


$Prelude; Classical error-correcting code



$$Repetition code as a ferromagnet 



Before discussing quantum codes, let us recall the physical meaning of classical codes. A prime 
example is the repetition code which encodes 1 logical bit into n physical bits.







This encoding is robust against bit flip errors. When less than a half of bits were flipped, one can still 
recover the original information 0 or 1. 







In the coding theory language, this is because the Hamming distance (number of bits with different 
entries) between two codewords 0000… and 1111… is large (n, the number of physical bits). This 
example encodes only 1 bit, but we generally want to encode k logical bits (with large k) into n physical 
bits while keeping the code distance (the minimal Hamming distance between pairs of codewords) 
large. That is, we hope to have [n,k,d] with large k and d. 



Another important feature of a code is its decodability. In the repetition code, we can easily recover the 
initial information by counting the total number of 0s and 1s (majority vote). In general, however, 
decoding can be computationally challenging. We want to construct a code with efficient decoders, 
which is the holy grail of classical coding theory. 



The repetition code can be physically realized as a ground state of a simple local spin Hamiltonian, a 
ferromagnet, or Ising model. The Hamiltonian and ground states are given by





In physics language, we are simply encoding 0 and 1 into repetition of up and down spins, in other 
words, in a giant magnet. This is essentially how we encode classical bits in our HDD memory (in a 
very simplified language). Decoding can be done by simply measuring the total magnetization:



M = \sum_j Zj



The codeword space is defined by the space of ground states. If we were to use the ferromagnet as a 
quantum code, then we would be encoding a superposition state as follows





These states are often known as GHZ states or cat states, being a macroscopic superposition of 
classical states. Here bit flip errors corresponds to Pauli X operators. In a quantum system, phase 
errors, corresponding to Pauli Z operators may also occur. Here we see that the above two states are 
connected by a single Pauli Z error 







so the information can be lost by damaging only a single qubit. So, unfortunately this system cannot 
protect a quantum information. 
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One another important physical question concerns how long one can retain a classical memory. In the 
repetition code, suppose bit flip errors occur randomly at each spin with some finite probability p per 1 
second. Then, after ~1/p seconds, most of spins will be flipped at least once, and the original 
information is no longer recoverable. Hence, one needs to keep performing error-correction before it’s 
too late, namely every 1/p seconds. 



But in actual physical systems, errors do not occur randomly. Namely, in a Hamiltonian system coupled 
with thermal bath, errors which increase the energy of the system are not very likely to occur. In the 2D 
Ising Hamiltonian, let us consider transforming 0000 state into 1111 state by flipping spins one by one. 
One then notices that there will be a domain wall separating regions with 0 and regions with 1. The 
Hamiltonian assigns excitation energy to mismatch of neighboring spins. Since the length of the 
domain wall will be at least L, in order to transform 0000 state into 1111 state, the system needs to 
climb a large energy barrier of height L. 



















At low temperature, thermal fluctuations cannot cross a large energy barrier (unless there is some 
entropic enhancement from other local minima, which is the case in some of glassy models). 



For 2D Ising model, there is a finite critical temperature, and below that, the classical memory time 
scales exponentially with respect to the system size. 





 

Here Tc can be analytically computed for Ising model. For a certain model of stochastic thermal noises, 
the memory time can be rigorously lower bounded. 



The 2D Ising model is often called self-correcting since the thermal fluctuation tends to return the 
system to neighbors of the original state. The upshot is that a ferromagnet is stable at finite 
temperature, and that’s why we use it everyday. One open problem is whether such a self-correcting 
quantum memory exists or not. There is a no-go theorem, which we will prove in later lectures, ruling 
out 2D self-correcting stabilizer code. 4D generalization of the Toric code is a self-correcting quantum 
memory. At this moment, there is no known 3D self-correcting memory. Some of the fracton models 
are “marginally” self-correcting, in a sense that the memory size increase can persist up to some length 
scale, but then the growth stops there. 
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$$Quantum repetition code does not exist



One might consider trying the same strategy to securely encode quantum information.





However, a quantum repetition code is prohibited because we are not allowed to clone a quantum 
state due to the no-cloning theorem. So, we will need a different strategy to protect a quantum 
information from errors. In the next section, we will introduce the Toric code, a prototypical example of 
quantum codes, and examine its coding and physical properties from various perspectives. 



Comment: In a real world, classical information is first stored as a ferromagnet which is already quite 
robust. Then this encoded ferromagnetic bit is further encoded into some good classical error-
correcting code. There is not much study on how to physically realize classical codes as ground states 
of local Hamiltonians. For stabilizer-like frustration-free Hamiltonians, the following bound is known,





And examples which asymptotically saturate the bound was introduced.



Comment: Another interesting physical interpretation of classical error-correcting code is its relation to 
spin glass physics. See Nishimori. 



Ex 1 Prove the no-cloning theorem. Namely, there is no unitary operator which does 





for arbitrary psi.
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$Physics of Toric code



In this section, we will discuss coding and physical properties of the Toric code from various 
perspectives. 



$$Toric code

$Logical qubits

The Toric code is defined on an L by L lattice on a torus where qubits live on edges. There are n=2L^2 
qubits in total. The Hamiltonian consists of vertex terms and plaquette terms:













This Hamiltonian is solvable because all the terms Av and Bp commute with each other:





Av and Bp have +1 or -1 eigenvalues, and ground state satisfies





There are L^2 constraints from Av, but only L^2-1 of them are independent. Namely we see





So, in total, there are 2L^2 - 2 constraints. There are 2^n states in the whole Hilbert space, and each 
constraint picks half of the states, so we have 4 degenerate ground states:





This means that the ground state space of the Toric code can encode 2 logical qubits. 



