Theorem [Shannon’s noisy coding theorem]
\[C(N) = \max_{p(x)} I(X:Y) \]

How to prove this?
1. Direct coding – consider codes that are promising
A clever code doesn’t come by easily.
Instead, consider “random” (M,n) codes with
rate = I(X:Y) and show \(\text{Prob}(E_{P_e} \to 0) > 0 \).
Thus \(\exists \) code with small \(E_{P_e} \) (our 2nd encounter
with “existential proofs”). Extract a subcode with
similar rate but \(P_e \to 0 \).
2. Converse – show that if at higher rates, \(E_{P_e} \to 0 \).
Plan: 2, then heuristic 1, then 1.

Proof of converse:
\[nR = H(M) = H(M|Y^n) + I(M:Y^n) \leq H(M|Y^n) + I(E_n(M):Y^n) \]
(i) data processing ineq
(ii) by lemma \(\leq n \max_{p(x)} I(X:Y) \)

(i) Data processing inequality \(I(E:F) \geq I(E:G) \)
if \(E \to F \to G \) is a Markov Chain
(i.e. \(I(E:G|F) = 0 \))
Proof:
\[I(E:F) = H(E) + H(F|E) - H(EF) \]
\[= I(E:G) + H(G|E) - H(EF) - H(E|G) + H(F|E) \]
\[= I(E:G) + I(E:F|G) \]
but the LHS is symmetric wrt exchange F and G,
so must the RHS.
\[\text{So, } I(E:G) + I(E:F|G) = I(E:F) + I(E:G|F) \geq 0 \]
So, \(I(E:G) \geq I(E:F) \).

(iii) Lemma: Let \(Y^n = N^{\otimes n}(X^n) \).
Then, \(I(X^n:Y^n) \leq \sum_{i=1}^n I(X_i;Y_i) \).
Pf:
\[I(X^n:Y^n) = H(Y^n) - H(Y^n|X^n) \]
\[= H(Y^n) - \sum_{i=1}^n I(Y_i;Y_1,...Y_{i-1}X^n) \text{ Chain rule} \]
\[= H(Y^n) - \sum_{i=1}^n h(Y_i|X^n) \]
\[\leq \sum_{i=1}^n h(Y_i|X) \text{ Subadditivity} \]
\[\leq \sum_{i=1}^n I(X_i;Y_i) \]

1. Direct coding:
Let \(M = 2^{\Omega(X|Y)^{\otimes n}} \). What’s the \((M,n) \) code?
Fix any \(p(x) \).
Encoder \(c_i \):
Pick \(n \) codewords \(c_i = x_i \ldots x_n \),
each \(x_i \) chosen iid \(\sim p(x) \).
Fixed & known to Alice & Bob once chosen.
\(c_1 = x_{11}, x_{12}, \ldots, x_{1n} \)
\(c_2 = x_{21}, x_{22}, \ldots, x_{2n} \)
\(\ldots \)
\(c_M = x_{M1}, x_{M2}, \ldots, x_{Mn} \)
Everything refers to this particular code \(c_i \) from now on.
1. Direct coding: \(c_i = x_{1i}, x_{2i}, \ldots, x_{ni} \)
 \(i = 1, 2, \ldots, M \)

 Heuristically why \(P_e \rightarrow 0 \):
 The \(n \) channel outputs \(Y \) is iid with \(p(y) = \sum p(y|x) p(x) \)
 With high prob, output typical \(y_1 \) \(\approx 2^n H(Y) \) of them.

 \(x_{ij} \) chosen iid \(\sim p(x) \)

 For each \(c_i \) sent via \(N \otimes n \), there're \(\approx 2^{nH(Y|X)} \) possible outcomes (call the set \(O_i \) centered around \(c_i \).)

 Since the \(c_i \)'s are random, if \(2^{nH(Y|X)} M < 2^{nH(Y)} \), these \(O_i \)'s don't overlap much. So, decoder just output "which sphere" contains the output \(y_1 \) \(\ldots y_n \).

Recall:

Def[typical sequence]:

- \(x^n \) \(\varepsilon \)-typical if \(\left| -\frac{1}{n} \log(p(x^n)) - H(X) \right| \leq \varepsilon \)

- It means \(2^{-nH(X) + \varepsilon} \leq p(x^n) \leq 2^{-nH(X) - \varepsilon} \).

Def[Jointly typical sequence]:

- \(x^n y^n \) \(\varepsilon \)-jointly-typical if
 \[\left| -\frac{1}{n} \log(p(x^n y^n)) - H(XY) \right| \leq \varepsilon \]

- where \(p(x^n y^n) = p(x^n) p(y^n) \).

