
Un ive rsity of Wat e r loo STAT 220 – W. H. Che rry

#8.49

Figure 8.11. UNSTRATIFIED POPULATIONS: Estimating an Ave rage or a Tot al
One- Stage EPSWOR of Indivi du a l Elements

1. Backg round Information

The mat hem ati cs on pag es 8.52 and 8.53 in Section 5 of this Fig ure 8.11 is a cent repie c e of the theor y of sur vey sampling (‘d e-
sign -base d’ inferenc e – recall Sectio n 7 in Fig ure 6.1); we can appre ciat e it more ful ly wit h the fol low ing backg rou nd infor mation.

* In int roducto ry probability, we use upper ca s e it ali c le tters (us u ally near the end of the alphabet, like X, Y and Z) fo r ran-
dom variable s and the cor responding lo wer ca s es le tters (e.g., x, y and z) for thei r value s. We now fur the r distinguis h up-
per-case bold le tters for popu lation qu antit ies; for exa mple, Y−i is
the respons e variat e fo r the ith elem e n t in the respondent popula t ion.

−− The lin e throug h popula t ion symbols is make dis tinguis hable it ali c
and bold up per-case handwrit ten letters and we sa y, for ins tanc e,‘Yi

cross’ for the respons e variat e of the ith re spondent popula t ion ele ment.

* In int roducto ry statis ti cs cou rses, the number of ele ments in the pop -
ulation (also called the popula t ion size) is sel d o m consid ere d ex pli cit ly;
in this Fig ure 8.11, this attribute is den oted −N (‘N cross’) .
−− Including the popula t ion size in sur vey sampling theor y is sometimes

called dealing wit h a finit e popula t ion, but this is unhelp ful ter min ology
(perhaps car r ying ove r fr om mat hem ati cs whe re infin ity often arises) . A popula t ion in statis ti cs is a real-world entity
and so, by its nature, has a finite number of ele ments – see als o No te 2 on pag e 8. 53.

Ta ble 8.11.1: SYMBOL DESCR IPTION
Random Respondent
va riabl e popul ation

Y y Y− Re spons e variat e
– j i Sum mation index
– x X− Focal exp lanato ry variat e
– z Z− Explanato ry variat e
– n −N Number of units/elem e n t s
Y
−

y− Y
−− Av erage (sum ÷ number)

R r −R Re sidu al [or Ratio]
S s S− St andard dev iation

Va lue

* When inv estig a t i ng a Que s tion wit h a descript ive aspect [on e whos e Answe r will inv olve primarily value s fo r popula t ion/pro-
cess att rib u t es (past, pres ent, future)] , a useful way to think of (or to ‘model’) the respons e
variat e of a respondent popula t ion ele ment is as shown in equ ation (8.11 . 1) at the rig ht;

Y−i = Y
−− +−Ri -----(8.11 . 1)

this model is useful becau se it expre sses a quantity we can obs erve (Y−i) in ter ms of an att rib u t e of interest (Y
−−, the popula -

tion aver age) and a quantity (−Ri, the popu lation res idu al fo r elem e n t i) whos e behaviour is amenable to probability model ling
which , ul t imat ely, enables us to quantify impre cisio n due to sample error and (in some con tex ts) mea s urement error.

−− The re sponse mode l fo r a non-comparative Pla n – the type of Pla n us u ally appro priat e to answe r a Que s tion wit h a des -
cr iptiv e aspect – inv olv ing equ iprobable (si mple random) selecting (EPS) of n unit s fr om an unst r atifie d popula t ion is:

Yj = µ +Rj, j =1, 2, ....,n, Rj ∼ N(0, σ), independent, EPS, -----(8.11 .2)

where Yj is a random variable whose dis tributio n repre sents the pos sib le value s of the measure d re spons e variat e
fo r the jth unit in the sample of n units selected equ iprobably from the respondent popula t ion,
if the selecting and measuring processes were to be repeated ove r and ove r;

Rj is a random variable (called the resi dua l) whos e dist rib u tio n repre sents the pos sib le di ffere nces,
fr om the structur al component of the model , of the measure d value of the respons e variat e
fo r the jth unit in the sample of n units selected equ iprobably from the respondent popula t ion,
if the selecting and measuring processes were to be repeated ove r and ove r.

The symbol µ in the model (8.11 .2), and two rela ted entit ies µ̂ and µ∼, hav e the fol low ing meaning s:
µ: a parameter repre senting the aver age (Y

−−) of the measure d re spons e variat e of the ele ments of the respondent popula t ion.
µ̂: the lea st squ are s es tim ate of µ – a number whos e value is der ive d fr om an appro priat e set of data;

fo r the model (8.11 .2), µ̂ = y−, reflecting the intuitive idea that, unde r EPS, the measure d sample ave r age estim ates
the mea s ure d re spondent popula t ion ave r age;

µ∼: the lea st squ are s es tim ator of µ – a ra n dom variable whos e dist rib u tio n repre sents the pos sib le value s of the estim ate
µ̂ if the selecting, mea s uring and estim ating processes were to be repeated ove r and ove r;

he re, µ∼ =Y
−
, the random variable repre senting the sample ave r age unde r EPS.

