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What is uncertainty?

What is information? 

What is redundancy? 

How to quantify them? 



X : random variable

: sample space, 

p : prob distribution of X

= m 

upper case: rv

lower case: outcome

e.g., biased coin

= {0,1},  p(0) = 0.1, p(1) = 0.9



A "discrete information source" is a sequence of rvs 
X1, X2, X3, ... with a common sample space / source 
alphabet  

e.g., can toss the biased coin as many times as wished
e.g., weather each day, = {sun, cloud, rain}

With n draws, we get one out of outcomes. 

In general, the need not be independent or 
identically distributed.  (e.g., weather)

If  are independent and identically distributed, 
we call X1, X2, ... an "iid" source.  

Focus on iid sources rest of this lecture.  



Better than magic for iid sources:
-- typicality and asymptotic equipartition thm 

Idea: Consider

For large n, a subset with

(1) high prob, (2) low cardinality, (3) ~equiprobable elements

Why?  Consider any

(by independence)

(log base 2)

LLN

empirical average of
    over n samples

As

theoretical average



Def: [Shannon entropy] H(X) or H(p) := 

e.g., for biased coin, H(X) = - 0.1 log 0.1 - 0.9 log 0.9 = 0.469

Def: [typical sequence] is -typical if

Def: [typical set] is -typical

e.g., for biased coin, n = 100, = 0.1

if has

then 

[0.369, 0.569]  for t = 7, 8, ..., 13

= all 100-bit strings with 7 to 13 0's.  



Idea: is a large prob set with low cardinality

e.g., 



Asymptotic equipartition theorem (AEP)

Interpretations:

(1) says the typical set is a large prob set

(2) quantifies how small the typical set is

(3) says any large prob set can't be much smaller 

Bonus: within typical set, elements are ~ equiprobable

(See Preskill for full motivating example for biased coin.)



Asymptotic equipartition theorem (AEP)

Proof: we upper bound 

X induces a rv Y = log p(X) 

i.e., wp p(x), Y = log p(x)  x

= - H(X)

use LLN on Y to bound prob of this



By Chebyshev's inequality for a rv Z :

Choose 

use LLN on Y to bound prob of this



Asymptotic equipartition theorem (AEP)

Proof: 

In particular, 
exponentially 
decreasing in n



Asymptotic equipartition theorem (AEP)

Proof: 



Application: data compression of iid sources

Alice

Bob

iid source 

(if Bob = future Alice, nR cbits refer to storage space)



Application: data compression of iid sources

Shannon's noiseless coding theorem:

Alice Bob

iid source 

Goal: min R while keeping negligible. 

direct coding
theorem - we
can do ... 

converse - 
cannot do 
better



Proof of (1):

Idea: transmit only typical sequences, ignore the rest

For each 

err otherwise

invert b if r not receive err
else output err

preagreed by 
Alice and Bob



Proof of (2):

satisfies By C2, at most

Let A = set of s.t. 



Comments:

* Allowing an arbitrarily small error reduces the 
   compression cost from log |    | to H(X) cbits per symbol 

* wp the ENTIRE correct !! 

* data compression gives H(X) an operational meaning.
- how much space is needed to represent each symbol 
   asymptotically (large n limit)?
- how much uncertainty is associated with each symbol?

* We considered "block codes" where n is fixed. 

* We are not concerned about the computational 
   complexity of 

See Cover and Thomas for other codes, e.g., Hoffman
code is exact, but variable-length, with expectation 
H(X) per symbol.


