Treating the $x \rightarrow y$ process as a classical channel, the capacity is I_{acc} of the ensemble.

We can do better given the Q box — not because of Alice but because of Bob! We can do even better given a channel —

1. How much can Alice learn to Bob? (She decides what x instead of drawing $x \sim p(x)$)
2. She can use Q, many times? (But notice incoherence)
3. Same question, but a channel N (instead of Q) is available instead?

Elaborating the notations:

\[\Lambda = \sum_{i=1}^{k} \lambda_i \mathbf{p}_i \]
\[\Lambda^{-1} \]
\[\Lambda^{-1} \text{ performed only on supp}(\Lambda) \]

Note that the PM is still well defined if $\mathbf{f} \neq 0$, but otherwise in constant $(x \sim \mathbf{f} \mathbf{p} \mathbf{f}^T)$.

Intuitively, the measurement has an error if the state is \mathbf{f}, but the outcome is $\mathbf{f} \mathbf{f}^T$.

How good is the "pretty good" mean?

- If \mathbf{f}'s are orthogonal, it is perfect.
- Upon "repeating" many times on PM being optimal in specific applications.
- For pure states $\mathbf{f} = |\mathbf{x}\rangle \langle \mathbf{x}|$, given equivalently, are prob error $\leq \frac{1}{k} \mathbf{f} \mathbf{f}^T$.

We'll use packing lemma to add error prob.

Pretty good measurement

Gentle measurement lemma (Winter ...):

\[\text{Tr}(\rho) < 1, 0 \leq \epsilon \leq 1 \]

If $\text{Tr}(\rho M) > 1 - \epsilon$

then $\exists U$ s.t. $\text{Tr}(U^{1/2} \rho U^{1/2} + \epsilon 1/2) \geq \chi^2_i$

Best possible past error state for ρ and come over to C.

Interpretations:

Even a state ρ, if it mess yields, I am sure why then the state is basically changed by the means.
Def: for a set of states $S = \{ \rho_1, \rho_2, \ldots, \rho_s \}$, let distinguishability error of S be $d(S) = \min_{\pi_i, \pi_j} \Pr(\text{outcome } i \neq j | \text{state } \rho_i)$.

NB: an upper bound $d(S)$ by considering specific measurements.

The packing lemma:

Let $p(S)$ be random, S_x states, $S = \{ \rho_1, \rho_2, \ldots, \rho_s \}$ if projectors π_i, π_j exist s.t. ρ_i, ρ_j:

1. $\Tr(\rho_i \pi_j) \geq 1 - \delta$
2. $\Tr(\rho_i \pi_i) \geq 1 - \delta$
3. $\Tr(\rho_j \pi_j) \leq \frac{1}{d_0}$
4. $\Tr(\rho_i \pi_j) \leq \frac{1}{d_0}$

Then $S_x \leq 2 (1 + \frac{1}{d_0}) + 4 \delta$ (achieved for d_0)

What does this lemma mean?

Conditions 1 & 2 say each ρ_i lives in some d_i-dim space (up to δ approx) defined by π_i. Condition 3 says all ρ_i lives in a space defined by π_j.

In general, for 2 rank pure states $|\psi\rangle \& |\phi\rangle$,

$
\chi(\langle \psi | \psi \rangle + \langle \phi | \phi \rangle) = 2 \sqrt{\lambda_{\text{min}}(\langle \psi | \phi \rangle)}
$

$\chi(\langle \psi | \phi \rangle)$ is large when $|\psi\rangle \& |\phi\rangle$ have high overlap.

In the current problem: $S = \{ \rho_1, \rho_2, \ldots, \rho_s \}$

We expect $\chi(\langle \rho_i | \rho_j \rangle)$ to be small if the ρ_i's are distinguishable but having mixed state ρ_i complicates things.

Condition 4: ρ_i, ρ_j close s.t. $\rho_i \approx \rho_j$

Since $\chi(\langle \rho_i | \rho_j \rangle) \approx 1 - \delta$, $\lambda_{\text{min}}(\langle \rho_i | \rho_j \rangle)$

$\chi(\langle \rho_i | \rho_j \rangle)$ bounds the max eigenvalue of S_x to be no more than $\frac{1}{d_0}$, or $d_0 = \chi(S_x)$

Where $\chi(\langle \psi | \phi \rangle)$ denotes the max eigenvalue of $\langle \psi | \phi \rangle$.
The failure lemma tells us, if we're communicating using quantum states &
and we know little about them except each lives under the d-dim ch, then we can
send $\frac{k}{d}$ of a message into more errors.

\[\frac{k}{d} \] is the fraction of space we're willing to leave blank.
This comes from how distinguishing $Y - X$ is.
(Also do $\text{rank}(X)$; d is size of Xx; \(\frac{d}{\lambda} \), sounds right).
Theorem: $C(C) = \max_{P_X} X(\{P_X, f_X\})$

Again, need a direct coding proof & a converse proof.