Here Av and Bp are stabilizer generators of the Toric code. In general, a stabilizer code can be realized 
as a ground state space of a Hamiltonian H = - \sum_j Sj. 



$Logical operators



Next, we want to know how to manipulate logical qubits. Logical operators are unitary operators which 
transform encoded states of logical qubits in a non-trivial manner. We have the following logical 
operators which wind around the torus:











The (Pauli) logical operators commute with the Hamiltonian, so their action preserves the ground state 
space, but they may act non-trivially on each state. We can check that logical operators obey 
commutation relations of 2 qubits:





So, these logical operators are nothing but Pauli operators for logical qubits. It is often convenient to 
represent logical operators in the following canonical form:
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where operators in the same column anti-commute, and operators in different columns commute 
[Beni-Chuang]. 



One can label 4 degenerate ground states as eigenstates of Z1 and Z2, as 0,0 0,1 1,0 1,1. With these 
logical operators, we can perform arbitrary Pauli-like operations on logical qubits by applying string of 
Pauli operators. These Pauli logical operators are fairly easy to implement because they are written in a 
tensor product form, and all the Pauli operators in logical operator can be implemented simultaneously. 



One question is how to perform non-Pauli operators. It turns out that not all the logical operators can 
be implemented in a tensor product form, a result known as the Eastin-Knill no-go theorem [Eastin-
Knill]. This, and how to get around this, is the topic of the next section. 



$Deformability of logical operators



(Deformability) The most important property of a quantum error-correcting code is non-uniqueness, 
meaning that there are multiple different expressions of logical operators which act in the same manner 
in the ground state space. In the Toric code, one can deform the shape of logical operators 
continuously:











Here, applying stabilizer generators Av deforms the shape of logical operators. Since Av=1 in the 
ground state space, deformed logical operators are equivalent. 



(Winding and code distance) Even though one can deform the shape of logical operators locally, one 
cannot eliminate the topological winding around the torus. That is, non-trivial logical operators must 
wind around the torus. This guarantees that the minimal weight of logical operators is L. 



In stabilizer code, the minimal logical operator size is defined as the code distance. For a stabilizer 
code, it is formally defined as follows:





Here w(O) is the weight (number of non-identity Pauli operators) in O, Sj are stabilizer generators, and S 
is the stabilizer group generated by Sj. For the Toric code, d = L. 



This is the number of Pauli operators needed to transform one ground state to another orthogonal 
ground state, a natural generalization of the Hamming distance. 



(Erasure threshold)



Here we will demonstrate that this redundancy of logical operator expression provides a protection of 
logical qubits. We focus on the simplest model of errors where qubits are lost from the system (that is, 
we eliminate each qubit with probability p>0). If p < 1/2, the regions with removed qubits will form 
isolated clusters because it is below the percolation threshold. 
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So, one should be able to find a line which avoids removed qubits, but still winds around the torus. 
Hence, one can access the logical qubits by measuring these deformed logical operators. 



More precisely, the probability of successfully recovering the logical qubit is 







Where delta is some positive constant. What is important for us is that failure probability asymptotes to 
0 as n goes to infinity. But if p>1/2, the removed qubits will proliferate and one cannot draw a line 
wrapping around the torus. In this case, logical qubits are lost from the system. Instead, logical qubits 
are present in the discarded qubits. (For unknown Pauli errors, this problem is more complicated. The 
problem of finding a threshold can be mapped to spin glass problem.)

(Classical vs quantum) As one can see, the deformability of logical operators (which is a manifestation 
of non-uniqueness of logical operators) is the key for error-correction. In the case of classical code, we 
protected information by redundancy 0 to 00000 etc. In quantum case, we will protect quantum 
information by redundancy of logical operators. In general, when we restrict our attention to a sub 
space of the whole Hilbert space, two different operators may have equivalent action. This fact played 
a crucial role in recent development in the physics of AdS/CFT correspondence through the lens of 
QEC codes. 



$String-net picture



We have seen that the ground state space of the Toric code protects logical qubits by looking at 
logical operators, but we didn’t discuss physical properties of ground states in a direct manner. Here 
we study the ground state. 



Let us explicitly construct one ground state of the Toric code. 



Claim:





Proof: 







Here we used the fact that (1+Av) is a projector onto Av=+1 subspace. This is a useful trick in 
discussing entanglement properties of stabilizer states. We will use it again in the problem. 



Let us now examine each term as shown below:











Note that applying Av will create 1’s. Here we draw closed loops along qubits in 1 states. When 
multiple loops overlap with each other, they will form a bigger loop. Hence, this ground state can be 
written as
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The ground state can be written as a superposition of all the possible loop configuration. Note that 
closed loops in this ground state can be continuously deformed to a smaller top. Other 3 ground states 
can be constructed by applying logical X1 and X2 which inserts closed loops which wind around the 
torus. So, the winding numbers in the loop configurations can distinguish 4 ground states. 











The Toric code is often called a Z2 string-net condensation. Here, our strings are Z2 like object. But 
they can carry more degrees of freedom in general. This way, one can significantly generalize the Toric 
code. If your construction is based on a finite group G, then you will get quantum double model. You 
can go further and define (commonly believed to be) the most generic 2D model (non-Chiral), string-net 
condensation. 



$Stability of ground states



We have discussed that logical qubits in the Toric code are robust against errors. Here we discuss 
physical consequences of the fault-tolerance which emerges as the stability of the ground state space. 



