Figure 9.8. OBSERVATIONAL PLANS: Simpson's Paradox

1. Background Review - Lurking Variates, Confounding and Comparison Error [optional reading]

As background to answering Question(s) about an X-Y relationship between a focal variate \mathbf{X} and a response variate $\mathbf{Y}, \mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots ., \mathbf{Z}_{\mathrm{k}}$ in the schema at the right are called lurking variates, a phrase that means lurking explanatory variates in that each \mathbf{Z} accounts, at least in part, for changes from element to element in the value of the response variate. The importance of lurking variates is that if the distributions of their values differ between groups of elements [like (sub)populations or samples] with different values of the focal variate, an Answer about the X-Y relationship may differ from the true state of affairs unless the differences in the values of the relevant \mathbf{Z} s are taken into account.

The same statistical issue raised by lurking variates is involved, with different terminology, in confounding; the difference is that the behaviour of lurking variates (the entity responsible) is why confounding (the statistical issue) occurs.
An explanatory variate responsible for confounding is called a confounder or confounding variate; these two terms are synonyms for a lurking variate whose distribution of values (over a group of elements) differs for different values of the focal variate. The following definitions summarize the foregoing discussion:

* Lurking variate: a non-focal explanatory variate whose differing distributions of values (over groups of elements) for different values of the focal variate, if taken into account, would meaningfully change an Answer about an $\mathbf{X}-\mathbf{Y}$ relationship.
* Confounding: differing distributions of values of one or more non-focal explanatory variate(s) among two (or more) groups of elements [like (sub)populations or samples] with different values of the focal variate.
- Confounder (confounding variate): a non-focal explanatory variate involved in confounding.
'Confounding' and 'confounder' have the convenience of being one-word terminology rather than the multi-word phrases involving 'lurking variates' which convey the same ideas.
* Comparison error: for an Answer about an $\mathbf{X}-\mathbf{Y}$ relationship that is based on comparing attributes of groups of elements with different values of the focal variate, comparison error is the difference from the intended (or true) state of affairs arising from:
- differing distributions of lurking variate values between (or among) the groups of elements OR - confounding.

The alternate wording of the last phrase accommodates the equivalent terminologies of lurking variates and confounding; in a particular context, we use the version of the definition appropriate to that context:

- 'lurking variates' can more readily accommodate phenomena like Simpson's Paradox discussed in this Figure 9.8;
- 'confounding' is more common in the context of comparative Plans, as in Section 7 which starts on page 9.12 of Figure 9.2 of these Course Materials, but the variety of usage of 'confounding' can be a source of difficulty (see the following Figure 9.9 on pages 9.65 to 9.68).
Comparison error in experimental and observational Plans is discussed in Section 15 on pages 9.26 to 9.28 in Figure 9.2.
The schema at the right (from, for instance, page 9.6 of Figure 9.2) reminds us of several matters.
- Data-based investigating is concerned initially with four groups of units - the target population, the study population, the respondent population and the sample.
- Associated with each of these groups are (one or more) attributes if interest.
- Answer(s) to Questions(s) are usually given in terms of attributes, often their values.
- Our six categories of error, of which five are defined in terms of attributes - model error is the exception.
- In the schema, the four arrows arising from comparison
 error point to boxes representing groups of elements or units (a population or a sample) rather than, as for the other five error categories, to lines joining boxes; the comparison error arrow at the right is to be taken as pointing to both sample ellipses.
+ Multiple comparison error arrows are a consequence of its different manifestations in different Question contexts.

In earlier discussion (e.g., in Section 2 on page 9.6 in Figure 9.2), the context for comparison error due to lurking variate(s)/confounding is comparative investigating of a treatment effect; the relevant causal structure (e.g., from near the middle of page 9.10 of Figure 9.2), is case (8), shown at the upper right, with focal variate \mathbf{X}, respone variate \mathbf{Y} and lurking variate/confounder \mathbf{Z}. In this Figure 9.8, as summarized in the structure $(\mathrm{A})_{2}$ at the lower right, we broaden the discussion in two ways:

- we have two (or three) 'focal' variates [not necessarily all of equal interest in the Question context];
- we are unconcerned with causation as the reason for the $\mathbf{X}_{i}-\mathbf{Y}$ and $\mathbf{Z}-\mathbf{Y}$ associations, because the nature of the focal variates is such that we cannot set their levels and this precludes using such focal variate(s) to manipulate the value of \mathbf{Y};
- this is why the lower structure at the right overleaf on page 9.57 has lines rather than arrows between the variate symbols.

The phenomenon known as Simpson's Paradox can arise in a comparative investigation where the attributes are proportions - that is, the response variate \mathbf{Y} is qualitative [discrete (categorical)] in nature; the dramatic name ('Paradox') is a reflection of how the effect of lurking variate(s) can reverse the sign of a relationship. The data in twenty of the first twenty-one Tables 9.8.1 to 9.8 .21 used in discussion of Simpson's Paradox in this Figure 9.8 are hypothetical. The discussion is in six sections:
2. Illustrations of Simpson's Paradox.
3. 'Simpson's Paradox' with a quantitative response variate.
4. Reasons for Simpson's Paradox - properties of proportions.
5. Reasons for Simpson's Paradox - population subgroups and weighted averages.
6. Reasons for Simpson's Paradox - probability distributions.
ions.
7. A Plan for an investigation to answer the Question of sex discrimination.

