Quantum Error Correction and Fault Tolerance, Winter 2022

Problem Set 3

Due: March 7 8pm on Crowdmark

1. Hypergraph product codes [11 marks]

Let C_{1} be the $[7,4,3]$ Hamming code, whose parity-check matrix can be written
$H_{1}=\left[\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$
and let C_{2} be the $[3,1,3]$ repetition code, whose parity-check matrix can be written
$H_{2}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$.
(a) Compute the parameters (n, k, and d) of the transpose codes C_{1}^{T} and C_{2}^{T}, where we recall that the transpose code of a code C with parity-check matrix H is the code with parity-check matrix H^{T}. [2 marks]
Hint: if $k^{T}=0$ then we define $d^{T}=\infty$.
(b) Compute the parameters of the hypergraph product code $\operatorname{HGP}\left(H_{1}, H_{2}\right)$. [1 mark]

Let
$H_{1}^{\prime}=\left[\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]$
and let
$H_{2}^{\prime}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$.
These are overcomplete parity-check matrices of C_{1} and C_{2}, respectively.
(c) Show that the hypergraph product code $\operatorname{HGP}\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ has parameters $n=33, \quad k=5, \quad d=3 . \quad[5$ marks]
(d) Show that
$v=\left[0,0,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0 \mid 0_{12}\right]^{T}$
is a logical operator of $\operatorname{HGP}\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$. [3 marks]

Hint: you may use the fact that any vector of the form $\left[x \otimes y \mid 0_{m_{a} m_{b}}\right]^{T}$, where $x \in \operatorname{ker} H_{a}, y \in\left(\operatorname{im~} H_{b}^{T}\right)^{\bullet}$ is a logical X operator of $\operatorname{HGP}\left(H_{a}, H_{b}\right)$. We recall that the $\operatorname{im} H$ is the image (rowspace) of H. Note that given a vector space $V \subseteq \mathbb{F}_{2}^{n}$ its complement is a vector space $V^{\bullet} \subseteq \mathbb{F}_{2}^{n}$ such that $V \oplus V^{\bullet}=\mathbb{F}_{2}^{n}$.

2. Subsystem codes [11 marks]

Consider the following (quantum) Tanner graph. Recall that circles represent qubits, white squares represent X checks, black squares represent Z checks.

Figure 1: Bacon-Shor code Tanner graph.
(a) Write down the X parity-check matrix, H_{X}, for this Tanner graph, with the column order matching the indexing of the qubits given in Figure 1. [1 mark]
(b) Write down the Z parity-check matrix, H_{Z}, for this Tanner graph, with the column order matching the indexing of the qubits given in Figure 1. [1 mark]

Observe that checks do not commute, i.e., $H_{X} H_{Z}^{T} \neq 0$, and therefore these matrices do not define a CSS stabilizer code. There exists a generalization of stabilizer codes called subsystem codes, which are defined by non-commuting checks. In a (CSS) subsystem code, the X stabilizers are the elements in the rowspace of H_{X} that commute with the Z checks, i.e., have even overlap with all the rows of H_{Z}. Analogously, the Z stabilizers are the elements in the rowspace of H_{Z} that commute with the X checks.
(c) Write down generating sets, S_{X} and S_{Z}, for the X stabilizers and the Z stabilizers for the subsystem code defined by H_{X} and H_{Z}. [4 marks]
(d) The formula for the number of encoded qubits in a CSS subsystem code is $k=n-(1 / 2)\left(\operatorname{rank} H_{X}+\operatorname{rank} S_{X}+\operatorname{rank} H_{Z}+\operatorname{rank} S_{Z}\right)$

Calculate the number of encoded qubits in the subsystem code defined by H_{X} and H_{Z}. [1 mark]
(e) A logical Z operator of a subsystem code is an operator that is in $\operatorname{ker} S_{X}$ (commutes with the X stabilizers) but is not in im H_{Z}^{T} (the rowspace of the Z checks). Give an example of a logical Z operator of the subsystem code defined by H_{X} and H_{Z}, and justify your choice. [4 marks]

3. Distance balancing [5 marks]

Consider the following generalization of the hypergraph product. Let \mathcal{Q} be an $[[n, k, d]]$ CSS stabilizer code with X and Z parity-check matrices $H_{X} \in$ $\mathcal{M}_{m_{x} \times n}\left(\mathbb{F}_{2}\right)$ and $H_{Z} \in \mathcal{M}_{m_{z} \times n}\left(\mathbb{F}_{2}\right)$, i.e., the code has $m_{X} X$ stabilizer generators and $m_{Z} Z$ stabilizer generators. Let d_{X} and d_{Z} denote the X and Z distances of \mathcal{Q}. Let \mathcal{C} be an $\left[n^{\prime}, k^{\prime}, d^{\prime}\right]$ linear code with parity-check matrix $H \in \mathcal{M}_{m \times n}$. The generalized hypergraph product of \mathcal{Q} and \mathcal{C} is a CSS stabilizer code with parameters
$N=n n^{\prime}+m_{Z} m^{\prime}, \quad K=k k^{\prime}, \quad D_{X}=d_{X} d^{\prime}, \quad D_{Z}=d_{Z}$.
(a) Suppose that a family of CSS codes $\{\mathcal{Q}\}$ has parameters
$n, \quad k=\sqrt{n}, \quad d_{X}=\sqrt{n}, \quad d_{Z}=n^{3 / 4}$,
and \mathcal{C} is a classical repetition code with $n^{\prime}=n^{1 / 4}$. Write down the parameters of the code family constructed via the generalized hypergraph product of \mathcal{Q} and \mathcal{C}, expressed as a function of N. [4 marks]
Hint: one can always find a set of Z stabilizer generators H_{Z} with $m_{Z}=O(n)$.
(b) Now replace \mathcal{C} in (a) with a good LDPC code with parameters $\left[n^{\prime}, \Theta\left(n^{\prime}\right), \Theta\left(n^{\prime}\right)\right]$, where $n^{\prime}=n^{1 / 4}$. Write down the parameters of the code family constructed via the generalized hypergraph product of \mathcal{Q} and \mathcal{C}, expressed as a function of N. [1 mark]

