QIC 820 / CO781 / CO 486 / CS 867 :

Theory of Quantum Information
Part 3, lecture 1
The asymptotic equipartition theorem, Shannon entropy and classical data compression

References:
Cover \& Thomas: Chapter 3 Preskill Physic 219 lecture notes: Chapter 10.1.1
(April 2022 version)

What is uncertainty?
What is information?
What is redundancy?
How to quantify them?

X : random variable
Ω : sample space, $\quad|\Omega|=m$
p : prob distribution of X

$$
\begin{aligned}
p: & \Omega \rightarrow[0,1] \\
& x \mapsto p(x) \\
\text { s.t. } & \sum_{x \in \Omega} p(x)=1 \\
& \mid \\
& \text { lower case: outcome }
\end{aligned}
$$

e.g., biased coin

$$
\Omega=\{0,1\}, p(0)=0.1, p(1)=0.9
$$

A "discrete information source" is a sequence of rvs $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots$ with a common sample space / source alphabet Ω.
e.g., can toss the biased coin as many times as wished e.g., weather each day, $\Omega=$ \{sun, cloud, rain\} With n draws, we get one out of m^{n} outcomes.

In general, the X_{i} 's need not be independent or identically distributed. (e.g., weather)

If X_{i} 's are independent and identically distributed, we call $\mathrm{X} 1, \mathrm{X} 2, \ldots$ an "iid" source.

Focus on iid sources rest of this lecture.

Better than magic for id sources:
-- typicality and asymptotic equipartition the
Idea: Consider $X^{n}=X_{1} X_{2} \cdots X_{n}$
For large n, \exists a subset $S \subseteq \Omega^{n}$ with
(1) high prob, (2) low cardinality, (3) ~equiprobable elements

Why? Consider any $x^{n}=x_{1} x_{2} \cdots x_{n}$

$$
\begin{aligned}
& p\left(x^{n}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \cdots p\left(x_{n}\right) \\
& \text { (by independence) } \\
& =2^{\log p\left(x_{1}\right)} 2^{\log p\left(x_{2}\right)} \cdots 2^{\log p\left(x_{n}\right)} \quad \text { (log base 2) } \\
& =2^{-n\left[\frac{1}{n} \sum_{i=1}^{n}(-) \log p\left(x_{i}\right)\right] \quad \begin{array}{c}
\text { empirical average of }(-) \log p(x) \\
\text { over } n \text { samples }
\end{array}} \\
& \downarrow \text { LoN } \\
& \text { theoretical average } \\
& =2^{-n}\left[\sum_{x \in \Omega} p(x)(-) \log p(x)\right] \& \underset{p}{\mathbb{E}}(-) \log p(x)=: H(x)
\end{aligned}
$$

As $n \rightarrow \infty, p\left(x^{n}\right) \rightarrow 2^{-n H(x)}$, such x^{n} "typical".

Def: [Shannon entropy] $H(X)$ or $H(p):=-\sum_{x \in \Omega} p(x) \log p(x)$
e.g., for biased coin, $H(X)=-0.1 \log 0.1-0.9 \log 0.9=0.469$

Def: [typical sequence] x^{n} is δ-typical if $\left|-\frac{1}{n} \log p\left(x^{n}\right)-H(x)\right| \leqslant \delta$

$$
\left(p\left(x^{n}\right) \approx 2^{-n H(x)}\right)
$$

Def: [typical set] $T_{\delta, n}=\left\{x^{n}: x^{n}\right.$ is δ-typical $\}$
e.g., for biased coin, $n=100, \delta=0.1$
if x^{n} has $t o^{\prime} s$ \& n-t I's
then $-\frac{1}{n} \log p\left(x^{n}\right)=-\frac{t}{n} \log 0.1-\frac{n-t}{n} \log 0.9$

$$
\in[0.369,0.569] \text { for } t=7,8, \ldots, 13
$$

$\therefore T_{100,0.1}=$ all 100-bit strings with 7 to 130 s.

Idea: $T_{\delta, n}$ is a large prob set with low cardinality

$$
\text { e.g., } \begin{aligned}
\operatorname{Prob}\left(T_{100,0.1}\right) & =0.75897 \\
\left|T_{100,0.1}\right| & =8.3 \times 10^{15} \\
\left|\{0.1\}^{100}\right| & =1.3 \times 10^{30} \\
\frac{\left|T_{100,0.1}\right|}{\left|\{0.1\}^{100}\right|} & \approx 6 \times 10^{-15}
\end{aligned}
$$

Asymptotic equipartition theorem (AEP)
$\forall \varepsilon>0, \forall \delta>0, \exists n_{0}$ s.t. $\forall n \geqslant n_{0}$
(1) $p\left(T_{n, \delta}\right) \geqslant 1-\varepsilon$
(2) $(1-\varepsilon) 2^{n(H(x)-\delta)} \leqslant\left|T_{n, \delta}\right| \leqslant 2^{n(H(x)+\delta)}$
(3) $\forall A \subseteq \Omega^{n}, \quad P(A) \geqslant 1-\varepsilon \Rightarrow|A| \geqslant(1-2 \varepsilon) 2^{n(H(x)-\delta)}$

Interpretations:
(1) says the typical set is a large prob set
(2) quantifies how small the typical set is
(3) says any large prob set can't be much smaller

Bonus: within typical set, elements are \sim equiprobable
(See Preskill for full motivating example for biased coin.)