* We met σ (o n page 5.6 in Fig ure 5.1), and two rela ted entit ies σ̂ and σ∼, in the con tex t of respons e models like (8.11 .2) abov e;
σ : the (probabilis ti c) sta n dar d devi ation of the nor mal model for the dis tributio n of the residu al, is a model parameter

repre senting the (data) sta n dar d devi ation (S−) of the measure d re spons e variat e of the respondent popula t ion ele ments;
this (data) standard dev iation (and, henc e, σ) qu ant ifies the variation of the measure d re spons e variat e ov er the ele ments
of the respondent popula t ion – as this variation increa s es, so does S− (a n d, henc e, so does σ).

two oth er charact e ris ti cs of variation are its lo cation and its shape – thes e are, respectiv ely, 0 and nor mal for (8.11 .2);

σ̂ : the lea st squ are s es tim ate of σ – a number whos e value is der ive d fr om an appro priat e set of data;

σ∼: the lea st squ are s es tim ator of σ – a ra n dom variable whos e dist rib u tio n repre sents the pos sib le value s of the estim ate
σ̂ if the selecting, mea s uring and estim ating processes were to be repeated ove r and ove r.

How σ is es tim ated, reflected by differ ing expre ssi ons for σ̂, depends on the
sampling protocol in the Pla n fo r the inv estig a t ion and the respons e model
ap pro priat e fo r this Pla n; for the model (8.11 .2), σ̂ is giv en by equ ation (8.11 .3).

* In this Figure 8.11, we meet ove r leaf (on pag e 8. 50) fo ur qu antit ies whi c h are called ‘sta n dar d devi ation’; the first two and an

σ̂ = 1
n −1

Σ
j =1

n
(yj −y)

2
-----(8.11 .3)

√
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associat e d qu antity S co rre spond to the three σ s giv en ove r leaf on pag e 8.49 but, unli ke σ̂, s is called a standard dev iation.

−− S−: the respondent popu lation (d ata) standard dev iation – it is defi ned in Section 4 in Ta ble 8.11. 5 on pag e 8. 52 and is
a number which quantifie s the variation ove r the respondent popula t ion of the respons e variat e Y− abou t it s av erage Y

−−;
li ke mos t popula t ion attributes
except −N, usually the value of
S− is unknow n;

−− s: the sa m p le (d ata) standard dev ia-
tion – it is defi ned in Table 8.11. 5
on pag e 8. 52 and is a number which quantifie s the variation ove r the sample of the respons e y abou t it s av erage y−;
the expre ssi on for s is (8.11 .3) at the bottom rig ht ove r leaf on pag e 8.49, the sa m e as that for σ̂ in the model (8.11 .2).

un d er EPS, s is use d to estim ate S− – that is, to provi de a value we can use for S−;
this Fig ure 8.11 is con cer ned with only on e sampling protocol – EPS from an uns tratifie d popula t ion to estim ate an
av erage or tot al – and so the re is only on e ex pre ssi on for the estim ate (s) of S−;

Ta ble 8.11.2: SU MMARY OF STA NDA RD DEVI ATIONS
Re sponse Models Sur vey Sampl ing

σ Model parameter S− Re spondent popula t ion standard dev iation – an att rib u t e
σ̂ Estimate of σ s Sa mple standard dev iation – an estim ate of S−
σ∼ Estimato r of σ S Estimato r co rre sponding to s – a random variable

−− S: the es tim ator co rre sponding to s – unde r EPS, it is a ra n dom variable, of whi c h s is one (re a lized) va lue;

++ s.d.(Y
−): the standard dev iation of the sample ave r age – unde r EPS, it provi des a theoretical basis for quantifyi ng unc e r-

tain ty due to sample error in estim ates of respondent popula t ion attributes like an ave r age or tot al;

++ s.d.ˆ (Y
−): the es tim ated st andard dev iation of the sample ave r age whi c h, unde r EPS, is the basis for calcula t i ng va lues

fo r the end poi nts of confid e n ce int e rvals for respondent popula t ion attributes like an ave r age or tot al.

The expre ssi ons for s.d.(Y
−) and s.d.ˆ (Y

−) differ in that S− is replaced by its estim ate s – see equ ation (8.11 .9) and equ ation
(8.11 . 17) on pag e 8. 53. [In a non-probability sampling con tex t conc e rne d only wit h data, s woul d us u ally be den oted s.]

