Recall: H(X) measures the ignorance on the rv X.

Let X,Y be two rv’s, with distribution p(xy).
H(XY) = H(p) as before (treat XY as a composite rv).
Fix a particular outcome for Y, say y, with X unknown.
Define q_y = p(X|Y=y) as the distribution of X given Y=y.
q_y(x) = p(xy) / \sum_x p(xy)
H(q_y) is the uncertainty of X when Y=y.
Def: Conditional entropy H(X|Y) = \sum_y p(y) H(q_y).
Meaning: average (over unknown Y) uncertainty of X:
Fix a particular outcome for Y, say y, with X unknown.
H(q_y) is the uncertainty of X when Y=y.
Fact: H(X|Y) = H(XY)-H(Y)
easy to remember
aka "Chain rule." Proof: def+algebra

Properties of H(X), H(XY), I(X:Y):
1. 0 \leq H(X) \leq \log |\Omega| [obvious, but useful]
2. H(XY) \leq H(X) + H(Y) [called Subadditivity]
equivalent to I(X:Y) \geq 0
equivalent to H(X|Y) \leq H(X)
[meaning: conditioning reduces uncertainty
knowing Y cannot hurt]
"*" iff X, Y independent (MI=0, conditioning useless)
Ideas: (i) define relative entropy H(p||q) = \sum_x p(x) \log(p(x)/q(x)),
(ii) show that it is nonnegative [since –(ln 2) (log z) \geq 1-z,
H(p||q) = \sum_x p(x) \log(q(x)/p(x)) \geq \sum_x p(x) (1-q(x)/p(x))/(ln 2)=0,
with equality hold only iff q(x)=p(x) \forall x]. (iii) rewriting I(X:Y) as
H(p(x,y)||p(x)q(y)).

Properties of H(X), H(XY), I(X:Y):
4. H(X|Y) \geq 0 [follows from Def: average over nonnegative entropies]
5. H(XY) = H(Y)+H(X|Y) [Chain Rule, extends to multiple rv’s]
6. H(X) \geq H(Y) [follows from 4&5]
7. H(Z) + H(XYZ) \leq H(XZ) + H(YZ)
[called Strong Subadditivity SSA]
Note that Z special, XY symmetric.
As if Z added to each term in SA. (Thus the name)
equiv to H(Y|XZ) \leq H(Y|Z) or H(X|YZ) \leq H(X|Z)
Conditioning (on a new rv) decreases conditional entropy.
Here: H(Y|Z) on X or H(Z|Y) on Y.

Quantum analogues:
Recall S(\rho) = H(spec(\rho))
Let A,B be two quantum systems
\rho density matrix representing state on AB
S(AB) = S(\rho), S(A) = S(tr_B(\rho)), S(B) = S(tr_A(\rho)).
Classical: H(X|Y) = H(XY)-H(Y)
In quantum setting, no obvious meaning to condition
on one of the two systems.
Def: S(A|B) = S(AB)-S(B) Imitate classical expression
but not the meaning.
Quantum analogues:

Classical: \(I(X;Y) = H(X) - H(X|Y) \)

Def [quantum mutual information]:
\[
S(A:B) = S(A) - S(A|B) = S(A) + S(B) - S(AB).
\]

Imitate classical expression, due to \(S(A|B) \), meaning of \(S(A:B) \) not immediately clear. (Investigate later.)

Example 1:
Suppose we have a pure state \(|\psi\rangle \) on \(AB \).
There is always a Schmidt decomposition:
\[
|\psi\rangle = \sum_x \sqrt{p(x)} |e_x\rangle_A |f_x\rangle_B
\]
where \(\{e_x\} \) is orthonormal in \(C^A \), \(\{f_x\} \) o.n. in \(C^B \).

Note that
\[
\rho_A = \sum_x p(x) |e_x\rangle_A \langle e_x|,
\rho_B = \sum_x p(x) |f_x\rangle_B \langle f_x|.
\]

\(S(AB) = 0 \).
\(S(A) = S(B) = H(p) \).
\(S(A:B) = 2 H(p), \ S(A|B) = -H(p) \)

Properties of \(S(A), S(A|B), S(A:B) \):

1. \(S(\rho) = S(U\rho U^\dagger) \), \(S(A:B) = S(\rho_{AB}) \)
2. \(S(\rho_{AB}) \geq S(A) + S(B) \) [subadditivity]
3. Let \(\tau_1, \tau_2, ... \) be states on the same system and \(\{p_k\} \) a distribution. Then,
\[
S(\sum_k p_k \tau_k) \geq \sum_k p_k S(\tau_k)
\]
[entropy of the average \(\geq \) average entropy]

Why: consider \(\rho = \sum_k p_k \tau_k \otimes |k\rangle \langle k| \).
\(S(\rho) = H(p) + \sum_k p_k S(\tau_k) \).
Follows from 2.