The discussion is framed in terms of populations, because there are no inherent sampling issues in Simpson's Paradox; when the groups being compared are samples, there is the additional statistical issue of managing sample error.

2. Illustrations of Simpson's Paradox.

The data in Table 9.8 .1 below come from the discussion of Simpson's Paradox in Program 11 of Against All Odds: Inside Statistics; the context is possible sex discrimination in graduate admissions. Overall, the admission rate [or proportion (an attribute)] is lower for women (50% vs. 55% for men - see the bottom line of the Table) but, when the data are subdivided by school (Law and Business), the female admission rate is higher (by 5 percentage points) for each school. The (binary) response variate is school admission (Yes, No) and the lurking variate is women-to-men ratio among applicants; its effect is because:

* the two schools had appreciably different admission rates: 80 and 75% for Law, 20 and 15% for Business;
* half as many women as men (120 vs. 240) applied to Law

Table 9.8.1: SCHOOL	..WOMEN.		MEN..		
	Number of	ADMISS	\%	Number of	ADMISS	\%
Law	120	96	80	240	180	75
Business	120	24	20	120	18	15
Both	240	120	50	360	198	55

but equal numbers of women and men (120) applied to Business.
The diagram to the right of Table 9.8 .1 shows its data in graphical form; Simpson's Paradox is the positive slope of the middle dashed line for the data for both schools changing to a negative slope in the upper and lower lines for the schools individually. In this illustration, the variates in the lower structure $(\mathrm{A})_{2}$ at the lower right overleaf on page 9.57 are:
\mathbf{X}_{1} is an applicant's sex (female, male), $\quad \mathbf{X}_{2}$ is the school applied to (Law, Business),
[In Tables 9.8.5 and 9.8.6 on the facing page 9.59, \mathbf{X}_{3} is the level of study (Masters, Doctoral)],
\mathbf{Z} is the (lurking variate) women-to-men ratio among applicants (discussed further in Sections 3 and 5 on pages 9.59 and 9.60),
\mathbf{Y} is the response to an applicant (admitted, not admitted). [On page $9.59, \mathbf{Y}$ is time for degree completion (minimum, longer).] Unlike investigating a treatment effect when there is more than one focal variate (e.g., using a factorial treatment structure), the focal variate of primary interest in this Question context is \mathbf{X}_{1}, an applicant's sex.

The limitation imposed by lurking variates on an Answer to a Question about an X-Y relationship is illustrated further by the data in Tables 9.8.2 to 9.8.4; as the diagrams to the right of the tables emphasize, it is also possible to have:

* the same overall admission rate for women and men but a higher rate for women in the two schools individually (Table 9.8.2);

Table 9.8.2: SCHOOLWOMEN............		MEN.............		
	Number of Applicants	ADMISSIONS		Number of Applicants	ADMISSIONS	
		Number	\%		Number	\%
Law	120	96	80	168	126	75
Business	120	24	20	120	18	15
Both	240	120	50	288	144	50

Table 9.8.3: SCHOOLWOMEN............		MEN.............		
	Number of Applicants	ADMISS Number	$\underset{\%}{\mathrm{O} S}$	Number of Applicants	ADMISS Number	\%
Law	120	96	80	240	192	80
Business	120	24	20	120	24	20
Both	240	120	50	360	216	60

* a lower overall admission rate for women but the same rate for women and men in the two schools individually (Table 9.8.3); * a higher rate overall and in the two schools individually for women (Table 9.8.4).

The effect of lurking variates on an X-Y relationship at a second level of subdivision is illustrated in Tables 9.8.5 and 9.8.6 at the upper right of the facing page 9.59 ; a context for

Table 9.8.4: SCHOOLWOMEN............		MEN..............		
	Number of Applicants	$\underset{\text { Number }}{\text { ADMISS }}$		Number of Applicants	$\underset{\text { Number }}{\text { ADMIONS }}$	
Law	120	96	80	120	90	75
Business	120	24	20	120	18	15
Both	240	120	50	240	108	45

Figure 9.8. OBSERVATIONAL PLANS: Simpson's Paradox (continued 1)

these data is the proportion of graduate students who complete their degree in the minimum time. In Table 9.8.5, the proportion for women is lower overall, higher when subdivided by subject area (Law or Business) but again lower when subect area is subdivided by level (Masters or Doctoral). Similar effects are seen in Table 9.8.6, except the proportions for women become equal when subdivided by subject area and higher when further subdivided by level.