Suppose we somehow engineered the Hamiltonian of the Toric code in a laboratory. In reality, our 
implementation of the Hamiltonian is not perfect, so the resulting Hamiltonian may be written as follows





Where V consists of local terms only. \epsilon controls the error of our implementation of the Toric 
code Hamiltonian. The question here is whether the ground state degeneracy (2 logical qubits) is still 
present or not. This is often called the stability of the Hamiltonian (or the ground state space, or the 
quantum phase). 



Here we first address this question by using a simple perturbative analysis. In order to lift the ground 
state degeneracy, the perturbation should be able to distinguish ground states and assign different 
values of energy penalties. Recall that we will need string-like logical operators to distinguish ground 
states. 



Since V is a local perturbation, in the first order perturbative approximation, V cannot lift the 
degeneracy. Only at the O(L)-th order perturbative approximation, where V^L contributions may 
appear, the ground state degeneracy can be lifted. But the L-th order perturbative effect is 
exponentially suppressed with respect to L. As such, we expect that, for sufficiently small \epsilon, the 
ground state energy splitting is exponentially suppressed, and the degeneracy is protected at the 
thermodynamic limit of L goes to infinity:







Here in this heuristic argument, it is very important that logical operators are high weight. So, the fact 
that the Toric code is a quantum code renders the stability of the Hamiltonian. 



This intuition was rigorously proven by Bravyi-Hastings-Michalakis where they proved that the Toric 
code’s ground state’s energy splitting is exponentially suppressed and the energy gap between the 
excited state and ground states remains finite for sufficiently small \epsilon. 



Their proof is technical tour-de-force, so we will not review it here. Instead, we will look at the key 
ingredient. In their proof, Bravyi-Hastings-Michalakis was able to identify a certain necessary condition 
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for the stability of ground states. This is called the local indistinguishability. 



Claim: Consider an arbitrary pair of ground states of the Toric code, and look at their reduced density 
matrices defined for some local region R. For any connected region R which can be continuously 
deformed to small region, two density matrices are indistinguishable: 





This is a formal statement saying that any local operator cannot distinguish ground states. 



Proof: 
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$Anyons



So far we discussed properties of ground states of the Toric code. Next, let us discuss properties of 
excitations in the Toric code. In 3 spatial dimensions, particles can be either bosons or fermions. 
Exchanging bosons/fermions generate additional +1 or -1 phase factors. In 2 spatial dimensions, 
particles can exhibit richer properties under exchanges and braidings, which go beyond fermions/
bosons. These are called anyons. Toric code is the simplest example which supports anyonic 
excitations. 



Anyonic excitations in the Toric code can be created by applying a segment of logical operator, as 
shown below. 
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Since logical operators commute with all the terms in the Hamiltonian, a segment of logical operators 
creates excitations only at its endpoints. 



These excitations can be interpreted as quasi-particles (which are not particles in the original 
construction of the Toric code, but can “emerge” as particles when the system gets excited.) In the 
Toric code, there are 3 types of anyonic excitations:















The names “electric charge” and “magnetic flux” come from an analogy with lattice gauge theory. It is 
arbitrary to call which of Av or Bp, charge or flux. As we will see later, e and m are bosons, in a sense 
that exchanging two e’s (two m’s) do not generate non-trivial phase. But a composite of e and m (f = 
e*m) terms out to be a fermion, with additional -1 phase. 



(Properties) Let us study key properties of anyons in the Toric code. 




They appear as a pair. This is because a segment of logical operators have even number of end •
points. So, the total number of electric charge is always even:










   



   







This can be shown by observing the following:







   Here, we are identifying Av=-1 as an excitation, so the total number must be even. 




Stabilizer operators corresponds to creating a pair of anyons and then annihilating them. Here let us •
consider electric charges, which are excited by Pauli Z operators. Notice that multiplying Bp terms 
together can create a closed string of Z operators. Let us think of applying Pauli Z operators one by 
one so that it eventually forms a closed string. At the beginning, a pair of electric charges are 
created, and then propagate along the loop. Eventually, they meet and get annihilated.
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A similar observation holds for magnetic fluxes. Combining Av operators will create a closed loop of X 
operators on a dual lattice. This represented a pair creation of m, propagation and their annihilation.















 








Finally let us verify that these are indeed anyons. 
•


e and m are bosons. This can be checked by creating a pair of e, exchange them, and annihilate them. 
The overall process can be generated by the following trajectory of Pauli Z operators, acting on a 
ground state |gs>. Since this operation can be created from Bp, so the system will simply return to the 
original ground state. 



















E and m have non-trivial braiding statistics. This can be studied by looking at an overall effect of the 
following procedure. 















We will show that there will be an additional -1 sign. To braid e and m, we consider the following steps: 



















Here, a pair of two e’s and a pair of two m’s are created, and then annihilated eventually. The net effect 
is to make e circle around m by 360 degree. The overall effect of this procedure is given by
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Finally, we will show that f is indeed fermion. This is a bit complicated to see, but we again need to 
look at the following procedure. 



























We see that the net effect consists of a loop of X and a loop of Z, but on one location, X needs to be 
applied before Z, and on the other location, Z needs to be applied before X. This mismatch generates 
an additional -1 sign. 



Combining these observations, one can construct the following braiding statistics table:
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$Toric code with boundaries



In a real world, it is a bit challenging to put the Toric code on a torus. Can we build a quantum code on 
a more conventional lattice? 



In the Toric code, there are two types of consistent boundary conditions, called rough and smooth 
boundaries, originally found by Bravyi and Kitaev. These are depicted below:































You can check that all the terms, including boundary ones, commute with each other. So, this model is 
still a stabilizer code, and has a gapped energy spectrum. 