Converse: arbitrary

Construc the state $\sum_{x_1, x_2, \ldots, x_n} p(x_1, x_2, x_3) \otimes P_{x_1} \otimes \otimes P_{x_n}$

System labels $X_1, X_2, X_n, B_1, \ldots, B_n$

Then for $R \in I(X_1, \ldots, X_n; B_1, \ldots, B_n)$, arbitrary y_1, \ldots, y_n

$$= \sum_{x_1, x_2, \ldots, x_n} s(x_1, x_2, \ldots, x_n) - s(x_1, \ldots, x_n, y_1) - s(y_1, y_2, \ldots, y_n)$$

$\leq \sum_{i=1}^{n} s(y_i, \ldots, y_n) - s(y_i, y_{i+1}, \ldots, y_{i+n})$

Next, let $i \in [n]$, $x_1, \ldots, x_{i-1}, y_{i-1}, x_{i+1}, \ldots, x_n$

$$= \sum_{i=1}^{n} s(y_i, \ldots, y_n) - s(y_i, y_{i+1}, \ldots, y_{i+n}) \leq I(X_i; B_i)$$

Direct Coding:

Recall in Shannon's noisy coding theorem

For any x_1, x_2, \ldots, x_n, let $x_i \sim P_X$ iid.

These are typical sequences if $x_i \sim X_i$.

Here, we demand C be defined randomly among strongly typical sequences (next page) and to send message $\sum_{i=1}^{n} x_i$ into the n uses of \mathcal{C}.

States to be distinguished by Bob:

$Y_n = f_{x_1} \otimes f_{x_2} \otimes \ldots \otimes f_{x_n}$

Strongly Typical Sequence:

For all x_1, x_2, \ldots, x_n, $\xi_i \sim P_x$ is a strongly typical sequence if the empirical distribution of X observed in ξ_i is \mathcal{C}-close to P_x.

For $x_1, y_1 \in \mathcal{C}, p(y_1 | x_1) = \frac{1}{n} \sum_{i=1}^{n} p(y_{i1} | x_{i1})$ and $\| \frac{1}{n} - p \|_{\infty} = \frac{1}{n} \sum_{i=1}^{n} | p(x_{i1}) - p(y_{i1}) | \leq \varepsilon$

HLL: ξ strongly typical sequences are ξ' typical.

Example: Let $\mathcal{C} = \{1, 2, 3, 4\}$, $p(x) = \frac{1}{4}$, $n = 20$

$\{1, 3, 1, 3, 2, 1, 2, 3, 1, 2, 4, 1, 2, 3, 2, 1, 2, 3, 1\}

$p(1) = \frac{1}{20}$, $p(3) = \frac{3}{20}$, $p(2) = \frac{6}{20}$, $p(4) = \frac{8}{20}$

$p(1) = \frac{1}{4}$, $p(3) = \frac{3}{4}$, $p(2) = \frac{1}{4}$, $p(4) = \frac{3}{4}$

$\| \frac{1}{n} - p \|_{\infty} = 0.1$. So \mathcal{C} is ε-strongly typical.

MB we focus on $n \gg 1$.

Given $C: X_1, \ldots, X_n \in \mathcal{C}$ strongly typical, what do we know about $\mathcal{C}\mathcal{C}x_1, \ldots, x_n$? X_1, \ldots, X_n could be ordered.

Up to reordering, we need a system for $Y \circ \mathcal{C}$

For each X, by discussion leading to quantum data compression, there exists a projector Π_X s.t.

$\text{Tr} (\Pi_X \otimes \mathcal{C}) = 1 - \delta_1$,

$\dim \Pi_X \leq 2^{-nK_{\mathcal{C}} (2^{\mathcal{C}} - 1)}$.

Given C, let $\mathcal{C}_C = \otimes_{X} \mathcal{C}$ acting on the

$K_{\mathcal{C}} = \mathcal{C} \circ \mathcal{C}_C$ systems.

$\text{Tr} (\Pi_X \otimes \mathcal{C}_C) = 1 - \delta_2$, $\dim \Pi_X \leq 2^{-nK_{\mathcal{C}} (2^{\mathcal{C}} - 1)}$.
More precisely, for each n, γ_n for C, γ, T, \tilde{T} defined earlier, and let $\gamma = \frac{1}{2} f_\delta f_\varepsilon$. T projects onto the unique \hat{f}:

\begin{align*}
\text{and so on...}
\end{align*}

Finally, back to direct using proof for $C(2)$:

The 6 states are encoded as: x_1, x_2, \ldots, x_6.

where $x_1 = y_1 \bullet y_2 \bullet y_3 \bullet y_4 \bullet y_5 \bullet y_6$.

for $C = X_1, X_2, \ldots, X_6$.

A random check strongly supports our argument.

The hacking lemma now applies.

S_k, being f_γ, is strongly typical.

T_k, being T, is δ-random.

\mathcal{D}_1,... \mathcal{D}_m, $\mathcal{D}_n = N$

such that $S_k = Y_1 \cdots Y_n$.

