QIC890/CS867/CO781-486 Assignment 1

Due Friday February 02, 2024, 7:00pm
Instruction: Please submit to Crowdmark, placing the answer to each question in the right place.
Question 1. Bosonic code for amplitude damping [8 marks]
Consider an infinite-dimensional Hilbert space with a basis $\{|0\rangle,|1\rangle,|2\rangle,|3\rangle, \cdots\}$ where $|j\rangle$ denotes a state with j excitations (e.g., j photons). Consider the amplitude damping channel $\mathcal{A}_{\gamma}(\rho)=\sum_{k} A_{k} \rho A_{k}^{\dagger}$ where

$$
A_{k}=\sum_{j \geq k} \sqrt{\binom{j}{k}} \sqrt{(1-\gamma)^{j-k} \gamma^{k}}|j-k\rangle\langle j|
$$

represents the loss of k excitations from the system. In particular,

$$
A_{0}=\sum_{j}(1-\gamma)^{\frac{j}{2}}|j\rangle\langle j|, \quad A_{1}=\sum_{j \geq 1} \sqrt{j(1-\gamma)^{j-1} \gamma}|j-1\rangle\langle j|
$$

(a) [4 marks] Show that the codespace with basis

$$
\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}(|40\rangle+|04\rangle), \quad\left|\psi_{1}\right\rangle=|22\rangle
$$

is a QECC for the error set $\mathcal{E}=\left\{A_{0} \otimes A_{0}, A_{0} \otimes A_{1}, A_{1} \otimes A_{0}\right\}$.
(b) [4 marks] Describe a valid decoding operation for this QECC.

Question 2. Approximate error correction [6 marks]

Consider the QECC \mathcal{C}^{\prime} with basis

$$
\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}(|4\rangle+|0\rangle), \quad\left|\psi_{1}\right\rangle=|2\rangle
$$

and the error set $\mathcal{E}^{\prime}=\left\{A_{0}, A_{1}\right\}$. Note that \mathcal{C}^{\prime} is not a QECC for $\mathcal{E}^{\prime} ;$ provide a decoding operation \mathcal{D} so that $\left\|\mathcal{D}\left(\mathcal{A}_{\gamma}(\rho)\right)-\rho\right\|_{1} \approx O\left(\gamma^{2}\right)$.

Question 3. Stabilizer code correcting X and Z errors [10 marks]
Consider a stabilizer S with the following generators:

$$
\begin{array}{ccccccccc}
G_{1} & = & X & X & X & X & X & X & X \\
G_{2} & = & I & I & I & Y & Y & Y & Y \\
G_{3} & = & I & Y & Y & I & I & Y & Y \\
G_{4} & = & Y & I & Y & I & Y & I & Y
\end{array}
$$

and the stabilizer code $T(S)$ associated with S.
(a) [2 marks] State the block length n, the number of encoded qubits k, and the distance d for the code. Provide a brief justification for the distance.
(b) [4 marks] Explain why this code corrects up to one X or Z error. What happens if one Y error occurs?
(c) [4 marks] Provide a set of valid encoded Pauli operators \bar{X}_{i}, \bar{Z}_{i} for $i=1,2, \cdots, k$.

Question 4. Encoded Pauli generators and codewords [6 marks]
Let $n \geq 4$ be an even integer. Consider a stabilizer S with two generators, $X^{\otimes n}$ and $Z^{\otimes n}$.
(a) [1 mark] What is the block length, the number k of logical qubits, and the distance of the stabilizer code $T(S)$? Provide a brief justification for the distance.
(b) [3 marks] Provide one such set of logical Pauli group generators so that each \bar{X}_{i} is a tensor product of I 's and X 's of weight 2, and each \bar{Z}_{i} is a tensor product of I 's and Z 's of weight 2.
(c) [2 marks] Use the answer in (c) to write down the codeword $\left|\bar{b}_{1} \cdots \bar{b}_{n-2}\right\rangle$ where each $b_{i} \in\{0,1\}$.

Hint: the answers to (c) and (d) should be very simple. For example, answer to (d) is a superposition of 2 computational basis states.