Asymptotic equipartition theorem (AEP)
$\forall \varepsilon>0, \forall d>0, \exists n_{0}$ s.t. $\forall n \geqslant n_{0}$
(1) $p\left(T_{n, \delta}\right) \geqslant 1-\varepsilon$

Proof: we upper bound $\operatorname{pr}\left(x^{n} \notin T_{n, \delta}\right)$
X induces a $r v Y=\log p(X)$
ie., $\forall x \in \Omega, w p p(x), Y=\log p(x)$
$\therefore \mathbb{E} Y=\sum_{x \in \Omega} p(x) \log p(x)=-H(X)$
$\because X^{n}$ ind, so is $Y^{n}=Y_{1} Y_{2} \cdots Y_{n}$.
For $x^{n}=x_{1} x_{2} \cdots x_{n}$, let $y_{i}=\log p\left(x_{i}\right)$
Then $x^{n} \notin T_{n, \delta} \Leftrightarrow\left|\frac{1}{n} \sum_{i=1}^{n} y_{i}-\mathbb{E} Y\right|>\delta$

Then $x^{n} \notin \operatorname{Tn}, \delta \Leftrightarrow \underbrace{\left|\frac{1}{n} \sum_{i=1}^{n} y_{i}-\mathbb{E} Y\right|>\delta}_{\text {use LLN on } Y \text { to bound prob of this }} \not \nVdash$

By Chebyshev's inequality for a rv Z:

$$
\begin{aligned}
& \operatorname{Pr}\{|z-\mathbb{E} Z| \geqslant k \sqrt{\operatorname{Var} Z}\} \leqslant \frac{1}{k^{2}} \quad(\text { rv } Z, \text { outcome } z) \\
& \text { Choose } Z=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \quad\left(\text { so } z=\frac{1}{n} \sum_{i=1}^{n} y_{i}, \mathbb{E} Z=\mathbb{E} Y, \operatorname{Var} Z=\frac{\operatorname{Var} Y}{n}\right) \\
& k=\frac{\delta}{\sqrt{\operatorname{Var} Z}} \quad(\text { so } k \sqrt{\operatorname{Var} Z}=\delta) \\
& n_{0}=\left[\frac{\operatorname{Var} Y}{\delta^{2} \varepsilon}\right] \quad\left(\text { so } \forall n \geqslant n_{0}, \frac{1}{k^{2}}=\frac{\operatorname{Var} Z}{\delta^{2}}=\frac{\operatorname{Var} Y}{n \delta^{2}} \leqslant \varepsilon\right) \\
& \therefore \operatorname{Pr}\left\{\left|\frac{1}{n} \sum_{i=1}^{n} y_{i}-\mathbb{E} Y\right| \geqslant \delta\right\} \leqslant \varepsilon . \\
& \therefore 1-P(\operatorname{Tn}, \delta)=P\left(X^{n} \notin \operatorname{Tn}, \delta\right)=\operatorname{Pr}\left\{\left|\frac{1}{n} \sum_{i=1} y_{i}-\mathbb{E} Y\right| \geqslant \delta\right\} \leqslant \varepsilon
\end{aligned}
$$

Asymptotic equipartition theorem (AEP)
$\forall \varepsilon>0, \forall d>0, \exists n_{0}$ s.t. $\forall n \geqslant n_{0}$
(1) $p\left(T_{n, \delta}\right) \geqslant 1-\varepsilon$
(2) $(1-\varepsilon) 2^{n(H(x)-\delta)} \leqslant\left|T_{n, \delta}\right| \leqslant 2^{n(H(x)+\delta)}$

$$
\begin{aligned}
& \text { Proof: } 1-\varepsilon \leqslant p\left(T_{n, \delta)} \leqslant 1\right. \\
& \left|T_{n, \delta}\right| 2^{-n(H(x)+\delta)} \leqslant \sum_{x^{n} \in T_{n, \delta}} p\left(x^{n}\right) \leqslant\left|T_{n, \delta}\right| 2^{-n(H(x)-\delta)} \\
& \therefore\left|T_{n, \delta}\right| \leqslant 2^{n(H(x)+\delta)} \& \max ^{\max ^{k} p\left(x^{n}\right) \text { if } x^{n} \in T_{n, \delta}} \\
& \text { In particular, } \frac{\left|T_{n, \delta}\right|}{\left|\Omega^{n}\right|} \leqslant 2^{-n} \underbrace{(1-\varepsilon) 2^{n(H(x)-\delta)} \leqslant\left|T_{n, \delta}\right|}_{\text {+ve for most } X}
\end{aligned}
$$