Probabilistically, subdividing is conditioning so that Tables 9.8.1 to 9.8.6, in illustrating Simpson's Paradox, show the limitation on an Answer which involves comparing conditional probabilities for a response variate with different conditionings; that is, comparing probabilities for \mathbf{Y} given \mathbf{X}_{1} and \mathbf{X}_{2} with \mathbf{Y} given only \mathbf{X}_{1} (in Tables 9.8.1 to 9.8.4) or for \mathbf{Y} given $\mathbf{X}_{1}, \mathbf{X}_{2}$ and \mathbf{X}_{3} with \mathbf{Y} given \mathbf{X}_{1} and \mathbf{X}_{2} or \mathbf{Y} given only \mathbf{X}_{1} (in Tables 9.8.5 and 9.8.6) - see Section 6 overleaf on page 9.60. Four other illustrations of Simpson's Paradox are given in Note 2 on pages 9.61 and 9.62 and three more illustrative tables (like Table 9.8.9 overleaf on page

Table 9.8.5: SCHOOLWOMEN............		MEN.............		
	Number of Students	COMPLETIONSNumber$\%$				
				Students	Number	\%
Law: Masters	60	51	85	60	54	90
Doctoral	60	33	55	300	180	60
Bus.: Masters	60	27	45	20	10	50
Doctoral	60	9	15	100	20	20
Law	120	84	70	360	234	65
Business	120	36	30	120	30	25
Both	240	120	50	480	264	55

Table 9.8.6:WOMEN............		MEN..............		
	Number of	COMPLE	ONS	Number of	COMPLE	ONS
SCHOOL	Students	Number	\%	Students	Number	\%
Law: Masters	60	54	90	240	204	85
Doctoral	60	42	70	80	52	65
Bus.: Masters	60	18	30	120	30	25
Doctoral	60	6	10	40	2	5
Law	120	96	80	320	256	80
Business	120	24	20	160	32	20
Both	240	120	50	480	288	60

9.60) are discussed on pages 9.62 and 9.63 in the Appendix of this Figure 9.8.

3. 'Simpson's Paradox' with a Quantitative Response Variate

Simpson's Paradox is usually presented in the context of comparing proportions but the same phenomenon can occur with a continuous response variate. As illustrated by the data in Table 9.8 .7 and the diagram to its right, whose context is graduate studies admission averages, the average is lower overall for women than men ($84 \% \mathrm{vs} .86 \%$) but, when the data are subdivided by school, both averages are higher for women. The response variate here is an applicant's average, the attribute is the average of these averages (e.g., 90 and 88 for Law, 82 and 80 for Business) and the lurking variate is women-to-men

Table 9.8.7:WOMEN.........	MEN............	
SCHOOL	Number of Applicants		Applicants' Average (\%)	Number of Applicants
Applicants Average (\%)				
Law	50	$\mathbf{9 0}$	150	$\mathbf{8 8}$
Business	150	$\mathbf{8 2}$	50	$\mathbf{8 0}$
Both	200	$\mathbf{8 4}$	200	$\mathbf{8 6}$

 ratio among applicants (1:3 for Law, 3:1 for Business). With 1:1 ratios, there is no 'paradox'.

The illustration in Table 9.8 .7 shows that Simpson's Paradox is not solely a phenomenon which may arise when comparing proportions. Its origin lies in the relative 'natural' group sizes arising from the process of subdividing (or its inverse of combining) used to manage comparison error in observational Plans. Such a lurking variate (called the women-to-men ratio in the discussion of Table 9.8 .1 on page 9.58 and Table 9.8 .7 above) is different in nature to \mathbf{Z} in the upper causal structure of case (8) at the lower right of page 9.57 , which we think of as being able to cause an element to change the value of its response variate. Thus, we now recognize two ways a change in a lurking variate can affect attribute value(s):

- by causing elements' response variate (and, hence, their attribute) values to change, AND:
- by distorting attribute calculation when subdividing is used to manage comparison error in an observational Plan.

4. Reasons for Simpson's Paradox - properties of proportions

Quantities (like variate and attribute values) which are single numbers are relatively straightforward to compare: 4 is greater than 2 is greater than -6 , although the latter has a larger magnitude than the first two. However, when quantities (like proportions or fractions and the coordinates of points on a scatter diagram) involve two numbers, comparisons may raise complications. For example, in the diagram at the right, points A and C with different coordinates are the same distance from the origin and point B is closer to the origin than A and C despite its coordinates being larger than one of those of A and C. The (surprising) result for fractions (or proportions), exhibited

(continued overleaf)
as Simpson's Paradox, is that for eight (positive) integers $a, b, \ldots ., h$, it is possible to have (as in Table 9.8.1 on page 9.58): $\frac{a}{b}>\frac{c}{d}$ and $\frac{e}{f}>\frac{g}{h}$ but at the same time to have: $\frac{a+e}{b+f}<\frac{c+g}{d+h} ; \quad \quad$ e.g., $\frac{32}{40}>\frac{90}{120}$ and $\frac{12}{60}>\frac{9}{60}$ but $\frac{44}{100}<\frac{99}{180}$.
This property also applies to more than two pairs of fractions (as in Table 9.8.15 on page 9.61) and for other combinations of inequality and equality (as in Tables 9.8.2, 9.8.3, 9.8.5 and 9.8.6 on page 9.58 and overleaf on page 9.59)
When the fraction $\frac{90}{120}$ is instead $\frac{30}{40}$, we see at the right that there is no 'paradox' (as in Table 9.8.4), reminding us that it is the group sizes (in the denominators)

$$
\frac{32}{40}>\frac{30}{40} \text { and } \frac{12}{60}>\frac{9}{60} \text { and } \frac{44}{100}>\frac{39}{100}
$$

under subdividing that may engage the property of proportions which generates the 'paradox' - recall Section 3 on page 9.59.