It turns out that this code encodes only 1 logical qubit, instead of 2 in the original one on a torus. This 
can be seen by finding logical operators:























Z-type logical operators can be anchored at rough boundaries, but not at smooth boundaries. 
Similarly, X-type logical operators can be anchored at smooth boundaries, but not at rough 
boundaries. Hence, we only find a single pair of X and Z logical operators, corresponding to a single 
logical qubit. 



One interesting physical consequence is that, depending on the type of boundaries, anyonic 
excitations can be absorbed. Namely, by attaching a segment of Z-type logical operator, you can 
create a single e excitation from the rough boundary. 
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In a fanciful term, this phenomena is called condensation of anyons. It simply says that a certain type 
of anyons can be created from the boundary (without creating pair excitations). Here you see that

 

Smooth boundary: m condenses 

Rough boundary: e condenses. 



In studies of topological phases of matter, it is an important problem to classify what kinds of gapped 
boundaries can be attached. An important result is a “theorem” due to Levin and Gu. It is not a 
rigorous mathematical proof, but very beautiful physical “proof”. 



Claim: If a set of anyons can condense into a gapped boundary, this set must be mutually bosonic. 

Here, by mutually bosonic, it means that their self-statistics is bosonic, and their mutual braiding-
statistics is trivial. 



Proof: 
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Then we can see that this exchanges the particle of the same type (as we did in fermion in the Toric 
code). Since all the W operators commute with each other, we find that the self-statistics is trivial…





In the case of the Toric code, you have only e or m as bosons, so there are 2 possible types of 
boundaries. Namely, you cannot put a boundary which absorbs f.



Classification of gapped boundaries is an important subject in studies of topological phases of matter. 
It turns out that this problem has a lot of resemblance to another important problem in quantum error-
correction, namely the classification of transversal logical gates. We will briefly comment on this in later 
lectures. 



$Circuit complexity of the Toric code ground state



The Toric code is a prototypical example of non-trivial quantum phase with topological order. But what 
does it mean by “quantum phase”? What is a good definition of quantum phase? Fortunately, quantum 
information theory provides a precise answer to this question. 



Conventionally, quantum phases were used to characterize properties of ground states of a gapped 
Hamiltonian (whose energy gap remains finite at the thermodynamic limit) at zero temperature. We 
typically classify quantum phases by asking whether two Hamiltonians can be smoothly interpolated or 
not: 



















If two Hamiltonians belong to different quantum phases, we expect that one cannot go from one to the 
other, and we must encounter quantum phase transition in between which involve some non-analytic 
change of ground state properties (at the thermodynamic limit). If two belong to the same quantum 
phase, we should be able to smoothly deform one to the other. 
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There are two essential difficulties here. First, in order to classify quantum phases, we need to check 
every possible path connecting two Hamiltonians. So, it is not easy to show that two Hamiltonians are 
actually in different phases. Second, a quantum phase refers to a family of Hamiltonians with similar 
ground state properties (in some appropriate sense). But, in order for the notion of “phase” to make 
sense, the Hamiltonian must be stable. 



To gain some intuition, here let’s think about an ordinary phase of matter in classical world, a gas and a 
solid phase of water. They are different phases because we cannot smoothly connect them by 
changing pressure or temperature. At the same time, they can be identified as “phases” because their 
properties are more or less stable against small fluctuations of temperature and pressure. Otherwise, 
we won’t be able to perceive them as phases of water. 



As for the stability issue, we have already seen that the Toric code is stable against small 
perturbations. So, the Toric code can serve as a representative of a family of Hamiltonians which form 
a quantum phase! Now, the question is whether the Toric code belongs to a non-trivial quantum phase 
or not. 



In order to attack this question, the notion of quantum circuit complexity will be useful. 



(Quantum complexity definition)



Starting from a reference state |psi>, a circuit complexity of |phi> is defined roughly as the number of 
time steps one needs to convert psi to phi. To be concrete, let us ask the circuit complexity of |toric> 
with reference being |0>. The Toric code ground state can be prepared by some quantum circuit, 
schematically depicted as below:
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Notice that some quantum gates, namely commuting ones, can be implemented simultaneously. The 
minimal time step for implementing a circuit U is called the depth. Here, we assumed that we are 
allowed to implement 2-qubit gates on neighboring qubits only on the toric code lattice. 



An example of the depth of the circuit is shown below:























(Size of operators)



Our goal is to prove that the Toric code’s circuit complexity is O(L). To prove this statement, it is useful 
to use the notion of the operator size. 



Given one-body unitary operator V, we ask how large UVU is. Below, we show the case which evolves 
by depth-2 circuit. 











































We see that the size of the operator can grow at most by finite size. Namely, in 2D, its size can grow at 
most as depicted below:












D depth







Hence, if U is O(1) depth circuit, UVU will be O(1)-size operator. 



Finally, we prove that the toric code ground state has O(L) circuit depth. 































































On the other hand, if two Hamiltonian can be smoothly interpolated, then we can just adiabatically 
transform one ground state to the other. In general, we need the following time scale:







Where \Delta is the smallest energy gap. If the system remains gapped throughout the interpolation, 
then one can switch between two states by O(1) time. 



(Summary) In summary, the notion of quantum circuit complexity gives a precise definition of quantum 
phases of matter. Namely, ground states in the same phase can be interpolated via short-depth circuit, 
while ground states in different phases cannot be. 
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(There is a caveat in this classification. Consider ground states of the Toric code. There are 4 
orthogonal states, and we can consider arbitrary superposition of them. It turns out that not all the 
pairs of ground states can be connected by local unitary transformations. This is the result due to 
Bravyi and Koenig (based on Eastin-Knill theorem)). 