Example 2: Consider a density matrix \(\rho = \sum_x \lambda_x |e_x\rangle \langle e_x| \)
Suppose we measure in some basis (WLOG the computation basis) and the outcome is \(y \).
Note that
\[
p(y) = \sum_x \lambda_x |V_{xy}|^2 \quad \text{and} \quad p(y|x) = |V_{xy}|^2.
\]

Let \(|e_x\rangle = \sum_y V_{xy} |y\rangle \).
Make a matrix \(V \) where \(V_{xy} \) is the entry for the \(x \)-col & \(y \)-row so \(V \) transforms the comp basis to the eigenbasis of \(\rho \).
The distributed given by \(p(y) \) (as a vector labeled by \(y \)) is obtained from the distribution \(\lambda_x \) (as a vector labeled by \(x \)) by applying the matrix \(D \) (where \(D_{xy} = |V_{xy}|^2 \)).

In general, we say that \(D \) is a stochastic map taking \(X \) to \(Y \) if \(D \) has nonnegative entries with columns sum to 1.
Here, the rows of \(D \) also sum to 1, and we call it doubly stochastic. It is known to be entropy nondecreasing.

Therefore \(S(\rho) = H(X) \leq H(Y) \) (meas outcomes are more random than the prep).

Properties in the quantum setting:

4. \(S(A|B) \geq 0 \) or \(S(A|B) = 0 \)
5. \(S(AB) = S(B) + S(A|B) \) [by def]
6. \(S(AB) \geq S(B) \) or \(S(AB) \leq S(B) \)
7. Strong subadditivity (for any tripartite state on \(ABC \))
\[
S(C) + S(ABC) \leq S(AC) + S(BC)
\]
equiv to \(S(A|BC) \geq S(A|B) \)

(i) equiv to \(S(A|BC) \leq S(A|B) \)
\[
\text{(so, } S(A|C:B) = S(A|B) - S(A|BC)) \geq 0 \)
\]
(ii) equiv to \(S(A|BC) \leq S(A|BC) \)

Proof of equivalences:

(i) \(S(ABC) = S(AB) - S(BC) \)
\[
\text{(ii) } S(A|BC) = S(A|BC) - S(ABC) \geq 0 \]

Recall any TCP map \(E \) can be realized by an isometry \(B \to B'E \) where \(E \) is a suitable environment initially in a pure state, followed by discarding the environment.
The von Neumann entropy is invariant under a unitary change of basis. Thus \(S(A|B) = S(A|B') \).

Conversely, discarding is a TCP map.
How much info can we learn about a quantum state by measuring it?

Given an ensemble \(\mathcal{E} = \{ \rho_1, \rho_2 \} \), consider a game:

\[
\begin{array}{ccc}
X & \rightarrow & A \\
\rho_x & \rightarrow & B \\
& \rightarrow & Y
\end{array}
\]

Alice draws \(x \) with probability \(p(x) \), prepares \(\rho_x \), and sends to Bob. Bob performs a measurement \(\{ M_i \} \) with operators \(\{ M_i \} = \{ \sum_i \rho_i \} \).

Probability to obtain outcome \(y \) if state is \(\rho_x \):

\[
p(y|x) = \text{tr}(M_y \rho_x)
\]

Joint distribution \(p(y|x) = p(y|x) p(x) \)

Classical mutual info \(I(X:Y) \) quantifies the information on which state \(X \) given by the outcome \(Y \)

Def: \(I_{\text{acc}}(\mathcal{E}) = \max_{\rho_y} I(X:Y) \) [accessible info of \(\mathcal{E} \)]

I\(_{\text{acc}}\) is a natural quantity to define but difficult to compute.

Examples (proof of optimality of meas left as Ex/HW):

e.g.1 \(\rho_1 = |\psi_1\rangle \langle \psi_1| \) for \(|\psi_1\rangle = \cos \theta |0\rangle + \sin \theta |1\rangle \)

\(\rho_2 = |\psi_2\rangle \langle \psi_2| \) for \(|\psi_2\rangle = \cos \theta |0\rangle - \sin \theta |1\rangle \)

drawn with \(\rho_1 = \rho_2 = \frac{1}{2} \)

\(x \) \(y \) \(\text{opt meas} \) \(|\psi_1\rangle \langle \psi_1| \)

\(|\psi_2\rangle \) \(|\psi_3\rangle \)

\(M_1 = |+\rangle\langle +| \)

\(M_2 = |-\rangle\langle -| \)

\(M_3 = |\psi_3\rangle \langle \psi_3| \)

\(M_{\text{opt}} = 2(1-|\psi_1\rangle \langle \psi_1|)/3 \)

\(M_{\text{opt}} \) takes the outcome that maximizes the accessible info

\(M_{\text{opt}} = \max_{M_i} I(X:Y) = (\log 3) - 1 \)

\(I_{\text{acc}} = I(X:Y) = (\log 3) - 1 \approx 0.5850 \)

With \(n=2 \), we take the basis as the BB84 states

Each state drawn with uniform probability \(1/2n \).