5. Reasons for Simpson's Paradox - population subgroups and weighted averages

The distorted calculation of the values of (population) attributes (like proportions and averages), which generates the 'paradox' illustrated in Sections 2 and 3, is an instance of weighted combinations of the corresponding attributes of population subgroups. As shown in Table 9.8 .8 at the right, the attribute values in the last line of each of Tables 9.8.1 to 9.8.4 are weighted combinations of the attributes in the two table lines above them; what produces the changes in attribute values relative to each other is a change in weights. Each weight is determined by the (natural) size of a population subgroup; this size is the lurking variate whose change is responsible for the change in (the sign of) the X-Y relationship. The same idea applies to each of the two levels of subdivision in Tables 9.8.5 and 9.8.6 and to the averages in Table 9.8.7. When the weights are equal (as in Table 9.8.4), there is no 'paradox'.

Table 9.8.8: Weighted percentage Weights

Table 9.8.1:	$\frac{120}{240} \times \mathbf{8 0}+\frac{120}{240} \times \mathbf{2 0}=\mathbf{5 0}$	$\frac{1}{2}$	$\frac{1}{2}$
	$\frac{240}{360} \times \mathbf{7 5}+\frac{120}{360} \times \mathbf{1 5}=\mathbf{5 5}$	$\frac{2}{3}$	$\frac{1}{3}$
Table 9.8.2:	$\frac{120}{240} \times \mathbf{8 0}+\frac{120}{240} \times \mathbf{2 0}=\mathbf{5 0}$	$\frac{1}{2}$	$\frac{1}{2}$
	$\frac{168}{288} \times \mathbf{7 5}+\frac{120}{288} \times \mathbf{1 5}=\mathbf{5 0}$	$\frac{7}{12}$	$\frac{5}{12}$
Table 9.8.3:	$\frac{120}{240} \times \mathbf{8 0}+\frac{120}{240} \times \mathbf{2 0}=\mathbf{5 0}$	$\frac{1}{2}$	$\frac{1}{2}$
	$\frac{240}{360} \times \mathbf{8 0}+\frac{120}{360} \times \mathbf{2 0}=\mathbf{6 0}$	$\frac{2}{3}$	$\frac{1}{3}$
Table 9.8.4:	$\frac{120}{240} \times \mathbf{8 0}+\frac{120}{240} \times \mathbf{2 0}=\mathbf{5 0}$	$\frac{1}{2}$	$\frac{1}{2}$
	$\frac{120}{240} \times \mathbf{7 5}+\frac{120}{240} \times \mathbf{1 5}=\mathbf{4 5}$	$\frac{1}{2}$	$\frac{1}{2}$

6. Reasons for Simpson's Paradox - probability distributions

Table 9.8.1 on page 9.58 provides data from which the probability function of a discrete trivariate distribution can be estimated. To obtain this model, we first extend Table 9.8.1 as in Table 9.8.9 below to include three extra columns for 'Both sexes. We then define five events and use estimates for ten probabilities - the vertical line means 'given that' in the eight conditional probabilities and \cap denotes an intersection of events.

Table 9.8.9: SCHOOLWOMEN..........			Number of ADMİ..............		BOTH SEXES........		
	Number of	ADMISS							
	Applicants	Number	\%	Applicants	Number	\%	Applicants	Number	\%
Law	120	96	80	240	180	75	360	276	$76 . \dot{6}$
Business	120	24	20	120	18	15	240	42	17.5
Both schools	240	120	50	360	198	55	600	318	53

The (joint) trivariate model is shown in Table 9.8.10 at the right below; summing its probabilities for one variate, we obtain the three (marginal) bivariate models in Tables 9.8.11 to 9.8.13. The smaller bold annotations in Tables 9.8.10 to 9.8.12 show how eight of the nine percentages in Table 9.8.9 arise; for example, the 80% of women admitted to Law is $\frac{0.16}{0.2}$.

Event A: Applicant is admitted ($\mathbf{Y}=$ yes; the complement $\overline{\mathrm{A}}$ is $\mathbf{Y}=$ no)
Event F: Applicant is female $\left(\mathbf{X}_{1}=\right.$ female $) \quad \operatorname{Pr}(\mathrm{F})=0.4 \quad \operatorname{Pr}(\mathrm{~A} \mid \mathrm{F})=0.5 \quad \operatorname{Pr}(\mathrm{~A} \mid \mathrm{F} \cap \mathrm{L})=0.8$
Event M: Applicant is male $\left(\mathbf{X}_{1}=\right.$ male $) \quad \operatorname{Pr}(\mathrm{M})=0.6 \quad \operatorname{Pr}(\mathrm{~A} \mid \mathrm{M})=0.55 \quad \operatorname{Pr}(\mathrm{~A} \mid \mathrm{F} \cap \mathrm{B})=0.2$
Event L: Applicant applies to Law $\left(\mathbf{X}_{2}=\mathrm{Law}\right) \quad \operatorname{Pr}(\mathrm{A} \mid \mathrm{L})=0.76 \quad \operatorname{Pr}(\mathrm{~A} \mid \mathrm{M} \cap \mathrm{L})=0.75$
Event B: Applicant applies to Business $\left(\mathbf{X}_{2}=\right.$ Business $) \quad \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=0.175 \quad \operatorname{Pr}(\mathrm{~A} \mid \mathrm{M} \cap \mathrm{B})=0.15$