So, even in the same Hamiltonian, two states may not be smoothly connected. For this reason, it is 
usually better to think if one can smoothly map the ground state space to the other ground state 
space, forgetting about transformations inside the ground state space. We will return to this beautiful 
result by Bravyi and Koenig later. 



Putting this subtlety under the rug, the circuit complexity is a versatile and precise way to classify 
quantum phases.



$Symmetry-protected topological phases



Finally, let us discuss one possible generalization of the aforementioned scheme of classifying 
quantum phases. Realistic physical systems often have symmetries such as a conservation of the total 
particle number U(1) symmetry, or Z2 symmetry. In the presence of symmetries, we usually consider 
the interpolation problem by imposing such symmetries throughout. 



The classification of quantum phases become richer when symmetries are imposed. Namely, we can 
have the so-called symmetry protected topological phases. Here in classifying quantum phases, we 
demand that each local gate in the circuit obeys the symmetry constraint. That is, we ask if two ground 
states are connected by symmetric local unitary circuit or not. It turns out that there are examples of 
short-range entangled state which can be transformed into a product by a constant depth quantum 
circuit, but cannot be done so by a constant depth symmetric quantum circuit. 



Here we will look at a prototypical example of an SPT phase, the 1D cluster state. The 1D cluster state 
is a ground state of the following Hamiltonian:





This ground state can be created by a constant depth circuit. Namely, let us begin with |+> states 
which are stabilized by X operators. We then apply the CZ gates:





When CZ gates act on two qubits, it transforms Pauli operators in the following manner:







As such, if we apply CZ on neighboring qubits in 1D chain, we obtain the stabilizer generators of the 
cluster state:
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Hence, the cluster state and a trivial product state belong to the same quantum phase according to the 
definition based on quantum circuits. 



Let us now impose symmetries to the system. Observe that the cluster state Hamiltonian has two sets 
of Z2 symmetries





One can see that the Hamiltonian commutes with these symmetry generators:





The ground state (cluster state) is +1 eigenstate of these symmetry generators because: 







We now ask if the cluster state and the product state belong to the same phase or not in the presence 
of this symmetry. It turns out that they are different. To gain some intuition, let us first observe that CZ 
is not a symmetric gate. This is because CZ does not commute with symmetry operators:





Here we prove that the cluster state is a non-trivial Z2 * Z2 SPT phase. 



Proof: 
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$Toric code preparation circuit



Let’s return to the Toric code. We have shown that it takes at least O(L) time to create the Toric code 
ground state. (Dennis et al gave L^2 algorithm.) Here we show that it is indeed possible to do so in O(L) 
time. There are various ways, and we will introduce an approach which can be applied to multiple 
cases. 



The method utilizes the fact that the toric code is topological, and can be defined on any graph. Given 
a graph, we place qubits on edges. Then plaquette terms and vertex terms can be naturally defined. 
We can easily see that all the terms commute with each other. The number of logical qubits depends 
on the topology of the graph. If the graph has the topology of the torus, then the code will support 2 
logical qubits. Only the topology of the graph determines the number of logical qubits. 













Given the toric code on an arbitrary graph, one can change the shape of the graph locally by applying 
local unitary transformations and adding ancilla qubits (in a way not changing the topology of the 
graph). The strategy is to start from a small toric code, and then make it bigger. First, we introduce a 
method of adding an extra vertex. 





































(We will introduce a “decoration” trick, which is very useful in dealing with stabilizer codes in general.)
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This algorithm prepares the Toric code of size L=2^m in a time step m. One might think that this is 
quicker than O(L). Here, the point is that we are inserting ancilla qubits at each step, and this 
procedure actually make qubits travel by the distance O(L). So, in a completely localized geometry, this 
procedure’s circuit depth is O(L). 



This encoding circuit generates a structure called MERA where encoding occurs in a hierarchical way, 
like the opposite of RG transformation! 

The aforementioned procedure can be applied to create the toric code in any arbitrary geometry. The 
strategy is to prepare the smallest possible graph of the desired topology. Then we keep adding qubits 
and expand the graph to the desired size. 



(Truly local method)
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$Generating the toric code via measurement



We have shown that it takes at least O(L) time to create the Toric code ground state. There is a clever 
way to “avoid” this lower bound on the circuit complexity by utilizing measurements. 



The simplest strategy is to start from a product state |0>, and then protectively measure Av. Letting av 
= +1, -1 as measurement outcomes. We can then prepare the following state:







The resulting state has Bp = +1 and Av = av. In order to create the Toric code ground state, one needs 
to make all av = +1. Recall that av = -1 corresponds to the presence of electric charges e at v. Then, by 
pairing up all the charge excitations, we can create a ground state. Here, pairing up e’s can be done by 
applying Pauli Z operators along suitable paths. Since the measurement can be performed 
simultaneously, the whole procedure can be applied in O(1) time step, pretty fast! 



So, even though one cannot create the Toric code ground state via local unitary circuit, one can still 
create the ground state in O(1) time by utilizing measurements. But how did the measurement avoid 
the O(L) lower bound? 



















The essential point is that, in order to eliminate anyonic e excitations, one needs to know the locations 
of all the e particles on the lattice in advance. In other words, after all the Av measurements were 
performed, the outcome date av needs to be communicated to one location where a classical 
computer can tell you what is the appropriate way of removing e particles. Here, the measurement 
outcome needs to travel across the whole lattice, which in principle can take a time proportional to L. 



