Lecture III: FT Operations
Port II
In the last lecture we covered FT error correction, state preparation \& measurement.

The last class of FT operations we need to consider we logical gates.
It is not enough to protect quantum information, if
we want to do FT computation we also need to process the encoded information fanlt-tolerantly.

The most elegant way to do this is using transversal gates.

Let e be a QECC on n physical quits.

Let Q_{i} for $i \in[\mathrm{~m}]$ be a partition of the physical quits of e into an non-ampty disjoint subsets i.e.

$$
[n]=Q_{1} \cup Q_{2} \cup \ldots \cup Q_{m}
$$

We say that a gate U is transversal with respect to this partition if it can be decomposed as
$u=\bigotimes_{i=1}^{m} u_{i}$ where each (4)
unitary U_{i} acts only on quoits in the subset Q_{i}.

Most commonly, we consider the partition

$$
Q_{i}=\{i\}
$$

This definition also extends to gates acting on multiple code blocks or codes.

Here tor two copies of（5） a code φ on n quits， we often consider the partition $Q_{i}=\left\{i_{A}, i_{B}\right\}$ where $A \subset B$ index the two code blocks．
Why do we like transvesal gates？They limit the spread of evans．音鲁

Example 1: Hadamaclin the stare code
Recall the steane code

Quoits: vertices
Stabilizer generates faces ie fer each tace f we have
stabilizer $\prod_{v \in f} x_{v}$ and $\prod_{v \in f} z_{v}$
where X_{V} denotes a Pauli X acting or the quit an vertex v. Logical $\bar{x} x_{0}$ operates

Claim: $\bar{H}=H^{07}$
ie logical Hadamerel
is (single-qubit) trousvesal
Proof 1 : (Heisenberg picture)
First show that it preserves stabilizer.

$$
\begin{aligned}
\bar{H}\left(\prod_{v \in f} x_{v}\right) \bar{H} & =\prod_{v \in f} H X_{v} H \\
& =\prod_{v \in f} z_{v} \swarrow z \text { stabilizer }
\end{aligned}
$$

Similarly tar Logicals

Proof 2: (schrödinger pictre)

$$
\begin{aligned}
& H|0\rangle=1+7
\end{aligned}
$$

$$
\begin{aligned}
& |\overline{0}\rangle=|0\rangle^{6^{7}}+|1101100\rangle \\
& +101110107+100011117 \\
& +|1010110\rangle+11100011\rangle \\
& +|0110101\rangle+1|011001\rangle \\
& \bar{H}|\overline{0}\rangle=1+7^{87}+1 \cdots+\cdots++ \\
& +1-+++-+-\rangle+\ldots
\end{aligned}
$$

This is $|+\rangle=\sum_{s \in s_{z}} s|+\rangle^{\otimes^{7}}$ Similar argment shows $\overline{H \mid}|1=| \bar{D}$

Example 2
Claim: For any CSS code CNOT is transuesal for 2 conies of the code.

Roof: Let $A \subset B$ index the two copies.
Denote the stabilizer as $S=S_{x} \cup S_{z<} \longleftarrow z$ type $\tau_{x \text { type }}$ operators
$[[n, k, d]]$ code

$$
\widehat{C N O T}=\operatorname{CNOT}^{Q n}
$$

$$
\text { CHoU: } \begin{aligned}
|x| & \rightarrow x x \\
\mid z & \rightarrow z z
\end{aligned}
$$

First compute action on stabilizes

For $S \in S_{x}$

$$
\begin{aligned}
& S^{A} \cdot I^{B} \xrightarrow{\overline{\operatorname{coo}} \rightarrow} S^{A} \cdot S^{B} \\
& I^{A} \oplus S^{B} \rightarrow I^{A} \odot S^{B}
\end{aligned}
$$