Asymptotic equipartition theorem (AEP)
$\forall \varepsilon>0, \forall \delta>0, \exists n_{0}$ s.t. $\forall n \geqslant n_{0}$
(1) $P\left(T_{n, \delta}\right) \geqslant 1-\varepsilon$
(2) $(1-\varepsilon) 2^{n(H(x)-\delta)} \leqslant\left|T_{n, \delta}\right| \leqslant 2^{n(H(x)+\delta)}$
(3) $\forall A \subseteq \Omega^{n}, \quad P(A) \geqslant 1-\varepsilon \Rightarrow|A| \geqslant(1-2 \varepsilon) 2^{n(H(x)-\delta)}$

Proof:

$$
\begin{aligned}
& P\left(A \cap T_{n, S}\right) \\
= & P(A)-P\left(A \backslash T_{n, s}\right) \\
\geqslant & P(A)-P\left(\Omega^{n}\left(T_{n, s}\right)\right. \\
\geqslant & 1-\varepsilon-\varepsilon=1-2 \varepsilon
\end{aligned}
$$

$$
\therefore|A| \geqslant\left|A \cap T_{n, \delta}\right| \geqslant \frac{P\left(A \cap T_{n, s}\right)}{\max _{a \in A \cap T_{n, \delta}}^{P(a)}} \underbrace{2^{-n(H(x)-\delta)}}_{\text {typiclity }}
$$

Application: data compression of iid sources

(if Bob $=$ future Alice, nR cbits refer to storage space)

Application: data compression of lid sources

Goal: min R while keeping $p\left(x^{n} \neq \tilde{x}^{n}\right)$ negligible.
Shannon's noiseless coding theorem:
Let $X_{1}, X_{2}, \ldots, X_{n}$ be ind source
direct coding
(1) $\forall \varepsilon>0 \quad \forall R>H(x)$
theorem - we
can do ...
converse -
(2)
cannot do better

$$
\begin{aligned}
& \exists n_{0} \text { s.t. } \forall n \geqslant n_{0} \exists \varepsilon_{n}, D_{n} \\
& \text { s.t. } \operatorname{Pr}\left(\operatorname{Dn}_{n} \circ \varepsilon_{n}\left(x^{n}\right) \neq x^{n}\right) \leqslant \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \forall R<H(X) \\
& \exists n_{0} \text { s.t. } \forall n \geqslant n_{0} \quad \forall \varepsilon_{n}, D_{n} \\
& \quad \operatorname{Pr}\left(D_{n} \circ \varepsilon_{n}\left(x^{n}\right)=x^{n}\right) \leqslant \varepsilon+2^{-n\left[\frac{H(x)-R}{2}\right]}
\end{aligned}
$$

Proof of (1):
Idea: transmit only typical sequences, ignore the rest For each $x^{n} \in T_{n, \delta}$,
let $b\left(x^{n}\right)$ be unique $n(H(x)+\delta)$ bit label for x^{n}
$\varepsilon_{n}: x^{n} \mapsto b\left(x^{n}\right)$ if $x^{n} \in T_{n, \delta}$
$x^{n} \mapsto$ err otherwise preagreed by Alice and Bob
D_{n} : invert b if r not receive err else output err

$$
\begin{aligned}
\operatorname{Pr}\left(D_{n} \circ \varepsilon_{n}\left(x^{n}\right) \neq x^{n}\right)= & \operatorname{Pr}\left(x^{n} \notin \operatorname{Tn,\delta }\right) \leqslant \varepsilon \\
& \text { for } n \geqslant n_{0}=\frac{\operatorname{Var}[\log p(x)]}{\delta^{2} \varepsilon}
\end{aligned}
$$

Proof of (2):
By C2, at most $2^{n R} x^{n / s}$ satisfies $D_{n} \circ \varepsilon_{n}\left(x^{n}\right)=x^{n}$.
Let $A=$ set of $x^{n / s}$ s.t. $D_{n} \circ \varepsilon_{n}\left(x^{n}\right)=x^{n},|A| \leqslant 2^{n R}$.
Let $\delta=\frac{1}{2}(H(x)-R)>0, T=T_{n}, \delta$.

$$
\begin{aligned}
& P(A)=P(A \backslash T)+P(A \cap T) \\
& \leqslant \varepsilon+|A| \max _{x^{n} \in T} P\left(x^{n}\right) \\
& \leqslant \varepsilon+2^{n R} \cdot 2^{-n(H(x)-\delta)} \\
&=\varepsilon+2^{-n(H(x)-R-\delta)} \\
&=\varepsilon+\underbrace{2^{-n(H(x)-R) / 2}} \\
& \uparrow=\text { ixp } \downarrow
\end{aligned}
$$

arbitrarimsmell as $n 4$

Comments:

* Allowing an arbitrarily small error reduces the compression cost from log $|\Omega|$ to $H(X)$ cbits per symbol
* wp 1- ε the ENTIRE x^{n} correct!!
* data compression gives $\mathrm{H}(\mathrm{X})$ an operational meaning.
- how much space is needed to represent each symbol asymptotically (large n limit)?
- how much uncertainty is associated with each symbol?
* We considered "block codes" where n is fixed.
* We are not concerned about the computational complexity of ε_{n}, D_{n}.

See Cover and Thomas for other codes, e.g., Hoffman code is exact, but variable-length, with expectation $H(X)$ per symbol.