One might think that we could eliminate e particles locally without using any global communications 
(e.g. by annihilating them with nearby excitations). The circuit complexity lower bound for the toric 
code essentially says that one cannot eliminate e particles locally. That is, even if some pairs can be 
annihilated in this way, at the end of the day, some e particles will remain in an isolated manner. In 
order to annihilate them, we need O(L) time communication. 



(One may try to split the lattice into small grids of squares, and annihilate particles inside each square 
locally. But a particle will remain with probability 1/2. We then move to a larger grid, but again, particle 
will remain with probability 1/2. Unfortunately, some excitation will remain until the grid becomes order 
of the system size.)



So, the O(L) lower bound is an absolute thing. The measurement strategy cannot avoid this lower 
bound. Practically, however, the classical measurement outcomes can travel quite fast (close to the 
speed of light). So, the non-local interactions are much easier with measurement strategy. For this 
reason, creating the Toric code ground state via measurement is a promising approach. 
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Here we point out one caveat in this approach. This approach will create a ground state of the Toric 
code in |0,0>. One can generalize this and create any stabilizer state of the ground states, stabilized by 
Pauli logical operators. But creating other superposition states seems not easy with this method. In 
contrast, the aforementioned algorithm with graph deformation can prepare any codeword state. 



$Toric code from a cluster state



We have discussed a method of preparing the Toric code state by measuring 4-body stabilizer 
generators. This method can be applied to any stabilizer code as long as one can perform error-
correction efficiently and bring the system back to Sj=+1 states. 



But fault-tolerantly measuring 4-body stabilizer operators can be tricky in real experiments. It turns out 
that a simpler method exists where one first prepares the cluster state, and then perform local 
projective measurements. This idea plays a crucial role in fault-tolerant version of the measurement-
based quantum computation. 



Let us begin with a warm up exercise. Suppose that we have a two qubit state |0,0> which is stabilized 
by Z1 and Z2. We then perform a measurement of X1X2 (a tensor product, not single Pauli operators). 
There are two possible outcomes

(1+X1X2)|00> = 00 + 11

(1-X1X2)|00> = 00 - 11

These states can be represented as a stabilizer state. For the case of X1X2=+1, we have the following 
stabilizers:

Z1Z2, X1X2. 

For the other state, we just need to put -X1X2. Here we notice that the stabilizer group has changed as 
follows because of the measurement:

Z1, Z2 to Z1Z2, X1X2.

Why did this happen? It is because Z1 and Z2 do not commute with X1X2, but their product Z1Z2 
commute. In other words, from the stabilizer group, only those which commute with X1X2 survived. 



This observation can be generalized to n qubit systems. Consider a state |psi> which is stabilized by 
the stabilizer group S. We then perform Pauli P measurement. There are two cases to consider. 


P commutes with S. In this case, P must be inside S (if this is a code, then P may be logical 1.
operators. But this is a state, so there is no non-trivial logical operator.) We can then write P as a 
product of stabilizer generators. As such, the measurement outcome +1, -1 is determined a priori 
by S (or |psi>). And the state remains the same after the measurement.

P anti-commutes with some operator in S. In this case, one can always choose independent 2.
stabilizer generators S1, … , Sn such that P commutes with S1, …, Sn-1, and anti-commutes only 
with Sn [BY-Chuang]. The original state is given by


      (1+S1)…(1+Sn).

      If the measurement outcome was P=+1, we have 

      (I+P)(1+S1)…(1+Sn-1)(1+Sn)(1+P) = (1+S1)…. (1+P)(1+Sn)(1+P) = (1+P)(1+S1)… (1+Sn-1)

      where Sn disappears due to the anti-commutation, PSn=-SnP. 

      So, the stabilizer group is replaced by S1, … , Sn-1, P. 

      If the measurement result was -1, it will be S1, … , Sn-1, -P.



   
















With this result in hand, let us discuss how to convert the cluster state into the Toric code. We will 
consider a lattice as shown below



















where qubits live on both edges and vertices. Starting from a product state |+>, we create the cluster 
state by applying CZ gates on neighboring qubits. The resulting stabilizer generators are:













Then we perform projective measurements of all the qubits at vertices in X basis. Let’s find the 
resulting stabilizer generators. We notice that the following stabilizer generators commute with X 
operators. Here we used the fact that one-body X on vertices are in the stabilizer group:















These are stabilizer generators of the Toric code after exchanging X and Z by applying Hadamard 
gates. Also, string-like Z-type logical operators can be formed:











So, this procedure will create the Toric code in Z-logical basis states. There is a way to modify this 
protocol so that one can prepare any encoded state, but I will skip this. 



In the past few years, there have been significant interests in what kind of entanglement can be 
generated via measurements. Suppose we start from a product state, and then let the system evolve 
with some interacting dynamics. We may consider repeated applications of random 2-qubit Clifford 
operators on neighboring qubits. This will create a highly entangled state. But what happens if we 
perform measurements during the time evolution? Naively, we would think that measurement will 
destroy the entanglement, so the system cannot retain high entanglement in the presence of finite rate 
measurement. But surprisingly, people found that the volume-law entanglement (not area-law) can 
survive even under the measurement. It turns out that the notion of QEC is central to this 
understanding. The aforementioned example of the Toric code state is perhaps the simplest example 
of creating a highly entangled (complex) state via projective measurement (although it is not volume-
law). These findings, together with old results on the Toric code, suggest that involving measurements 
will give rich research avenue which should be explored further, and these may have practical 
advantages. 
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$Transversal gate 



We discussed coding and physical properties of the Toric code in rather details and showed that it can 
indeed store quantum information securely. In order to perform some useful computational task, 
however, we need to perform quantum computation by transforming encoded states of logical qubits. 
In the Toric code, one can perform logical Pauli X, Y, Z transformations easily by implementing string-
like logical operators. Since they are written in tensor product form, one can implement them in a unit 
time step. Logical operators with tensor product form are called transversal operators, and are 
particularly appealing because, even if one introduces some errors during the implementation of string-
like logical operators, this error does not propagate to other qubits. More, generically, fault-tolerant 
logical gates, which can be implemented by constant depth quantum circuits, will be useful. 