Table 9.8.10: Trivariate model for $\mathbf{Y}, \mathbf{X}_{1}$ and \mathbf{X}_{2}

		F.		$.{ }_{\mathrm{B}} .$	
A	0.16	0.04	0.3	0.03	0.53
$\overline{\text { A }}$	0.80 .04	0.20 .16	0.750 .1	0.150 .17	0.47
	0.2	0.2	0.4	0.2	

Table 9.8.11: Bivariate model for $¥$ and \mathbf{X}_{1}

Bivariate moder			
	F	M	
A	0.2	0.33	0.53
$\overline{\mathrm{~A}}$	0.5	0.2	0.55
	0.27	0.47	
	0.4	0.	

We see that Table 9.8 .1 on page 9.58 involves parts of the two multivariate distributions in Tables 9.8.10 and 9.8.11; it is therefore unsurprising if comparisons among these parts, taken in isolation, yield seeming 'paradoxes'. It can be confusing that Table 9.8.1 and those like it do not show explicitly percentages involving complements [like applicants 'not admitted' (event $\overline{\mathrm{A}})$].

Table 9.8.12:
Bivariate model for $¥$ and \mathbf{X}_{2}

Table 9.8.13: Bivariate model for \mathbf{X}_{1} and \mathbf{X}_{2}

	L	B	
F	0.2	0.2	0.4
M	0.4	0.2	0.6
	0.6	0.4	

7. A Plan for an Investigation to Answer the Question of Sex Discrimination

Comparing proportions of women and men admitted among applicants to graduate studies (as in the context of Table 9.8.1 on page 9.58) is not an adequate Plan to answer the Question of possible sex discrimination, for two reasons:

- there is the possibility of Simpson's Paradox and no clear way to define the level of subdivision at which to make comparisons;
- applicants' qualifications are not taken into account.

Both matters are addressed by a Plan which involves taking pairs of applicants, one female and one male, with the same qualifications for admission and then comparing the proportions of women and men who are admitted across a number of such

Figure 9.8. OBSERVATIONAL PLANS: Simpson's Paradox (continued 2)

pairs that is adequate, in the investigation context, to manage all relevant categories of error.

* For comparison error, pairing manages the group sizes (and hence, the weights in the attribute calculations) in a way that precludes Simpson's Paradox; matching manages equality of qualifications for the groups of women and men being compared.
However, as with any observational Plan (that gathers data from a population in its natural state), there is still the limitation on Answer(s) imposed by comparison error due to other (unrecognized) lurking variates.
* When investigating the much-discussed issue of comparable worth (whether women are paid the same as men for the same work), relevant explanatory variates to manage include qualifications, experience and hours worked per month or per year.
The schema at the right is a pictorial reminder of the lurking variate of group (population or sample) sizes when developing an observational Plan to answer a Question with a causative aspect, which (usually) involves comparing attribute values (calculated or obtained from a scatter diagram in the Analysis stage of the FDEAC cycle) for broad subpopulations (like women and men). By contrast, when answering a Question with a descriptive aspect (e.g., a Question about both sexes), differing attribute values at different levels of subdivision are more obvious and so lurking variate(s) are usually less troublesome. These matters are illustrated, using information from Table 9.8.5
 (near the top of page 9.59), in Table 9.8.14 at the right below.

NOTES: 1. Simpson's Paradox is so surprising, particularly when first encountered, that it is easy to lose sight of key statistical issues.

- The proportions are correctly calculated Simpson's Paradox is not the result of mistakes in arithmetic.
- Simpson's Paradox is not confined to attributes that are proportions (as discussed in Section 3 on page 9.59).

Table 9.8.14: (Based on Table 9.8.5 data) Group		Women		$\underset{\substack{\text { Group } \\ \text { Size }}}{\text { Me }}$	\%	Both s Group size	
Individuals		1	--	1	--	1	
Smaller	Law: Masters	60	85	60	90	120	88
subgroups	Doctoral	60	55	300	60	360	59
	Bus.: Masters	60	45	20	50	80	46
	Docroral	60	15	100	20	160	18
Larger	Law	120	70	360	65	480	66
subgroups	Business	120	30	120	25	240	27
Population		240	50	480	55	720	53

- Simpson's Paradox occurs when subdividing (or combining) data for categories and only in some circumstances. Lessons for data-based investigating are:
* recognize and manage the (surprising) property of proportions discussed in Section 4 on pages 9.59 and 9.60;
* manage relevant non-focal explanatory variates - this includes the possibility of sometimes being able to identify an appropriate level of subdivision at which to make comparisons (as in Table 9.2.6 on page 9.15 of Figure 9.2).
There is then no 'paradox' for a clear Question investigated with an adequate Plan, suggesting that the name Simpson's Paradox can be misleading;

2. Four more illustrations of Simpson's Paradox are:

Table 9.8.15: The context is the same as that of Table 9.8 .1 on page 9.58 but there are now six programs ($\mathrm{A}, \ldots, \mathrm{F}$) instead of two schools (Law, Business).
Like Table 9.8.1, there is a lower percentage of women admitted overall but a higher percentage for each of the six programs.
Table 9.8.16: Baseball batting averages the batter with the lower average for the whole season has a higher average in both half seasons. Recalling Section 7 and Note 1 above, it is of interest to develop a Plan to answer the Question of which batter to take if only one can be chosen.