* We capit ali ze on hav ing two wo r ds – ave r age and mean – in Englis h to make a useful dis tin ction for a mea s ure of lo cation:

−− the aver age is a mea s ure of location for a set of data;
−− the mean is a mea s ure of location for (the dis tributio n of) a ra n dom variable.

Howeve r, for the mag n itude of variation there is only on e ter m – standard dev iation – for the com monly-use d mea s ure, and
this can be a sou rce of conf usi on. Ideally, we wou ld like:

−− the (n ew wor d) as a mea s ure of variation for a set of data,
−− the sta n dar d devi ation as a mea s ure of variation for a ra n dom variable,
but the use of ‘st andard dev iation,’ regardle ss of con tex t, is too wel l-est ablis hed in statis ti cs for this ideal to be att ain able. A
co mpromise, to assis t begi nning students, is to dis tinguis h a data st andard dev iation from a pr obabi lis tic st andard dev iation
– see Table 8.11. 3 at the rig ht. Not e
that we us e on e sy mbol (e.g., S−, s)
fo r a dat a st andard dev iation and the
abbrev iation s.d. fo r a probabilis ti c
st andard dev iation.

Ta ble 8.11.3
Re spondent popula t ion standard dev iation S−

data st andard dev iation
Sa mple standard dev iation s

St andard dev iation of the sample ave r age s.d.(Y
−)

pr obabi lis tic st andard dev iation
Estimated standard dev iation of the sample ave r age s.d.ˆ (Y

−)

Figure 8.1 2 of thes e Ma ter ials hel ps us appre ciat e the dis tin ction bet ween the sample standard dev iation (s; repre sent e d vi s-
ually by the 16 ‘hooke d’ hor izont al li nes in each diagr am) and the standard dev iation of the sample ave r age [s.d.(Y

−); as
estim ated from the 16 sample ave r age s and denot e d sy near the lowe r right-hand cor ner of each diagr am].

* The standard dev iation of Y
−

is sometimes refer red to as the sta n dar d er ror of Y
−

(e.g., Bar nett, pp. 26, 45) but this ter m ha s
been avo ide d in thes e Course Mat e ria ls becaus e it is use d by different authors for both s.d .(Y

−) and s.d.ˆ (Y
−) (s ee als o Cochran,

page s 24, 25-27 and 53), pot entia l ly conf usi ng a quantity and its estim ate. [Referenc es are giv en on pag e 8. 56 in Section 7.]

* The fol low ing sugge s tion s may hel p av oid conf usi on arisi ng fr om (carele ss use of) the ter min ology discus s ed above.

• when you encou nter the word mean, be sure you unde rst and whet her it refers to:
−− an ave r age of dat a (a n d whet her the dat a are from a sa m p le or a ce nsus), OR

−− a random variable [and whether it is an indivi d ual random variable or a (li near) combin ation (e.g., an ave r age, sum or
differenc e)] , OR

−− a parameter of a respons e model or probability model.

• when you encou nter the ter m sta n dar d devi ation or sta n dar d er ror, be sure you unde rst and whet her it refers to:
−− the variation of dat a (a n d whet her the dat a are from a sa m p le or a ce nsus), OR

−− a random variable [and whether it is an indivi d ual random variable or a (li near) combin ation (e.g., an ave r age, sum or
differenc e)] , OR

−− a parameter of a respons e model or probability model.

• when you encou nter the word inaccurac y, rem ember that it is a  real-world quantity and is defi ned only in the con tex t of
re pet it i on of a pr ocess – like selecting or mea s uring.

−− Esti mating bia s (a model quantity) di ffers fr om inaccur acy in that it decrea s es with increa sing sample size and so may
not be of much practical con cer n in actual sample sur veys.

[There is fur the r discus sio n of bias in Appendix 3 and Appendix 4 on pag es 8.57 and 8.58.]
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Figure 8.11. UNSTRATIFIED POPULATIONS: Estimating an Ave rage or a Tot al (c o ntinue d 1)
One- Stage EPSWOR of Indivi du a l Elements

2. Equ iprob abl e (Simp le ran dom) Selecting

The definition of equiprobable selecting (EPS) is: If a sample of n units is obtaine d fr om a respondent popula t ion of −N
un its in such a way that eve ry sa m p le of size n has an eq ual probability of bei ng sele cted, the selecting process is called equi-
prob abl e sele c ting. [Elsewhere, you may see it called simp le ran dom selecting (SRS).]

In practic e, we often think of EPS as bei ng implem ented by selecting each unit of the sample equ iprobably (‘a t random’) and
withou t replacement (‘EPSWO R’) from the (un stratifie d) re spondent popula t ion. [The ele ment-unit dis tin ction is dis cus s ed in
Appendix1  at the bottom of pag e 8. 56 and the top of pag e 8. 57.]

