Part II: Fault-tolerance
Lecture I: DEFINITION OF FAULT TOLERANCE
So far we have only
considered error models
where data qubits are
affected by errors.
But what if the error
correction circuits themselves
are also noisy?

This is the case in 2
current (and most likely)
future quantum hardware.
How do we run long
computations when all
parts of the circuits are
noisy?
Classical hardware is so
reliable that we don't need to worry about this issue

(3) Fault tolerant error correction Like publing out a fire with a fire extinguisher is also on fire! that

Definition of fault (4)
tolerance
Det: circuit hoise error model
Given a circuit, break it up into locations,
where a location is a gate (1 qubit, 2 qubit, maybe 3 qubit), a measurement,

a state preparation (5)
(generally 10), or
a storage/wait location.
Assume that classical
computations of modest
size are perfect and
istantaneous. neans depends on context
For a location l'assume
that with prob. 1-pe
the location functions as intended.

And with probability pe 6
the location l'is replaced
by an unknown quantum
channel Ee. We usually
assume that Ee mops
qubits to qubits and that
each error channel is
independant. Commonly
Ee just depends on the
type of location.

We often assume - (7 depolarizing channel w/ prob p o state prep 10) C(P) 0) o gate - [u] tu - Eleni) o measurement - 1 \mathcal{A} Edepoi)

Sometimes we use (8)
different error probabilities
for different types of
location e.g. 2-Eubit
gates are usually more
error-prove than 7-qubit
gates.
This is by no means the
most general error model!
In a later lecture we will discuss extensions J

Fault-tolerance is 9
a surprisingly shippery
concept to define.
The basic idea is that
we encode the gubits of
the circuit in a quantum
error-correcting code
and we replace each
physical location with

a corresponding logical	
location. We want	· · · ·
the logical locations	· · · ·
to not spread errors	· · · ·
'too much'. We also	· · · ·
periodically do error	· · · ·
correction to prevent	· · · ·
the build-up of errors.	· · ·

Detr: FT QEC (2)
Let C be an [[n, k, d]]
stabilizer code c let
$t = \lfloor \frac{d-1}{2} \rfloor$. An error
correction protocol for E
is FT if:
(1) For an input codeword 14)
with error of weight S,
if sz faults occur during

the protocol w/ sits25t 3 then perfectly decoding the output state gives 14) 2) For set families ocurring during the protocol for an arbitrary input state the ontput state differs from a codeward by an error of weight < s.

D Ensures that correctable
errors don't spread to
uncorrectable errors during
the course of the protocol.
To understand why 2 is
necessary let $\frac{t}{n}$ (s ($\frac{2t+1}{3}$)
where n EZt, consider
a QEC protocol where r
input errors and s errors
during the protocol result

in an output	with	at (15)
most rts erro	ν,	· · · · · · · · · · · ·
Now suppose we	apply	the
protocol j tim	es	· · · · · · · · · · ·
Ho-> EC -> EC- Codeword When i 2n the	$\frac{\sqrt{2s}}{Ec}$	$s = \frac{35}{-}$
to EC will have	. ns 7	• E
errors! Failure	after	linear
number of steps		· · · · · · · · · · · ·

But if D holds (16)
Input 17,
After EC output is EI1+>
where $wt(E_1) \leq S$
After 2nd EC output is
EZIT, but by @ output is also
$E_2'(\overline{\phi})$ where $ \overline{\phi}\rangle$ is a
codeword and wt(Ez') <s< td=""></s<>
$E_2(\overline{\phi}) = E_2(\overline{+})$

$(\bar{\phi}) = E_2^{\prime +} E_2 (\bar{+})$ (7)
wt $(E_2^{\prime \dagger}E_2) \leq 3s$
as $wt(E_2) \leq 2s$ a $wt(E_2') \leq s$
By assumption 3s < 2t+1
=) $(\overline{\psi}) = (\overline{\phi})$ code dist.
$wt(E_2) = wt(E_2') \leq s$
$\frac{1}{1-1} \leq \frac{1}{1-1} < \frac{1}{1-1} < \frac{1}$

We can write similar (8)
defus for all location
types e-g tar a logical
gate if the input has
S, errors Q S2 errors
occur during the gate
where Si+Sz & t then
ideally decoding the output
gives the same thing as
ideally decoding the input

(19)after applying the gate with no errors Upshot: to construct a FT circuit we need to construct 1) FT error correction) 2) FT state prep {Lecture (3) FT measurement (4) FT gales Lecture 3+4

26 Aside : the defn of fault-tolerance we just cliscussed is perhaps too Stringent e.g. Surface code error correction fails to satisfy this defn. However it is the right defn for proving threshold thm w/ concatenated codes,

95	ω	will	See		21)
Lec	ture	5.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Post s	cnpt	<td> </td> <td> </td> <td> </td>			
For	an of	zerativa	l'de	fn c	÷
Janl	t toles	-ance	Sec	 	· · · · · · · ·
arXiv.	org/abs/1	610.03507	· · · · · · · ·	· · · · · ·	· · · · · · · ·
For	a dis	cussion	of t	the	· · · · · · · ·
defn	07	fenlt	tolera	nce	see
https	://youtu.b	e/FMXFNC	laF3k		· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·