Table 9.8.17: Death rates (per 1,000 lives) in two regions of the U.S. for smokers and non-smokers.
[These data were gathered by a life insurance company which was issuing whole life policies countrywide on a non-

Table 9.8.15: PROGRAMWOMEN............		MEN		
	Number of	ADMISSI				
	Applicants	Number	\%	Applicants	Number	\%
Archeology	108	89	82	825	512	62
Biology	25	17	68	560	353	63
Chemistry	593	219	37	325	114	35
Drama	375	131	35	417	138	33
English	393	106	27	191	48	25
French	341	27	8	373	22	6
All	1,825	589	32	2,691	1,187	44

Table 9.8.16:BATTER \#1.....			BATTER \#2......		
Time Period	Hits	At bats	Average	Hits	At bats	Average	
First half	15	70	$\mathbf{. 2 1 4}$	25	130	$\mathbf{. 1 9 2}$	
Second half	15	50	$\mathbf{. 3 0 0}$	80	280	$\mathbf{. 2 8 6}$	
Whole season	30	120	$\mathbf{. 2 5 0}$	105	410	$\mathbf{. 2 5 6}$	

Table 9.8.17:SMOKERS.....			NON-SMOKERS		
LOCATION	Deaths	Policies	Rate	Deaths	Policies	Rate
Nashville	6	900	$\mathbf{6 . 6 7}$	7	1,100	$\mathbf{6 . 3 6}$
Los Angeles	5	1,100	$\mathbf{4 . 5 5}$	3	700	$\mathbf{4 . 2 9}$
Either	11	2,000	$\mathbf{5 . 5 0}$	10	1,800	$\mathbf{5 . 5 6}$

REFERENCE: Dolins, J.G.: Actuaries ...be careful! The Actuary, March, 1989, page 11.

NOTES: 2. Table 9.8.18: Effect of jury challenges (cont.)
on conviction rates in trials in the U.K.
[In early 1987, an article by Bernard Levin in The Times raised the question of whether jury challenges assist those who are guilty in avoiding conviction. Mr. Levin concluded this was not the case, on the Mr. Levin concluded this was not the case, on the trials with no challenges, lower than the conviction rate of 60% in trials with challenges. However, this answer does not necessarily follow from these conviction rates; in the hypothetical data in Table 9.8.18 (at the right above), the conviction rate for guilty defendents is substantially higher in trials with no challenges. Unfortunately, this counter-argument is speculative because the number of defendents actually guilty and innocent, and the rates of challenge and of conviction in both these groups, are not readily accessible. Nevertheless, an article in a major newspaper which uses flawed reasoning from data to answer a Question on a substantive issue is a serious matter.]
REFERENCE: Hill, I.D.: Rebutting the media. The Royal Statistical Society NEWS \& NOTES 16(\#1), September, 1989, page 4.
There is discussion and further illustrations of Simpson's Paradox in Wagner, C.H.: Simpson's Paradox in Real Life. American Statistician 36 (\#1, February): 46-48 (1982).Referring to the data in Table 9.8 .17 overleaf at the lower right of page 9.61 , suggest a plausible explanation for the lower death rates for both smokers and non-smokers whose files were kept in Los Angeles, compared with those kept in Nashville.

2 Referring to the matters raised by the numbers in Table 9.8 .18 at the right above, outline how you would try to reduce the uncertainties which are present and so obtain an Answer with fewer limitations about the effect(s) of jury challenges on conviction rates for the guilty in the U.K.

- What effect(s) of jury challenges on the conviction of innocent defendents is indicated by the numbers in Table 9.8.18? Explain briefly.

8. Appendix: Simpson's Paradox and Interaction

For extending the discussion of Simpson's Paradox on the first six sides (pages 9.57 to 9.62) of this Figure 9.8 , for convenience in this Appendix (including labelling the three diagrams to the right of Tables 9.8 .19 to 9.8 .21 below and on the facing page 9.63) we use the notation defined near the middle of page 9.58:
\mathbf{X}_{1} is an applicant's sex (female, male), $\quad \mathbf{X}_{2}$ is the school applied to (Law, Business), $\quad \mathbf{X}_{3}$ is the level of study [Masters, Doctoral], \mathbf{Y} is the response to an applicant (admitted, not admitted) or time for degree completion (minimum, longer),
$\overline{\mathbf{Y}}$ [the average of (\mathbf{Y})] is the percentage of applicants admitted or who complete their degree in the minimum time.
The diagrams illustrating Simpson's Paradox to the right of Tables 9.8.1 to 9.8 .6 (on pages 9.58 and 9.59) are reminiscent of a diagram showing interaction (e.g., in Note 28 on page 9.21 in Figure 9.2); however, there are differences:
○ the Simpson's Paradox diagrams have an additional (dashed) line for the overall $\mathbf{X}_{1}-\overline{\mathbf{Y}}$ relationship;