The following lemma holds.

$$
\mathcal{D}_n = N [S_k = Y_1 \cdots Y_n] = 2^{p_k (p_k - 1) - \delta}.
$$

Since S_k emits N symbols, applying what we have, $C(2)$ is $\max \gamma (p_k, p_k)$.

\begin{align*}
\text{and so on...}
\end{align*}

What should Alice send to Bob?

Consider all strings of 12 strings of length n.

\begin{align*}
\text{with } 50\% 1's, 50\% 2's, 50\% 3's.
\end{align*}

$$
\mathcal{C}_1 = \{0, 1, 2, 3\}.
$$

There are $2^n (111111) = 1571$

Alice is drawing 2 strings from the pool (with replacement), if $d = 0.02$, then are 20=4 messages.

Say $C_1 = 211231212123$.

$$
\text{and so on...}
$$

\begin{align*}
\text{and so on...}
\end{align*}
Bob's measurement: \[\Lambda_i = \prod_{k \neq i} \Lambda_k, \quad \Lambda = \sum_{i} \Lambda_i, \quad \mathcal{M}_i = \Lambda_i^* \Lambda_i, \quad \mathcal{M}_{120} = \sum \text{ of the } 3 \text{ projections} \]

Tr or rank of \(\Lambda_{120} \approx (1.25)^2 \times 3 \approx 4.5 \)

Theoretically, should be \(\approx \frac{10 \log_{10}(2.5)}{15} \approx 1.5 \) also

It projection onto typical space \(\prod \left(\mathcal{M}_1 + \mathcal{M}_2 + \mathcal{M}_3 \right) \)

which is the full space, \(d_0 \approx 10 \)

Hence and \(\approx \frac{10(1 - \alpha^2 - \alpha^3)}{10 - 2\xi} \approx 120 \) messages.

So \(\prod \mathcal{M}_i \approx \mathcal{M}_{120} \Lambda \).

Same for \(\prod \mathcal{M}_i \Lambda \).

A more collective

\(\Lambda = \prod_{i=1}^{120} \mathcal{M}_i \Lambda \).

\(\left\{ \mathcal{M}_i : \Lambda^2 \right\} \) defines a highly collective measurement.

What is the Issac of the ensemble?

\(\text{E.g., } \left(\mathcal{M}_1 + \mathcal{M}_2 \right) \text{ in the above example?} \)

That of the \(\bigotimes \) three states \(\approx 0.585 \)

Issac for the current ensemble should be even lower.

Now, classical capacity of a quantum channel.

Basic use: Issac is the new "Q" box.

\[[N] \quad \rightarrow \quad [N'] \]

\[\quad \rightarrow \quad \mathbb{C} \quad \rightarrow \quad \mathbb{R} \]

Web can also use \(\mathcal{N}^{\text{RR}} \) corresponding Q box.

\[\left\{ \mathcal{N}^{\text{RR}} \right\} \quad \rightarrow \quad \mathbb{N}^{\text{RR}}(p) \]

It follows from the capacity discussions the Q box that

\[C(N) \geq \frac{\gamma}{\delta} \quad \mathcal{X}(N^{\delta'}) \]

and defined as

\[\leq \max_{\mathcal{X}(N^{\delta'})} \frac{\gamma}{\delta} \]

for \(\delta \ll 1 \)

about \(n \) channels.

This is called the

Protocol 1:

\[x_i \rightarrow (X) \rightarrow (Y) \rightarrow y_i \]

Alice chooses \(p(x) \) to maximize \(I(x; y) \)

\(I(x; y) = \max_{p(x)} \mathbb{E}\left[\log_2 \frac{1}{P(x,y)} \right] \)

The common capacity of No.

Protocol 2:

\[x_1 \rightarrow (X) \rightarrow (Y) \rightarrow y_1 \]

Alice chooses \(p(x) \) to maximize \(I(x; y) \)

\(I(x; y) = \max_{p(x)} \mathbb{E}\left[\log_2 \frac{1}{P(x,y)} \right] \)

This is the capacity \(C(X) \)

\[x_1 \rightarrow (X) \rightarrow (Y) \rightarrow y_1 \]

Maximize \(I(x; y) \)

Capacity: \(C(X) = \max_{p(x)} \mathbb{E}\left[\log_2 \frac{1}{P(x,y)} \right] \)

Note that the capacity expression has an optimization over \(p(x) \). It is often called a "repeated" expression in contrast to the capacity expression for a classical channel with \(d \) in which the receiver only uses one of the \(d \) resources (i.e., it is a single resource expression).

The step \(S_i \) is

\[S_i = S_i \cup S_i \cup \ldots \cup S_i \]

In the converse of capacity of Q-box breaks down when output state \(N^{d}(1) \) is entangled in the channel setting.

To do:
- Problems like not having upper Ando to capacity of
- Some examples: AO Channel
- Adversely effects vs an additivity (this really goes well with the problems you have)