We cannot do anything interesting just by applying Pauli operators. In fact, we can’t even entangle 
different logical qubits if we are restricted to Pauli operators. The central question here is what kinds of 
logical gates can be implemented by a constant-depth quantum circuit. Ideally, we would hope to 
implement arbitrary logical operators, including the one of the form of superposition of large string-like 
logical operators, cos(theta) X + I sin(theta)Z, in a fault-tolerant manner. Unfortunately, this is not 
possible with transversal logical gates, due to the Eastin-Knill theorem. (While one can avoid the 
Eastin-Knill theorem by looking at approximate error-correction, the gain is still small, see [] for 
instance.) In fact, in the case of stabilizer codes, one can make a stronger statement that fault-tolerant 
logical gates, implementable by constant depth circuits, cannot form a universal gate set. The latter 
result is due to the theorem by Bravyi and Koenig, which we will prove later. 



Of course, there are several clever tricks to avoid this restriction and achieve fault-tolerant quantum 
computation (e.g. code switching, magic state distillation). But here, we will focus on the problem of 
finding and classifying what kinds of logical gates can be fault-tolerantly implemented. We will focus on 
a certain generalization of the Toric code, which is called the color code, and discuss its physical and 
coding properties, including its transversal logical gates. 



$Color code



Here we will consider another interesting model of stabilizer Hamiltonians, called the topological color 
code. The color code is defined on a honeycomb lattice and qubits live on vertices. For now, we 
consider a model on a torus. The honeycomb lattice has a very special feature that one can put color 
labels, A, B, C, to each plaquette so that neighboring plaquettes have different color labels. For this 
reason, we say that the honeycomb lattice is 3-colorable. The color code can be constructed on any 3-
colorable lattice. The stabilizer generators of the color code are given as follows:





























Here, we have two stabilizer generators (X-type and Z-type) per each plaquette. By multiplying them, 

ÉE
É

i i

E.SI IITEIE s
is



one can construct Y-type stabilizer generators as well. You can check that all the stabilizers commute 
with each other because they share zero or two qubits. This is actually a generic property of 3-
colorable lattice, so the color code can be defined on arbitrary 3-colorable lattice. 



(Logical qubits) The color code on a torus supports 4 logical qubits. To see this, we need to see how 
many of stabilizer generators are independent. Observe that multiplying X-stabilizers on color A 
generates X operators acting on all the qubits: 







And a similar relation for Z stabilizers. In total, there are 4 independent ways of creating identity 
operator from stabilizer generators, so n-4 stabilizer generators are independent, and we have k = 4. 



(Logical operators) Next, let us find logical operators of the color code. As shown below, there are 3-
types of X-string and Z-string logical operators, associated with 3 different color labels: 













However, these three logical operators are not independent from each other. As shown below, they 
can be fused together:













Hence there are only 2 independent X-type and Z-type logical operators. 







For each type of logical operator, one can define anyonic excitations. EA, EB, EC etc. Here unlike the 
Toric code, we have the following fusion channel of anyons to the vacuum:







Their mutual braiding statistics can be found in the following way:













(Toric code) It turns out that the color code on a torus can be converted into 2 copies of the Toric 
code. This may be guessed by the fact that k=4 is twice of k=2 for the Toric code. Another way is to 
observe that the above braiding statistics allows us to find the following correspondence:







A formal procedure to convert the color code into 2 copies of the Toric code was described in []. 
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(Properties) Then, why do we bother to consider the color code if it is just 2 copies of the Toric code? 
One can see that the color code has some symmetries which were not present in the Toric code. For 
instance, applying a Hadamard gate on every qubit will leave the Hamiltonian invariant. 

X to Z, Y to -Y, Z to X.

More generally, we see that any local exchanges of X, Y, Z Pauli operators will leave the ground state 
space invariant. This suggests that we can implement Clifford logical gates in the color code. (Recall 
Clifford transform Pauli into Paulis). 

$Color code with boundaries



Here we focus on a version of the color code with boundaries which encodes k=1, and show that all 
the Clifford gates can be implemented in this case. The model is defined as follows:























































Here it is useful to imagine that there is an additional vertex at “spatial infinity” represented by a white 
dot. With this vertex, the system is supported on a geometry of a closed sphere. We can also assign 
colors A, B, C to boundaries by looking at the plaquettes including the vertex at the spatial infinity. 



One can compute the number of logical qubits by using combinations tricks, such as the Euler 
characteristic of a closed sphere (i.e. V-E+F=2). Skipping the detail of this calculation, we find that the 
color code with boundaries can support a single logical qubit: k=1. Also, the total number of vertices 
(excluding the spatial infinity) is always odd. 



(Logical operators)

Let us find logical operators of the code. It turns out that X^n, Y^n, Z^n are logical operators. To see 
that, observe that they commute with all the stabilizer generators (which have even weights). Also, one 
can show that, in this geometry, the total number of qubits is always odd. So, they satisfy the 
commutation relations of Pauli X, Y, Z. One can then easily see that any Clifford transformation can be 
implemented in this code, by applying transversal Clifford operators on every qubit. 
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These are not expressions of minimal weight logical operators. One can construct logical operators 
with smaller weights in the following manner:



































So, the code distance is O(L) wher L is the linear length. One can interprete this as creating mA, mB, 
mC from each boundary and fuse them into the vacuum in the middle of the system. 



