)} I(x:y)$]

} holds for completely different reasons.
Direct coding theorem:

- Need to show $\mathbb{P}(\text{E} \cap \text{M})$ satisfies C_n with:
 - rate $\frac{1}{n} \log M \geq I(X; Y) - d_n$ as $n \to \infty$
 - error $\mathbb{P}(\text{E} \cap \text{M}) \to 0$

- Strangely, we need not find these rates.

- Idea: for each n, a code C_n is generated via a random process.

\[
\mathbb{E}_{\text{C}_n} \mathbb{P}(\text{E} \cap \text{M}) \to 0 \quad \text{while } d_n \to 0
\]

over message

So, some $\tilde{\text{C}}_n$ has $\mathbb{E}_{\tilde{\text{C}}_n} \mathbb{P}(\tilde{\text{E}} \cap \text{M}) \to 0$.
Derive a matched $\tilde{\text{C}}_n$ with $\mathbb{P}(\tilde{\text{E}} \cap \text{M}) \to 0$.

Given any $n, M, p(x)$, the random process generating C_n is:

\[
\text{for } i = 1 \ldots M \quad j = 1 \ldots n
\]

pick $x_{ij} \sim iid \sim p(x_i)$.

Let $\text{C}_n = [x_{11} \quad x_{12} \ldots x_{1n} \quad \ldots \quad x_{M1} \quad x_{M2} \ldots x_{Mn}]$ the M code words defining the code C_n.
Why $P_c(G^n) 	o 0$ if $M < 2^{n(H(Y|X) - \delta_n)}$?

- Output Y^n is i.i.d. $\mathcal{N}(0,1)$
- There are $2^{nH(Y)}$ typical outcomes.

If message is i, C_i transmitted via N^{ω^n}
- then there are $2^{nH(Y|X)}$ outcomes, centred at C_i, forming a set S_i

![Diagram showing sets S_1, S_2, S_3]

- If $2^{nH(X|Y)} M \ll 2^{nH(Y)}$
 then S_1, S_2, \ldots, S_m don't overlap much.

Bob
- I can find out which C_i was sent by Alice
 [by checking which S_i his output y^n belongs to]
Actual analysis requires the following:

Def: [Jointly typical sequence]

Given dist. \(p(xy) \), drawn \(n \) times,

\(xy^n \) is \(\varepsilon \)-jointly typical if

\[
\begin{align*}
(5) & \quad | \frac{1}{n} \log p(x^n) - H(x) | \leq \varepsilon \\
(6) & \quad | \frac{1}{n} \log p(y^n) - H(y) | \leq \varepsilon \\
(7) & \quad | -\frac{1}{n} \log p(x^n y^n) - H(xy) | \leq \varepsilon
\end{align*}
\]

\((x^n \text{-typical}) \) \((y^n \text{-typical}) \) \((xy^n \text{-typical}) \)

Def: [Jointly typical set]

\(A_{n, \varepsilon} = \{ x^n, y^n : x^n y^n \text{-typical} \} \)

Obs: Within \(A_{n, \varepsilon} \), prob \((y^n|x^n) \) etc. all tightly concentrated.

Thm: [Joint AEP]

Using above defns. \(\forall \delta > 0 \) \(\forall \varepsilon > 0 \) \(\exists n_0 \) st. \(n \geq n_0 \)

1. \(\Pr \left(A_{n, \varepsilon} \right) \geq 1 - \delta \\
(\text{Hypothesis})

2. \(\left(1 - \delta \right)^n \leq |A_{n, \varepsilon}| \leq 2^n \left(H(xy) + \varepsilon \right) \)

3. If we draw \((x^n, y^n) \) according to some other dist. \(q \)

\[
q(x^n, y^n) = p(x^n) \cdot p(y^n)
\]

then \(\Pr \left(x^n, y^n \in A_{n, \varepsilon} \right) \leq 2^{-n \left(I(x,y) - 3\varepsilon \right)} \)

\(\Pr = \frac{1}{n} \)
More specifically:

1. A random code C_n is generated.

2. C_n is told to Alice & Bob

3. A message i is drawn uniformly from $f(1, 2, ..., M)$.

4. Alice sends C_i through N^n.

5. Bob receives $Y^n \sim Pr(Y^n|C_i)$.

6. Bob decides the outcome y^n:

 - If $\exists \ i, j$ st. $y^n \in A_n$ & Bob outputs j.

