Fall 2023 QIC 820 / CO 781/486 / CS 867 Assignment 4

Due 5pm Friday Nov 24, 2023, on Crowdmark.

Question 1. AEP and source coding (classical) (5/18 marks)

Let X be a binary random variable with sample space $\Omega=\{0,1\}$, with $p(0)=0.995, p(1)=0.005$.
(a) (1 mark) Consider a block of 100 iid samples of this rv, $X_{1}, X_{2}, \cdots, X_{100}$. How many outcomes have (i) zero 1 's? (ii) one 1 , (iii) two 1 's, and (iv) three 1 's?
(b) (1 mark) Consier a coding scheme \mathcal{E} which acts on 100 iid samples of the rv X at a time, outputing an error symbol e if there are more than 3 1's, and assigning a unique binary string to other 100-bit strings. How many bits are required to represent the outcome of \mathcal{E} ?
(c) (3 marks) If we now treat each outcome of \mathcal{E} as a new random variable, and perform data compression by transmitting only typical sequences, how many bits per outcome of \mathcal{E} are needed? (Note the symbol E also has to be transmitted.)

Question 2. Entanglement concentration (7/18 marks)

Suppose Alice and Bob share $|\psi\rangle^{\otimes n}$, that is, n copies of the state

$$
|\psi\rangle=\sqrt{a}|00\rangle+\sqrt{1-a}|11\rangle
$$

where $a \in[0,1]$, and the first qubit belongs to Alice, and the second to Bob. Denote Alice's n-qubit system by $A=A_{1} \otimes A_{2} \otimes \cdots \otimes A_{n}$, Bob's n-qubit system $B=B_{1} \otimes \cdots \otimes B_{n}$.
Both Alice and Bob have the same reduced state $\rho^{\otimes n}$ where $\rho=a|0\rangle\langle 0|+(1-a)|1\rangle\langle 1|$.
Let $H(a)=-a \log a-(1-a) \log (1-a)$ (the binary entropy function) which is also $S(\rho)$ here. (We use capitalized H here because lower case h labels the Hamming weight later.)
The goal is to show that for large n, approximately $n H(a)$ ebits can be obtained with local operations and no communication.
For an n-bit string x^{n}, denote the hamming weight by $h\left(x^{n}\right)$, which is the number of 1 's in x^{n}.
For $k \in\{1, \cdots, n\}$, let $S_{k}=\operatorname{span}\left\{\left|x^{n}\right\rangle: h\left(x^{n}\right)=k\right\}$, and Π_{k} be the projector onto S_{k}.
Define a measurement with POVM $\left\{\Pi_{0}, \Pi_{1}, \cdots, \Pi_{n}\right\}$ (and denote the corresponding outcome by the subscript).
(a) (2 marks) Show that Alice and Bob always get the same outcome. What is the probability they both get k ?
(b) (1 mark) Write down the normalized state $\left|\Phi_{k}\right\rangle$ conditioned on both Alice and Bob obtaining outcome k. Note that it is maximally entangled.
(c) (2 marks) Show that the expected entropy of entanglement in the post-measurement state is $H\left(X^{n} \mid K\right)$ where K is the random variable associated with Alice's measurement outcome.
(iv) (1 mark) Show that $H\left(X^{n} \mid K\right) \geq n H(a)-\log (n+1)$.
(v) (1 mark) Why is communication not needed?

NB. The expression for the expected number of ebits is $\sum_{k=0}^{n}\binom{n}{k} a^{n-k}(1-a)^{k} \log \binom{n}{k}$. It is not so easy to lower bound directly.
NB To simplify the question, we ignore the possibility that the postmeasurement maximally entangled states need not have dimension which is a power of 2 . This costs only a slight reduction in the yield.
NB The binary X can be generalized, and the final answer has $H(X)$ in place of $H(a), \log$ (number of type classes) instead of $\log (n+1)$. See QIC $890 /$ CO781 / CS 867 F2020 A2 for details.

Question 3. Necessary condition for separability (6/18 marks)

(a) (3 marks) Let $\rho=\sum_{a \in \Gamma} p(a) \sigma_{a} \otimes \xi_{a} \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$, where $\forall a \in \Gamma, \sigma_{a} \in \mathrm{D}(\mathcal{X})$ and $\xi_{a} \in \mathrm{D}(\mathcal{Y})$.

Show that $S(\mathrm{XY}) \geq S(\mathrm{X})+\sum_{a \in \Gamma} p(a) S\left(\xi_{a}\right)$.
(Note in particular, $S(\mathrm{XY}) \geq S(\mathrm{X})$, which does not hold for a general entangled state.)
(b) (2 marks) In general, does $S(\mathrm{XY}) \geq S(\mathrm{X})$ imply that XY is in a separable state? Justify your answer.
(c) (1 mark) Show that for 3 systems in an arbitrary state, $S(X Y: Z) \leq S(X: Y Z)+S(Y: Z)$.
(Note that the above expresses how much the quantum mutual information across a bipartition can be increased when a system is moved from one side to the other; in particular, $S(X Y: Z) \leq S(X: Y Z)+2 S(Y)$.)