For $S_{t} S_{z}$

$$
\begin{aligned}
& S^{A} \odot I^{B} \xrightarrow{\text { and }} S^{A} \oplus I^{B} \\
& I^{A} \odot S^{B} \xrightarrow{\text { (NoT }} S^{A} \oplus S^{B}
\end{aligned}
$$

Now let \bar{X}_{j} be the logical x for the $j^{\prime t h}$ logical quit for $j \in[k]$

$$
\begin{aligned}
& \bar{X}_{j}^{A} \odot I^{B} \rightarrow \bar{X}_{j}^{A} \odot \bar{X}_{j}^{B} \\
& I^{A} \odot \bar{X}_{j}^{B} \rightarrow I^{A} \odot \bar{X}_{j}^{B}
\end{aligned}
$$

This is the correct action of SNOT

Similarly

$$
\begin{aligned}
& \bar{Z}_{j}^{A} \otimes I^{B} \rightarrow \bar{Z}_{j}^{A} \odot I^{B} \\
& I^{A} \odot \bar{Z}_{j}^{B} \rightarrow \bar{z}_{j}^{A} \oplus \bar{z}_{j}^{B}
\end{aligned}
$$

Does this mean we solved the problem of constructing fault tolerant gates?
No!
Thu [Easting Q Knill 2009]
No QECC that can correct a single erasure can have
a transversal and univesal (13) set of gates.
Not enough time to pore this here. (See their arigind paper) Recall : mivesal set of gates can approximate any unitary gate.

What does this men?
The [Solovay Kitaev]
Let G be a finite subset of Su(2) containing its own inverses

Such that (G) is clense in $\operatorname{Su}(d)$.
For any $\varepsilon>0$ there exists a constant c such that for any $u \in \operatorname{su}(d)$ there is a sequence S of gates in G of length $O\left(\log ^{c}(1 / \varepsilon)\right)$ such that $\quad\|s-u\| \leqslant \varepsilon$.

$$
\|s-u\| \equiv \sup _{(\psi)}\|(u-s)(\psi)\| \leqslant \varepsilon
$$

$A \subseteq B$ is dense in B if the union of A and all its limit points is 3

Infamally evey point in B is eitter in A or corbitrarily close to a point in A.
Exangles of univesal gate sets
(1) Arbitary single qubit rotations and CNOT

Not much use to us as
Eastin-Knill also rules out a code with trunsversal abitrary single qubit rotations
(2) Cliffacel $+T$ Very important in FT!
Recap: Clifferel gates map Pauli gates to Pauli gates under conjugation ie $g \in C$ lifted iff fer all Parligates P $g P g^{-1}=Q$ where Q is also a Part gate

Single qubit cliffod group can be yeurated by H \& $S=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$

Multi qubit Cliffard group gewated by H, S, CNOT

It's clear that H e cavot we Cliffard, but what about S ?

$$
\begin{aligned}
S \times S^{+}=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right) & =\binom{-i}{i^{-i}} \\
& =y
\end{aligned}
$$

$$
\begin{aligned}
S Z S^{+} & =S S^{+} z=Z \\
S y S^{+} & =\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right)\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0} \\
& =\binom{-1}{-1}=-x
\end{aligned}
$$

Non-Clifford gates

$$
\begin{aligned}
& T_{\text {gate }}=\sqrt{s}=\sqrt[3]{z} \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right)
\end{aligned}
$$

Gate set $\{H, T$, CNOT $\}$ univereal

It is often easy to implement fanlt-tolerant Clifford gates in QECCS
e.g. Stare Lode has HW! transversal H, CNOT $Q S$

But codes with transuesal non-cliffoel gates (erg. T) are much raver!

This will be the subject of the next lecture.

Post script
Cliffards + any non-Cliffard gate is univesal
[Nebe, Rains, Sloave]
Another usefal univesal gate set
CCZ \& Hadamerel
CCZ control control Z

$$
c(z \mid 111)=-\mid 111)
$$

All other comp.basis states inveriant