- the instances of Simpson's Paradox in Tables 9.8 .1 to 9.8 .6 have only parallel (solid) lines for the $\mathbf{X}_{1}-\overline{\mathbf{Y}}$ relationships for different values of \mathbf{X}_{2} - that is, there is no interaction of \mathbf{X}_{1} and \mathbf{X}_{2} in their effects on \mathbf{Y}.
This restriction is removed in (another) reworking of Table 9.8.1 and its diagram in Table 9.8.19 below, where there is interaction of \mathbf{X}_{1} and \mathbf{X}_{2} in their effects on \mathbf{Y} because the two solid lines in the diagram to the right of the Table are not parallel.

Table 9.8.19:WOMEN...........		MEN.............		BOTH SEXES...... Number of ADMISSIONS		
	Number of	ADMISS		Number of	ADMISS				
SCHOOL	Applicants	Number	\%	Applicants	Number	\%	Applicants	Number	\%
Law	120	96	80	480	360	75	600	456	76
Business	120	36	30	120	12	10	240	48	20
Both schools	240	132	55	600	372	62			

Thus, interaction may be involved in Simpson's Paradox but is not required for it to occur.

Earlier discussion at the upper left of page 9.59 and on page 9.60 in Section 6, and in this Appendix, reminds us that Simpson's Paradox and interaction both involve (estimated) values of conditional probabilities for \mathbf{Y}, BUT:

- Simpson's Paradox involves comparing these probabilities conditioned on two (or three) of the Xs with probabilities conditioned on one fewer (one or two) Xs; WHEREAS:
○ interaction is absent or present depending on the values of probabilities with the same conditioning on the $\mathbf{X s}$ - these values determine whether the corresponding lines are or are not parallel.

NOTES: 3. Illustration of Simpson's Paradox from comparing across Tables 9.8.1 to 9.8.6 can overshadow comparisons down such tables. For example, in Table 9.8 .1 (reworked as Table 9.8 .9 on page 9.60), the six bold percentages for \mathbf{X}_{2} (80 and 20,75 and $15,76.6$ and 17.5) address a Question different from possible sex discrimination:
(continued)

Figure 9.8. OBSERVATIONAL PLANS: Simpson's Paradox (continued 3)

NOTES: 3. - How do the admission standards of the Law and Business schools compare?

(cont.) The (hypothetical) data in Table 9.8.9 on page 9.60 (and Tables 9.8 .19 to 9.8 .21 on the facing page 9.62 and below on this page) indicate an appreciably higher admission standard for Business than for Law, unless the abilities of the two applicant pools are remarkably different.
4. A second reworking of Table 9.8.1 and its diagram is given below in Table 9.8.20; as in Table 9.8.19, there is interaction of \mathbf{X}_{1} and \mathbf{X}_{2} in their effects on \mathbf{Y} but, for both schools combined, there is no sex difference in proportions, due to cancellation of effects in opposite directions for the schools individually.

Table 9.8.20: SCHOOLWOMEN...........		MEN.............			\qquad BOTH SEXES...... Number of ADMISSIONS		
	Number of	ADMISS	NS	Number of	ADMISS	ONS			
	Applicants	Number	\%	Applicants	Number	\%	Applicants	Number	\%
Law	120	96	80	180	153	85	300	249	83
Business	120	24	20	180	27	15	300	51	17
Both schools	240	120	50	360	180	50			

Table 9.8.21 below and its diagram show, like Table 9.8.20, no sex difference for both schools combined but this is now a consequence of the individual schools also showing this same behaviour - there is no interaction.

Table 9.8.21:WOMEN...........		MEN.............		BOTH SEXES......		
	Number of	ADMISS		Number of	ADMIS		Number of	ADMISSI	
SCHOOL	Applicants	Number	\%	Applicants	Number	\%	Applicants	Number	\%
Law	120	96	80	80	64	80	200	160	80
Business	120	24	20	80	16	20	200	40	20
Both schools	240	120	50	160	80	50			

5. Across Tables 9.8.1 to 9.8.6 on pages 9.58 and 9.59 and Tables 9.8.19 to 9.8.21 on
 the facing page 9.62 and above, different weights in the proportion calculations (like those in Table 9.8.8 on page 9.60) yield a noteworthy variety in the percentages for women compared to those for men. This is summarized in Table 9.8.22 at the right below; three categories are distinguished.