 - Otherwise Bob outputs "failed".
If we make a table:

<table>
<thead>
<tr>
<th>(y^n(1))</th>
<th>(y^n(2))</th>
<th>(y^n)</th>
<th>(y^n(2^{H(Y+3)}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^n(1))</td>
<td>(x^n(2))</td>
<td>(x^n)</td>
<td></td>
</tr>
<tr>
<td>(x^n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n(HX+\epsilon))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(M \) random rows are code words.

\(T_{\text{m.e.}} \) for X

\[\text{If } x^n y^n \text{ is ans., but not 1", else 0".} \]

Roughly \(2^n H(XY) \) 1's
When message is \(\hat{c} \), Alice transmits row \("c.i." \)

By TAEPC(1) \(wp > 1-d \), the following holds:

Bob receives \(c.i. st. c \in \mathcal{E} \rightarrow \mathcal{A} \).

When Bob sees:

If column for \(c.i. \) restricted to the code, has a unique "1", that "1" is in the row \(c.i. \).

Bob's only but \(j = \hat{i} \).

Only error comes from:

1. TAEPC(1) fails.
2. There is some \(c_k \), \(k \neq j \)

\(\text{st. } c_k, c_i \in \mathcal{A} \in \mathcal{E} \).

But \(c_i \) depends on \(c_k \), indep \(c_k \).

\[\text{Pr} (c_k (c_i \in \mathcal{A} \cap \mathcal{E}) \leq \text{independent}) \text{ by TAEPC(2).} \]

Over choice \(c_k \).
\[
\frac{1}{n} \sum_{C_n} \mathbb{E} \Pr (C_n) \\
= \frac{1}{n} \sum_{C_n} \mathbb{E} \mathbb{P}_e (C_n) \\
= \frac{1}{n} \sum_{C_n} \mathbb{E} \mathbb{P}_e (C_n) \\
\leq \frac{1}{n} \sum_{C_n} \mathbb{E} \mathbb{P}_e (C_n) \\
\leq d + \sum_{k} \Pr \left(\mathbb{P}_e (C_k \cap C_t^{\prime} \in A_{\eta \varepsilon}) \right) \\
\leq d + M \cdot 2^{-n(\mathbb{H}(X;Y) - 3\varepsilon)} \\
\leq \text{Indef} \eta \cdot n.
\]

If rate \(R = \frac{1}{n} \log M < \mathbb{I}(X;Y) - 3\varepsilon \)

for large \(n \),

\(M \cdot 2^{-n(\mathbb{H}(X;Y) - 3\varepsilon)} < \eta \)

\(d < \eta \)

\(\mathbb{E} \sum_{C_n} \mathbb{E} \mathbb{P}_e (C_n) < 2\eta \)

So \(\exists C_n \text{ s.t. } \mathbb{E} \mathbb{P}_e (C_n) < 2\eta \).
From \tilde{E}_n, get a code \tilde{C}_n with $P_e(\tilde{C}_n) \leq 2^{-n} P_e(\tilde{E}_n)$.

Take those $\frac{M}{2}$ code words in \tilde{E}_n with prob of error less than the median.

\tilde{E}_n codewords, 1 fewer bit than \tilde{C}_n.

Rate goes down by $\frac{1}{n} \to 0$.

