Fall 2012 QIC 890 / CO 781 Assignment 4

Due Oct 18, 2012 (in class)

Question 1. The capacity of the classical Z channel [5 marks]

The classical Z channel has input alphabet Ω_X equal to the output alphabet Ω_Y equal to $\{0,1\}$. If the input is x=0, the output is y=0 with certainty. If the input is x=1, then the output distribution is uniform over $\{0,1\}$. Find the optimal distribution for the capacity expression and also the capacity for the channel.

Note: it is a one-parameter optimization.

Question 2. Strong additivity of the classical capacity [5 marks]

Let \mathcal{N}_1 and \mathcal{N}_2 be two arbitrary classical channels. Show that $C(\mathcal{N}_1 \otimes \mathcal{N}_2) = C(\mathcal{N}_1) + C(\mathcal{N}_2)$.

Note 1: For i = 1, 2, if \mathcal{N}_i takes input alphabet Ω_{X_i} to output alphabet Ω_{Y_i} , then $\mathcal{N}_1 \otimes \mathcal{N}_2$ takes $\Omega_{X_1} \times \Omega_{X_2}$ to output alphabet $\Omega_{Y_1} \times \Omega_{Y_2}$, and $\Pr(Y_1 Y_2 = y_1 y_2 | X_1 X_2 = x_1 x_2) = \Pr(Y_1 = y_1 | X_1 = x_1) \cdot \Pr(Y_2 = y_2 | X_2 = x_2)$.

Note 2: One side is simple.

Note 3: The optimal distribution for the capacity expression of $\mathcal{N}_1 \otimes \mathcal{N}_2$ has very special structure.

Question 3. Some simple exercises on Q boxes [10 marks]

Throughout this question, states are in \mathbb{C}^2 , and when you are asked to calculate the capacities, derive the optimal distribution as well.

(a) [2 marks] Let I, σ_x , σ_y , σ_z denote the Pauli matrices.

$$|\psi_1\rangle\langle\psi_1|=\frac{1}{2}(I+\frac{1}{\sqrt{3}}(\sigma_x+\sigma_y+\sigma_z))$$

$$|\psi_2\rangle\langle\psi_2| = \frac{1}{2}(I + \frac{1}{\sqrt{3}}(\sigma_x - \sigma_y - \sigma_z))$$

$$|\psi_3\rangle\langle\psi_3|=\frac{1}{2}(I+\frac{1}{\sqrt{3}}(-\sigma_x+\sigma_y-\sigma_z))$$

$$|\psi_4\rangle\langle\psi_4|=\frac{1}{2}(I+\frac{1}{\sqrt{3}}(-\sigma_x-\sigma_y+\sigma_z))$$

Note that $|\langle \psi_i | \psi_j \rangle|$ is constant for $i \neq j$, and the Bloch vectors of these states form the vertices of a tetrahedron.

- (i) What is the pretty good measurement corresponding to these states?
- (ii) What is the classical capacity of a Q-box capable of emitting $|\psi_i\rangle$ (i=1,2,3,4)?
- (b) [4 marks] Consider the states $\rho_0 = |0\rangle\langle 0|$, $\rho_1 = \frac{1}{2}(\frac{I}{2} + |1\rangle\langle 1|)$.
- (i) What is the pretty good measurement corresponding to these states?
- (ii) What is the classical capacity of a Q-box capable of emitting ρ_0 and ρ_1 ?
- (c) [4 marks] Consider the states $\rho_0 = |0\rangle\langle 0|$, $\rho_1 = \frac{1}{2}(\frac{I}{2} + |+\rangle\langle +|)$, $\rho_2 = \frac{1}{2}(\frac{I}{2} + |-\rangle\langle -|)$. What is the classical capacity of a Q-box capable of emitting ρ_0 , ρ_1 , and ρ_2 ?