- Need also: (a) \(-\frac{1}{n} \log(p(x^n)) - H(X) \leq \varepsilon \)

- (b) \(-\frac{1}{n} \log(p(y^n)) - H(Y) \leq \varepsilon \)

- (The strong typicality has (a) \(\Rightarrow \) (b) but not for entropic typicality.)

Def[Jointly-typical set]: \(A_{n, \varepsilon} = \{ x^n y^n \text{ \(\varepsilon \)-jointly typical} \} \)

More observations:

Given \(y^n \in T_{n, \varepsilon}^n \), how many \(x^n \in T_{n, \varepsilon}^n \) s.t. \(x^n y^n \in A_{n, \varepsilon} \)?

Call this set \(S(y^n) \).

(1) \(p(x^n y^n) = p(x^n y^n) / p(y^n) \approx 2^{-n(H(X)+H(Y))} = 2^{-nH(XY)} \)

(2) \(1 = \sum_{x^n y^n} p(x^n y^n) \approx |S(y^n)| \cdot 2^{-nH(XY)} \)

Hence, \(|S(y^n)| \approx 2^{nH(XY)} \). Fraction of such \(x^n \approx 2^{nH(XY)} \).

Similarly, given \(x^n \in T_{n, \varepsilon}^n \), \(x^n y^n \)'s are jointly typical with it, and the fraction of such \(y^n \approx 2^{nH(Y)} \).

Joint asymptotic equipartition (Joint AEP) theorem:

Let \((X^n, Y^n) \) be sequences of length \(n \) drawn iid according to \(p(x^n, y^n) = \prod p(x^n) p(y^n) \).

Then:

1. \(\Pr(X^n, Y^n \in A_{n, \varepsilon}) \rightarrow 1 \)

2. \(|A_{n, \varepsilon}| \approx 2^{nH(XY)} \)

3. if we draw \(X^n \) & \(Y^n \) according to \(q(x^n, y^n) = p(x^n) p(y^n) \).

 \(\Pr_q (\text{outcome } \in A_{n, \varepsilon}) \approx 2^{-nI(X;Y)} \)

Proof (with \(\varepsilon, \delta \)) available in the 18 page notes.

Make a table of typical \(x^n \)'s and \(y^n \)'s, and for jointly typical \(x^n y^n \), put a 1, else, put a 0.

| \(x^n(1) \) | \ldots | \(x^n(n) \) | \(y^n(1) \) | \ldots | \(y^n(n) \) |
|---|---|---|---|---|
| \(\approx 2^{nH(X)} \) entries each row has \(\approx 2^{nH(Y)} \) 1's total \(\approx 2^{nH(XY)} \) 1's |
| \(\approx 2^{nH(Y)} \) entries |
| Our random code corresponds to \(M \) randomly chosen rows. |
Dₙ: typical set decoding

Given \(y^n \), if there is a unique \(x^n \in S(y^n) \), output \(m' \) s.t. \(c_{m'} = x^n \).
Else, output \(W=M+1 \) (error symbol).

How will this fail for message \(m \)?

Either - no such \(x^n \)
- or \(\exists m' \neq m \) with \(c_{m'} y^n \in A_{\epsilon, n} \)

For the random code \(C_n \), let the average error over all messages be \(\text{EP}_{\epsilon}(C_n) \), same as error if \(m=1 \) (since all messages similar).

\[
\text{EP}_{\epsilon}(C_n) = \text{Pr}_{\epsilon}(W=1|m=1) = \sum_{\text{Err}_m} \text{Pr}_{\epsilon}(\text{Err}_m|m=1) \leq M \sum_{\text{Err}_m} \text{Pr}_{\epsilon}(\text{Err}_m|m=1) \approx 2^{-nI(X:Y)}.
\]

Bounding \(\text{Pr}_{\epsilon}(\text{Err}_2|m=1) = \text{Pr}_{\epsilon}(c_2 y^n \in A_{\epsilon,n}) \):

But \(c_2 \) and \(y^n = N^{\epsilon^n}(x_1) \) independent.

By joint AEP [3], \(\text{Pr}_{\epsilon}(c_2 y^n \in A_{\epsilon,n}) \approx 2^{-n(I(X;Y)} \)

If \(M = 2^{n(I(X;Y) - \delta_n) \text{ and } n\delta_n \text{ growing with } n \text{ but } \delta_n \to 0} \)

Note: \(P_s(m=1) + P_s(m=2) + \ldots + P_s(m=M) = M \text{EP}_{\epsilon}(C_n) \)

Reorder \(m \)'s so that \(P_s(m) \) is increasing.

So, keeping only codewords for \(m=1, \ldots, M/2 \), worse case prob error \(\leq \text{EP}_{\epsilon}(C_n)/2 \).