Quantum Error Correction and Fault Tolerance, Winter 2024

Problem Set 5

Due:

1. State injection circuits [6 marks]

The control-S gate is in the third level of the Clifford hierarchy and is diagonal in the Z basis. Recall that $S = \operatorname{diag}(1,i)$ and that control-S, $CS = \operatorname{diag}(1,1,1,i)$. We can derive a state injection circuit for CS starting from the standard teleportation circuit shown in Figure 1.

Figure 1: Teleportation circuit

- (a) Show that
 - $CS^{\dagger}(X \otimes I)CS = CZ(X \otimes S)$,
 - $CS^{\dagger}(I \otimes X)CS = CZ(S \otimes X)$,
 - $CS^{\dagger}(X \otimes X)CS = XS \otimes S^{\dagger}X$.

[3 marks]

(b) Commute the CS gate in Figure 2 backwards through the circuit until the input ancilla state is the magic state $CS|++\rangle$ and write down the resultant state injection circuit. [3 marks]

Figure 2: Teleportation circuit with CS

2. Transversal gates of the 5-qubit code [8 marks]

Recall that the stabilizer of the 5-qubit code is generated by the cyclic permutations of XZZXI. The logical operators are $\overline{X} = X^{\otimes 5}$ and $\overline{Z} = Z^{\otimes 5}$

- (a) Show that $Y^{\otimes 5}$ is an implementation of logical Y in the 5-qubit code. [1 mark]
- (b) Compute the transformation of X, Y and Z under conjugation by the Clifford gate $K = \exp(\frac{i\pi}{3\sqrt{3}}(X+Y+Z))$. [4 marks]

Hint: use the identity $\exp(i\theta\vec{v}\cdot\vec{\sigma}) = \cos\theta I + \sin\theta\vec{v}\cdot\vec{\sigma}$, where $\vec{\sigma} = (X,Y,Z)^T$ and $||\vec{v}|| = 1$.

(c) Show that $\overline{K} = K^{\otimes 5}$ in the 5-qubit code, i.e., this gate is transversal. [3 marks]

3. Transversal gates of the [[8,3,2]] code [14 marks]

The [[8,3,2]] code is the smallest known stabilizer code with a transversal non-Clifford gate. It's stabilizer group is

$$\langle X^{\otimes 8}, Z_1 Z_2 Z_3 Z_4, Z_5 Z_6 Z_7 Z_8, Z_1 Z_2 Z_5 Z_6, Z_2 Z_4 Z_6 Z_8 \rangle.$$

An easy way to understand the code is to consider a cube with qubits placed at the vertices, as shown in Figure 3. In this picture, the Z stabilizer generators are associated with faces, i.e., for each face f we have the stabilizer $Z(f) = \prod_{v \in f} Z_v$, where Z_v denotes Z applied to the qubit at vertex v. In this picture we can also define a convenient basis for the logical operators where the logical X operators are associated with faces and the logical Z operators are associated with edges. That is, $\overline{X}_1 = X_1 X_2 X_3 X_4$, $\overline{X}_2 = X_1 X_2 X_5 X_6$, $\overline{X}_3 = X_2 X_4 X_6 X_8$, $\overline{Z}_1 = Z_1 Z_5$, $\overline{Z}_2 = Z_1 Z_3$ and $\overline{Z}_3 = Z_1 Z_2$.

Figure 3: [[8,3,2]] code qubit labels

- (a) Write down the encoded computational basis states of the [[8,3,2]] code. [4 marks]
- (b) Show that $S_2S_4^{\dagger}S_6^{\dagger}S_8$ implements a logical \overline{CZ}_{12} gate (acts as CZ on encoded qubits 1 and 2). [4 marks]

Hint: you can either apply the gate to the encoded computational basis states or conjugate the logical Pauli operators. Recall that $CZ|xy\rangle = (-1)^{xy}|xy\rangle$ for $x,y\in\{0,1\}$ and $CZ(X\otimes I)CZ^{\dagger}=X\otimes Z$.

- (c) Write down transversal implementations of \overline{CZ}_{13} and \overline{CZ}_{23} . [2 marks]
- (d) Show that $T_1T_2^{\dagger}T_3^{\dagger}T_4T_5^{\dagger}T_6T_7T_8^{\dagger}$ implements a logical \overline{CCZ} gate. [4 marks]

 $\mathit{Hint}\colon \mathsf{Recall}\ \mathsf{that}\ CCZ|xyz\rangle = (-1)^{xyz}|xyz\rangle\ x,y,z\in\{0,1\}\ \mathsf{and}\ CCZ(X\otimes I\otimes I)CCZ^\dagger = X\otimes CZ.$