- In four tables, there is an $\mathbf{X}_{1}-\overline{\mathbf{Y}}$ relationship, there is no interaction of \mathbf{X}_{1} and \mathbf{X}_{2} in their effects on \mathbf{Y} and, in two of the tables, the $\mathbf{X}_{1}-\overline{\mathbf{Y}}$ relationship is unexceptional in light of the effect of subdivision by \mathbf{X}_{2}; by contrast, in Table 9.8.3 and Table 9.8.6 between the first and second levels of subdivision by \mathbf{X}_{2}, the exceptional behaviour is the $\mathbf{X}_{1}-\overline{\mathbf{Y}}$ relationship disappearing when the data are subdivided by \mathbf{X}_{2}.
- Notation like $(1,3)$ [or $(1,2)]$ on Table 9.8 .5 (or Table 9.8.6) in Table 9.8.22 refers to the first and third (or first and second) levels of subdivision by \mathbf{X}_{2}.
\bigcirc In four tables, there is no $\mathbf{X}_{1}-\overline{\mathbf{Y}}$ relationship but three of these are 'false negative' Answers - when the data are subdivided by \mathbf{X}_{2}, there is an $\mathbf{X}_{1}-\overline{\mathbf{Y}}$ relationship and so they are designated 'exceptional' in the fourth column.
- In Table 9.8.20, interaction is the reason for the exceptional behaviour but interaction is absent in the other three tables.
\circ In five tables, there is (again) an $\mathbf{X}_{1}-\overline{\mathbf{Y}}$ relationship, inter-

action is absent or incidental, and each is a case of the exceptional behaviour known as Simpson's Paradox.
Apart from understanding the properties of proportions and weighted averages and using an adequate Plan (discussed in Sections 4, 5 and 7 and Note 1 on pages 9.59 to 9.61), the summary in Table 9.8.22 above reminds us that:
\odot Simpson's Paradox is merely the most exceptional case (change of direction of an $\mathbf{X}_{1}-\overline{\mathbf{Y}}$ relationship) in a context (involving discrete variates) that can give rise to less exceptional or even unexceptional behaviour;
\odot interaction is rarely the reason for the exceptional behaviour (only in Table 9.8.20 above).

6. In meeting the obligation to deal with relationships in an introductory statistics course, the lengthy discussion (e.g., in Figure 9.2, Sections 1 to 15 and Appendix 1 on pages 9.5 to 9.29 and Figures 9.8 to 9.13 on pages 9.57 to 9.80) shows the (unexpected) complexities, for only three variates, arising from issues of causation, confounding, interaction and Simpson's Paradox. The schema at the right reminds us there are common themes and differences among these four matters - see also Appendix 2 on pages 9.67 and 9.68 in the following Figure 9.9.

(continued overleaf)

NOTES: 7. As summarized on the left of the schema at the right, a relationship in statistics is often considered in terms of one or more of association, confounding, causation, interaction and Simpson's Paradox.
In probability (on the right of the schema), a relationship is considered in terms of dependence, which comes in great variety and is often difficult to mathematize; as a consequence, introductory courses emphasize independence, as it applies to events, random variables and processes. Even the first two of these three involve an appreciable set of ideas and may be all a course has time to discuss. Connection between statistical and probabilistic considerations of a relationship arises in the probability models statistics uses in the Analysis stage of the FDEAC cycle.

- Emphasis on independence in introductory courses can obscure the fact that independence is a mathematical idealization. In the real world, dependence is the norm - it may be that the behaviour of every particle in the universe depends on (i.e., is affected by) every other particle, no matter how minute the degree of dependence.
- This may be why lurking variates are usually so numerous when answering Questions with a causative aspect.
The schema on page 9.5 in Figure 9.2, which provides a framework for our discussion of data-based investigating of statistical relationships, is shown again at the right; unsurprisingly, it is a more detailed version of the left-hand ('statistics') side of the schema above it.

8. The (equivalent) diagrams at the right show the effects of two (binary) focal variates \mathbf{X}_{1} and \mathbf{X}_{2} on (the average of) \mathbf{Y}; one focal variate is on the horizontal axis of a diagram, the other distinguishes the two lines by its level.

- The nonparallel lines show there is an $\mathbf{X}_{1}-\mathbf{X}_{2}$ interaction.
- The left-hand diagram shows that \mathbf{X}_{1} and \mathbf{Y} are conditionally independent when \mathbf{X}_{2} is Lo (the relevant line has zero slope) but not when \mathbf{X}_{2} is Hi.

- The right-hand diagram shows there is no conditional independence of \mathbf{X}_{2} and \mathbf{Y} - neither line has zero slope [see also diagram (4) on the lower half of page 9.75 and its discussion below this diagram in Figure 9.12]. Thus, equivalences between statistical and probabilistic views of relationships are not always straight forward.

9. Table 9.8 .7 on page 9.59 illustrates, for averages of a continuous response variate, a phenomenon analogous to Simpson's Paradox. A similar 'paradox' occurs for an organization of (say) 10 employees who each work for the organization for (say) 30 years or until age 55, whichever comes first. In constant dollars (i.e., with the effect of inflation removed), each employee is hired at a salary determined by their experience, taken as proportional to their age which is at least 25 ; each receives the same salary increase each year. At start-up, the organization hires people with a variety of levels of experience/age but a steady
 state is then maintained by hiring a new employee aged 25 to replace a person leaving the organization at age 55 . This situation is portrayed graphically at the right above for the first 60 years of the organization's existence - each stepped line represents one employee's salary over time. Despite every employee's increasing salary, the organization's employee experience/age structure (a 'lurking variate') and, hence, the average salary for the organization, remain nearly constant over time.

Although the organization described is an idealization, it is reasonable model for a college or university with a constant faculty complement. The 'paradox' could result in a specious claim, at the time of salary negotiations, that faculty salaries are being unfairly constrained because the average salary is not increasing over time.