Techniques:

- Random codes
- Symmetry arguments
- Existential proof
- Expanding worse codewords to proof $P_e(\tilde{E}_n)$
Converse:

\[nR = H(M) = H(M|Y^n) + I(M;Y^n). \]

\[
\begin{align*}
1 & \leq 1 + Pe \cdot nR \\
2 & \leq I(E^n(M);Y^n) \\
3 & \leq n \max_{p(x)} I(x;Y).
\end{align*}
\]

"Fano's inequality:

If \(Pe = 0 \), can deduce \(M \) from \(Y^n \).

"Data processing inequality:

\[H(\mathbb{E} \hat{X} | Y) \leq H(\mathbb{E} \hat{X} | Y, E^n(M); Y^n) \]

1. Thin Fano's inequality:

Let \(Pe = \text{prob}(X=\hat{X}) \), \(\mathbb{E} = f(Y) \)

\[\mathcal{S} = \text{sample space of } X. \]

Then \(H(Pe) + Pe \cdot (\log |2^n - 1|) \geq H(X | Y) \).

binary entropy for

Pf: Define new \(rv E \in \mathbb{S} \).

\[E = 0 \text{ if } X = \hat{X} \]

\[E = 1 \text{ otherwise.} \]

\[H(E | X,Y) = H(X,Y) + H(E | X,Y), \]

\[= H(\mathbb{E} | Y) + H(X | E,Y). \]

\[= H(\mathbb{E} | Y) + H(X | E = 0, Y | E = 0). \]

Exchange \(\mathbb{E} \) sym on both sides.

\[H(X | E = 0, Y | E = 0) = H(X | E = 0, \mathbb{E} = 0). \]

\[\leq H(X | E = 0, Y | E = 0). \]

\[\leq H(X | E = 0, \mathbb{E} = 0). \]

\[\leq H(\mathbb{E} = 0) + \sum_y p(y) \left[Pe \cdot H(X | E = 1, Y | Y) + (1-Pe) \cdot H(X | E = 0, Y | E = 0) \right]. \]

\[\leq H(\mathbb{E}) + Pe \log (2^{n-1}). \]
Replacing X by M

Y by Y^n

Ω by 2^n

\[H(M|Y^n) \leq H(P_e) + \log n R \quad \text{apriori} \]

\[\leq 1 + \log n R. \]

\(\text{(2) Thm 1: Data Processing Inequality (DPI)} \):

If 3 r.v's E, F, G form a Markov chain " $E \rightarrow F \rightarrow G$ "

\[I(E:B|F) = 0 \]

Then $I(E:F) > I(E:B)$.

\[\text{Proof:} \quad I(E:F) = H(E) - H(E|F) \]

\[= I(E:B) + H(E|F) - H(E|F,G) \]

\[= I(E:B) + I(E:F|G) \]

" LHS sym wrt exchanging F & G. "

\[I(E:F) \geq 0 \quad \text{by SSA} \]

\[= 0 \quad \text{for } E \rightarrow F \rightarrow G. \]

\[I(E:F) \leq I(F|G). \]
Lemma: Let $Y^n = N^{\omega^n}(X^n)$

Then $I(X^n; Y^n) \leq \sum_{i=1}^{n} I(X_i; Y_i)$.

Note neither X^n nor Y^n need to be iid.

E.g. $X^n = 111100$

$Y^n = 00 \ldots 00$

Proof: $I(X^n; Y^n) = H(Y^n) - H(Y^n | X^n)$

$= H(Y^n) - \sum_{i=1}^{n} H(Y_i | Y_{i-1}, \ldots, Y_1, X^n)$ Chainrule

$= H(Y^n) - \sum_{i=1}^{n} H(Y_i | X_i)$ Y_i only depends on X_i

$\leq \sum_{i=1}^{n} H(Y_i) - \frac{n}{2} H(Y^n | X^n)$ Source Coding

$= \sum_{i=1}^{n} I(X_i; Y_i)$.

E.g. Back comm doesn't help.