1.9, part II

Moving on to transmit quantum data via quantum channels.
As in the case to send classical data via a classical/quantum channel, noise degrades the transmitted state, and error-correcting codes are used to suppress the degradation (at some trade-off).

Quantum capacity (1)

- Given quantum channel N, we say R is achievable rate.
- Quantum state W with m uses of N, over E^n.
- $E^n \rightarrow E^m$.
- Model: $\rho \rightarrow N(\rho)$.
- $\rho \rightarrow \rho_K$.
- E^n.
- Achievable rate R.

Problem: how to define \hat{R}? Is it \hat{R}? There are many defns but lacking they grant the same capacity.
See eg. 03.1087 by kreutzer & terhal.

We can demand any of the following:

1. \((\hat{R}) \rightarrow \left\langle \hat{R} \right\rangle \)
2. Average $\left\langle \hat{R} \right\rangle$ and $\left\langle \hat{R} \right\rangle$.
3. $\left\langle \hat{R} \right\rangle$, $\left\langle \hat{R} \right\rangle$.
4. For $\left\langle \hat{R} \right\rangle$, $\left\langle \hat{R} \right\rangle$.
5. $\left\langle \hat{R} \right\rangle$, $\left\langle \hat{R} \right\rangle$.

Can also replace $\left\langle \hat{R} \right\rangle$ by $\| \hat{R} \hat{R} - f \|_R$.

Def 1 resolves about "preserving" the initial state, traditionally the easier one to show / think about.

Def 2 resolves about \hat{R}, "simulating" the identity channel on \mathbb{C}^n-dim Hilbert space.

When used with the trace distance criteria, 2b tells us how good the simulation is, measured by the trace distance of the "Choi-Jamshidi states" of the simulating & the simulated channels.

CJ state of N is just $\rho_{CJ} = \frac{1}{2}(\mathbb{I} \otimes N)$, for \mathbb{I} being the identity.

This completely specifies the channel N.

1.8 tells use the distance between the simulated & the simulating channel in the "diamond norm".

$\| N_1 - N_2 \|_\diamond := \max \| I \otimes N_1 - I \otimes N_2 \|_{1}\delta$

2 channels having small diamond norm is the most demanding way to say they're similar.

Aside: some researchers use the "cb-norm" instead of the diamond norm.

Besides the surprising relation δ, N is also "summarized" in a "Choi-Jamshidi" state:

$N|\psi\rangle = \sum_k E_k |\psi\rangle$ where $\sum_k E_k = I$.

$N^*|\psi\rangle = \sum_k A_k^* |\psi\rangle$ is called the "adjoint" of N.

In the classical case:

In the quantum case:

The diamond & cb norm are similar when measuring the accuracy of approximating.

On: What is an (M, n) code for quantum data?

*Better view:

Quantum case: & Error correction

Ex: You can have different errors E_1, E_2, taking C to the same space.

Identifies "deceased" C is called "degenerate.

Ex: Subspace C & C'. Connected to the subspace C.

"Lossy errors" lead to new codes.
The LSD then:

\[Q(N) = \sup_n Q^n(N) \]

In other words:

\[
\left| \begin{array}{c}
B_1 \\
B_2 \\
B_3 \\
B_4 \\
B_5 \\
B_6 \\
B_7 \\
B_8 \\
B_9 \\
B_{10} \\
B_{11} \\
B_{12} \\
B_{13} \\
B_{14} \\
B_{15} \\
B_{16} \\
B_{17} \\
B_{18} \\
B_{19} \\
B_{20} \\
B_{21} \\
B_{22} \\
B_{23} \\
B_{24} \\
B_{25} \\
B_{26} \\
B_{27} \\
B_{28} \\
B_{29} \\
B_{30} \\
B_{31} \\
B_{32} \\
B_{33} \\
B_{34} \\
B_{35} \\
B_{36} \\
B_{37} \\
B_{38} \\
B_{39} \\
B_{40} \\
B_{41} \\
B_{42} \\
B_{43} \\
B_{44} \\
B_{45} \\
B_{46} \\
B_{47} \\
B_{48} \\
B_{49} \\
B_{50} \\
B_{51} \\
B_{52} \\
B_{53} \\
B_{54} \\
B_{55} \\
B_{56} \\
B_{57} \\
B_{58} \\
B_{59} \\
B_{60} \\
\end{array} \right| \quad (19x20) \]

* Calculate \(S(b_n, b_{n+1}) - S(b_{n+1}, b_n) \)
* Divide by \(n \)
* Sup over \(n \).

When transmitting classical data, we have \(I(R; E) \) (entangled in \(N(N^e) \)).

For quantum data, we only need to make \(R \) correlation with \(E \), hence take out a portion of this data that's correlated with \(E \). The QMI counts all correlation (classical + quantum) and the classical portion is quantified by \(S(R; E) \).

\[I_c(R; E|E) = \frac{1}{2} (3-1) = 1 \quad \text{(by entropy.)} \]

So, what is \(I_c(R; E|b_n) \)?

\[
\begin{array}{c}
\text{Input}
\end{array}
\begin{array}{c}
R
\end{array}
\begin{array}{c}
\text{Output}
\end{array}
\begin{array}{c}
E
\end{array}
\]

Pure state \(I\)-states.

\[
I_c(R; E) = S(E) - S(R|E) = S(E) - S(E|E)
= \frac{1}{2} (S(E) - S(R|E) + S(R|E) + S(E|E))
= \frac{1}{2} (S(E) - S(E|E))
\]

\[S(E; B) = 3, \quad S(R; E|E) = 1 \]
Properties of the subset information $I(R;B)$:

1. Invariant under local wiring on R and B
2. Invariant under adding ancillas in pure states
3. Non-increasing under local operation on R's side

If an auxiliary spigot x on R:

\[S(R;B) = S(R';B') \]

\[(S(R;B) - S(R';B')) = 0 \]

\[I(R;B) = I(R';B') \]

Example 1:

Given initial state $|x\rangle|0\rangle$ for R:

\[I(R;B) = 1 \]

Magnitude of processing capacity

Example 2:

Circuit A:

\[I(R;B) = 1 \]

Circuit B:

\[I(R;B) = 0 \]