Here it is worth noting that the topological color code is a generalization of the 7-qubit code. Indeed, 
the smallest possible color code with 3 boundaries is given by































So, the color code is a many-body version of 7 qubit code! 



$3D color code



The topological color code can be defined in higher-dimensional systems as well. In D-dimension, one 
needs to consider D+1 colorable graph where D-dim volumes can have D+1 different color labels. The 
model is equivalent to D copies of the D-dimensional Toric code. They admit the transversal RD gate, 
defined as 
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For D=2, 3, we have







Since T is outside the Clifford group, it is very appealing that we can implement transversal T in 3D 
color code. 

Here, we look at the smallest realization of 3D color code: 































































Here X-stabilizers are defined on volumes while Z-stabilizers are defined on faces. There are in total 15 
qubits. One may notice that this code is equivalent to 15-qubit Reed Muller code. 



The code does not have the exchange symmetry of X and Z anymore, so not a whole Clifford gate set 
can be applied. But it admits a transversal logical T gate. Here we prove this. 





To see this, it is convenient to label logical states as follows:









Let us study the action of logical T. Notice that X-type stabilizer generators (including products of 
them) always have weight 8. Hence |0L> consists of terms with the number of 1s being multiple of 8 
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(zero or 8). So, 







As for |1L>, we have 7 or 15 of |1>. Hence we have







Therefore, we find that the action of T is T^-1. 









$ Transversal gate and domain wall



Transversal logical gates in quantum error-correcting codes have interesting correspondence with 
classification of domain walls, which is an important topic in studies of topological phases of matter. 
Consider the 2D color code. We have seen that the transversal application of Hadamard operators 
leave the Hamiltonian and the ground state space invariant. Here we think of transforming the 
Hamiltonian by applying Hadamard operators only on a half of the system:











This generated two copies of the 2D color code on the left and the right connected by a gapped 
domain wall. Namely the terms in the Hamiltonian remains the same except along the domain wall. 



Properties of a gapped domain wall can be classified by studying how anyonic excitations behave after 
crossing the domain wall. In the above example, we have







Where anyon labels change upon crossing the domain wall. 



One can create a different kind of domain walls by applying different transversal gates partially. If you 
implement S gate, which transform Pauli operators as follows:





Anyon labels change as follows:





As the above observation implies, when a fault-tolerantly implementable logical gate (by a constant-
depth quantum circuit) exists, then one can utilize it to construct a gapped domain wall. 



In fact, this correspondence is not restricted to constant-depth quantum circuit. To see an example, 
we begin by showing that in the toric code, one can implement a Hadamard-like gate by using a lattice 
translation (which preserves the locality of operators, but cannot be implemented by a local unitary 
transformation due to the chiral index theorem). Here we implement transversal Hadamard gate to 
exchange Z and X, and then translate the lattice in a diagonal direction. 
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This implements the following transformation on logical operators:



Which is Hadamard followed by SWAP. 





We now think of applying the transformation partially on the lattice. This will create the following 
system:











Upon crossing the domain wall, e and m particles get exchanged. This can be seen from the fact that 
logical operator gets transformed from X to Z. (Putting the boundaries becomes a bit tricky, but we will 
skip this subtlety).



The key lesson is that domain walls and fault-tolerant logical gates are closely related. This physics 
becomes even richer in higher dimensions. 
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$$ Theory of local stabilizer code



We have studied coding and physical properties of local stabilizer codes by focusing on specific examples of the Toric code 
and the color code. Here, we develop generic tools to study properties of local stabilizer codes. 



$ Duality lemma



We will begin with the so-called duality lemma which holds for arbitrary stabilizer codes.



Lemma



Consider an arbitrary stabilizer code with k logical qubits. Then we always have 

GA + gB = 2k

Where B is a complementary subsystem of A, and gA is the number of independent non-trivial logical operators. 



Let us looks at the Toric code to gain some intuition. There are in total 4 independent logical operators. There are 2 string-like 
logical operators wrapping the torus in the vertical direction, so we have



















Here note that gA and gB may count the equivalent logical operators. This formula essentially says that one cannot deform the 
horizontal logical operators and put them in vertical strips. 



Next, recall that vertical and horizontal string-like logical operators generate the full non-trivial logical operators. This implies 
the following:





















So, one cannot find any logical operator on A, which is a topologically trivial region. 
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We now discuss two applications of the duality lemma.





















Singleton bound for stabilizer codes.
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$ Bound on code distance



We now use the developed tools to derive bound on code distance of a local code. 



We begin by defining a local code. 
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In 3D, we can slice the whole system as shown below. 
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$ Restriction on fault-tolerant logical gates. 



Next, we will discuss what kinds of logical gates can be implemented in a fault-tolerant manner in D dim local code. 



$ Clifford Hierarchy 



Here we begin by introducing the notion of Clifford hierarchy. 







One confusing point is that Clifford hierarchy is a set, not a group. This can be seen easily from the fact that C3 contains all the 
Clifford operators, as well as T gate. If C3 were a group, these would generate dense operators. But C3 is just a set, so C3 is 
still a finite set of operators. 
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Transversal implementable logical operators are quite restricted as summarized in the following lemma. 



(Partition lemma for transversal gates)
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The above lemma enables us to prove a fundamental result due to Bravyi and Koenig. For simplicity, we will focus on 
transversal logical gates, but argument can be applied to locality preserving gates. 
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