(\(x \) is encoded in the computational or conjugate basis wp \(1/2 \) each)

Optimal measurement turns out to be \(M_y = \frac{1}{2} \rho_y \)
i.e. randomly measure in one of the two possible bases

Let \(TY \) denote Bob's entire data set, where \(T \) is the coin toss specifying his measurement basis, and \(Y \) is the outcome of that measurement.

With prob \(\frac{1}{2} \), Bob's random basis equals the actual one, giving \(Y=X \), so \(I(X:Y) \) (correct) \(= \log n \). With prob \(\frac{1}{2} \), he measures in the "conjugate basis" so \(Y \) is random and independent of his quantum state (elaborate). So, \(I(X:Y) \) (wrong) \(= 0 \). So, \(I(X:Y) = \frac{1}{2} \log n \).

A lower bound to accessible information

For a density matrix \(\rho \) in \(d \) dimensions with eigenvalues \(\{ \lambda_k \} \), define the "subentropy":

\[
Q(\rho) = -\sum \lambda_k \log \lambda_k /
\]

\(\log \lambda_k \)

For the ensemble \(\mathcal{E} = \{ \rho_1, \rho_2 \} \),

\(I_{\text{acc}}(\mathcal{E}) \geq \sum \lambda_k \log \lambda_k \)

achieved by measuring in the random basis

If \(\rho_y \) are pure and \(1/d = \sum \rho_y \rho_y \) (an ensemble of pure states that averages to the maximally mixed state),

\(I_{\text{acc}} \geq \log(d) - (\log e)/2 + 1/3 + ... + 1/d \) (in bits)

For \(d = 2 \), \(I_{\text{acc}} \geq 0.2787 \), for \(d \rightarrow \infty \), \(I_{\text{acc}} \geq 0.60995 \).

When \(n=2 \), these are the BB84 states
An upper bound to accessible information

For the ensemble \(E = \{p_x, \rho_x\} \), define
Holevo information
\[\chi(E) = S(\rho) - \sum p_x S(\rho_x) \]

Theorem: \(I_{\text{acc}}(E) \cdot \chi(E) \)

Proof:
The ensemble can be represented by the "CQ" state
\[\tau_{XQ} = \sum p_x |x\rangle \otimes \rho_x \]
We interpret Alice as using the info \(x \) in system \(X \) to prepare the state \(\rho_x \) in system \(Q \) which is then transmitted to Bob.
Bob makes a measurement with POVM \(\{M_y\} \) and outcome \(y \) stored in \(Y \), and discards the system \(Q \). The joint system is
\[\tau'_{XY} = \sum p_x |x\rangle \langle x| \otimes \sum_y \text{tr}(M_y \rho_x) |y\rangle \langle y| \]

Proof (ctd):
\[\rho_1 = |\psi_1\rangle \langle \psi_1| \text{ for } |\psi_1\rangle = \cos \theta |0\rangle + \sin \theta |1\rangle \]
drawn with \(p_1 = p_2 = 1/2 \)
\[\rho = \cos^2 \theta |0\rangle \langle 0| + \sin^2 \theta |1\rangle \langle 1| \]
\[\chi(E) = S(\rho) \]

\[e.g.1 \quad p_1 = |\psi_1\rangle \langle \psi_1| \text{ for } |\psi_1\rangle = |0\rangle \]
\[p_2 = |\psi_2\rangle \langle \psi_2| \text{ for } |\psi_2\rangle = |0\rangle - i|1\rangle \]
drawn with \(p_1 = p_2 = 1/2 \)
\[\rho = \cos \pi |0\rangle \langle 0| + \sin \pi |1\rangle \langle 1| \]

Note that in general, there are many many 1-qubit states, and to specify one such state takes many bits.

Preparing the quantum state (and not knowing the classical label) less than \(S(I/2) = 1 \) bit of info can be extracted.

It is highly irreversible.

Holevo’s bound also says that we cannot use 1 qbit cannot transmit more one 1 bit of data.