wcleung(at)uwaterloo(dot)ca

Office location: QNC 3313 (research), MC 6008 (teaching office hours)

Office phone: 519-888-4567 x33604

Fax: 519-725-5441

Fall 2014: MATH 135: Algebra for Honours Mathematics

Winter 2014: MATH 135: Algebra for Honours Mathematics

Fall 2012: QIC 890/CO 781: Theory of quantum communication

Winter 2012, Spring 2011: MATH 239: Introduction to Combinatorics

Winter 2012: QIC 890/CO 781/CS 867: Quantum Error Correction and Fault Tolerance (with Daniel Gottesman)

Spring 2010: QIC 890/CO 781, Theory of quantum communication

Suitable candidates are encouraged to contact me.

Due to the volume of requests and the limited positions, a response will only be made when a position is available and when there is good match in background and interest.

Faculty (Sept 2005-), Department of Combinatorics and Optimization, University of Waterloo

Faculty (May 2004-), Institute for Quantum Computing

Scholar (Mar 2005-), The Canadian Institute for Advanced Research

Affiliate Member (Dec 2004-), Perimeter Institute fo Theoretical Physics

Tolman Postdoctoral Fellow (2003-5), Institute for Quantum Information, Caltech

Postdoctoral Fellow (2002), Mathematical Sciences Research Institute, Berkeley

Postdoctoral Fellow (2000-2), Physics of Information group, IBM T.J. Watson Research Center

Ph.D. in Physics (2000), Stanford Univeristy

Thesis: "Towards Robust Quantum Computation"

Advisors: Prof. Yoshihisa Yamamoto and Prof. Isaac ChuangB.S. in Physics/Mathematics (1995), California Institute of Technology

Thesis: ``Effects of thermal conduction in sonoluminescence''

Advisors: Prof. Steven E. Koonin and Dr. Ming-Chung Chu

General interests: theoretical quantum information processing.

Quantum information processing capacities of abstract or physical resources, e.g., the capacity of communicating quantum information using the dual resources of entanglement and quantum/classical channels (remote state preparation and superdense coding of quantum states), the capacity of nonlocal interactions to communicating quantum/classical information, to generate entanglement, and to perform quantum computation. General quantum channel capacities. Cryptographic applications of quantum information, e.g., composability of important quantum protocols, methods for quantum state encryption and authentication and secure key recycling in such protocols, quantum data hiding, quantum key distribution. Fault tolerant quantum computation, and error correcting codes

Long time interests: study of various quantum or classical correlations in quantum systems, solution state NMR quantum computation, and quantum process tomography, variations of measurement-based quantum computation.

Panos Aliferis, Adam Azarchs, Andrew Childs, Aram Harrow, Graeme Smith, Panos Aliferis, Man-Hong Yung, Adam Azarchs, Abhinav Bahadur, Miroslava Sotakova, Moritz Ernst, Christophe Vuillot, Egor Larionov, Mohammad Derakhshani, Maris Ozols, Yingkai Ouyang, Laura Mancinska, Michal Kotowski

Partially updated Sept 07, 2014