Quantum Error Correction and Fault Tolerance, Winter 2024

Problem Set 5

Due:

1. State injection circuits [6 marks]

The control- S gate is in the third level of the Clifford hierarchy and is diagonal in the Z basis. Recall that $S=\operatorname{diag}(1, i)$ and that control-S, $C S=\operatorname{diag}(1,1,1, i)$. We can derive a state injection circuit for $C S$ starting from the standard teleportation circuit shown in Figure 1.

Figure 1: Teleportation circuit
(a) Show that

- $C S^{\dagger}(X \otimes I) C S=C Z(X \otimes S)$,
- $C S^{\dagger}(I \otimes X) C S=C Z(S \otimes X)$,
- $C S^{\dagger}(X \otimes X) C S=X S \otimes S^{\dagger} X$.
[3 marks]
(b) Commute the $C S$ gate in Figure 2 backwards through the circuit until the input ancilla state is the magic state $C S|++\rangle$ and write down the resultant state injection circuit. [3 marks]

Figure 2: Teleportation circuit with CS

2. Transversal gates of the 5 -qubit code [8 marks]

Recall that the stabilizer of the 5 -qubit code is generated by the cyclic permutations of $X Z Z X I$. The logical operators are $\bar{X}=X^{\otimes 5}$ and $\bar{Z}=Z^{\otimes 5}$
(a) Show that $Y^{\otimes 5}$ is an implementation of logical Y in the 5-qubit code. [$\mathbf{1}$ mark]
(b) Compute the transformation of X, Y and Z under conjugation by the Clifford gate $K=\exp \left(\frac{i \pi}{3 \sqrt{3}}(X+Y+Z)\right)$. [4 marks]

Hint: use the identity $\exp (i \theta \vec{v} \cdot \vec{\sigma})=\cos \theta I+\sin \theta \vec{v} \cdot \vec{\sigma}$, where $\vec{\sigma}=(X, Y, Z)^{T}$ and $\|\vec{v}\|=1$.
(c) Show that $\bar{K}=K^{\otimes 5}$ in the 5 -qubit code, i.e., this gate is transversal. [3 marks]

3. Transversal gates of the [[8,3,2]] code [14 marks]

The [[8,3,2]] code is the smallest known stabilizer code with a transversal nonClifford gate. It's stabilizer group is
$\left\langle X^{\otimes 8}, Z_{1} Z_{2} Z_{3} Z_{4}, Z_{5} Z_{6} Z_{7} Z_{8}, Z_{1} Z_{2} Z_{5} Z_{6}, Z_{2} Z_{4} Z_{6} Z_{8}\right\rangle$.
An easy way to understand the code is to consider a cube with qubits placed at the vertices, as shown in Figure 3. In this picture, the Z stabilizer generators are associated with faces, i.e., for each face f we have the stabilizer $Z(f)=\prod_{v \in f} Z_{v}$, where Z_{v} denotes Z applied to the qubit at vertex v. In this picture we can also define a convenient basis for the logical operators where the logical X operators are associated with faces and the logical Z operators are associated with edges. That is, $\bar{X}_{1}=X_{1} X_{2} X_{3} X_{4}, \bar{X}_{2}=X_{1} X_{2} X_{5} X_{6}, \bar{X}_{3}=X_{2} X_{4} X_{6} X_{8}, \bar{Z}_{1}=Z_{1} Z_{5}$, $\bar{Z}_{2}=Z_{1} Z_{3}$ and $\bar{Z}_{3}=Z_{1} Z_{2}$.

Figure 3: [[8,3,2]] code qubit labels
(a) Write down the encoded computational basis states of the $[[8,3,2]]$ code. [4 marks]
(b) Show that $S_{2} S_{4}^{\dagger} S_{6}^{\dagger} S_{8}$ implements a logical $\overline{C Z}_{12}$ gate (acts as $C Z$ on encoded qubits 1 and 2). [4 marks]

Hint: you can either apply the gate to the encoded computational basis states or conjugate the logical Pauli operators. Recall that $C Z|x y\rangle=(-1)^{x y}|x y\rangle$ for $x, y \in\{0,1\}$ and $C Z(X \otimes I) C Z^{\dagger}=X \otimes Z$.
(c) Write down transversal implementations of $\overline{C Z}_{13}$ and $\overline{C Z}_{23}$. [2 marks]
(d) Show that $T_{1} T_{2}^{\dagger} T_{3}^{\dagger} T_{4} T_{5}^{\dagger} T_{6} T_{7} T_{8}^{\dagger}$ implements a logical $\overline{C C Z}$ gate. [4 marks]

Hint: Recall that $C C Z|x y z\rangle=(-1)^{x y z}|x y z\rangle x, y, z \in\{0,1\}$ and $C C Z(X \otimes I \otimes$ I) $C C Z^{\dagger}=X \otimes C Z$.