Be cau se we com monly think of EPS in ter ms of how we select the unit s, we may ove r look the fact that the defin ition is in
ter ms of sa m p le probabilit ies. In par ticular, we need to recog n ize that, while the defin ition implie s that each unit ha s the same
in clu sio n probability of n/−N, the re are selecting processes wit h equal unit inclu sio n probabilit ies that are not EPS. An illus -
tration is giv en at the rig ht bel ow; for this respondent popula t ion of −N = 4  units, six samples of size n = 2  can be obtaine d by
EPS but only two su ch samples are obtain ed by system atic sele cting; howeve r, provi ded the starting poi nt of the sys tem ati c
sele cting process is chosen equ iprobably, any unit has an inclu sio n proba-
bility of ½  unde r ei ther proces s.

An othe r way of mak ing the same poi nt is to say that, unde r syst emati c
sele cting, two of the six pos sib le samples of size 2 hav e probability ½  and
fo ur hav e zero probability.

−N = 4 Po p u lat ion units

1, 2, 3, 4;

the samples of size 2 are:
EPS: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4);
syst emati c sele cting: (1, 3), (2, 4).

The empha sis in statis ti cs on EPS (or its equ ivalent) is becau se it is the basis of theor y which provi des:

• unbi ase d estim ating of a popula t ion ave r age (an att rib u t e co mmonly of int e rest);

• a conne ction bet ween sampling impre cisio n and sa m p le size (o r leve l of re pli cating);

• an expre ssi on for a confidence inter val fo r a popula t ion ave r age – such an int e rval, unde r suit able model ling assump tion s,
qu ant ifies sampling and measuring impre cisio n (a s demons trated in Fig ure 6.1 of thes e STAT 220 Course Mat e ria ls).

[Thes e thre e prov isi ons of statis ti c a l theory refer to beh aviour unde r re pet it i on – Answe r(s) obtaine d in a particular inve s ti-
gation re mai n un cer tain, as reflected by their lim itation s.]

EPS does not, of its elf, re d uce sample error or sampling impre cisio n, as implie d in (wrong) st atements such as:

EPS gen erates a re prese nta tive sample;
EPS gen erates a sample whi c h prov ides a pro per basis for ge ner alization; !

as wel l as mis repre senting the statis ti c a l benefit s of usi ng EPS, such statements conf use repetit ion (the pr ocess of EPS) with a
co mponent of a particular inve s tig a t ion (the actual sample) . A correc t st atement is:
EPS, in conju nct i on wit h adeq uate rep licating (o r an adeq uate sample size), provi des for quantifyi ng sampling impre cisio n and
so allow s a par ticular inv estig a t ion to obtain an Answe r with accep table limitation due to sample error.

• What con stitutes acce pta b le li mit ation depends on the inv estig a t ion requi rements for its Answe r(s); for ins tanc e, in a pol l to
estim ate one or more pro por tio ns, an accep table limitation may be quantifie d as the pro por tio n(s) estim ated to wit hin 2 per-
cent age poi nts 19 tim e s ou t of 20. [Li mit ation s may als o be impos ed by the reso urces av a ila ble for the inv estig a t i ng].

3. Sample Size and Sample Error under EPS

Example 8.11.1: A respondent popula t ion of −N = 4  units has the fol low ing int ege r Y−-v a lue s fo r it s re spons e variat e:

1, 2, 4, 5  (so that: Y
−− = 3, S− −−∼1.8257);

we exa m ine the beh aviour of sa m p le er ror un d er EPS as the sample size increa s es fr om 1 to 2  to 3 to 4.

The number at the bottom of the fou r er ror colum ns of Table s 8.11 .4 bel ow is the aver age mag nitude of
the sample error for that sample size.

Ta ble 8.11.4a
EPS of n =1 unit

Samp le y− Er ror

(1) 1 −2
(2) 2 −1
(4) 4 1
(5) 5 2

Ta ble 8.11.4b
EPS of n = 2  units

Samp le y− Er ror

(1, 2) 1½ −1½
(1, 4) 2½ −½
(1, 5) 3 0
(2, 4) 3 0
(2, 5) 3½ ½
(4, 5) 4½ 1½

Ta ble 8.11.4c
EPS of n = 3  units

Samp le y− Er ror

(1, 2, 4) 21⁄3 −2⁄3
(1, 2, 5) 22⁄3 −1⁄3
(1, 4, 5) 31⁄3 1⁄3
(2, 4, 5) 32⁄3 2⁄3

Ta ble 8.11.4d
EPS of n = 4  units

Samp le y− Er ror

(1, 2, 4, 5) 3 0

1½

2⁄3

½

0

Example 8.11.1 rem inds us of gen eral res ult s un d er EPS that fol low from the theor y in Section 5 on pag es 8.52 and 8.53.

• as the sample size increa s es, the ave r age mag n itude (and, henc e, the standard dev iation) of sample error decrea s es – this is
what we mean when we say that inc rea sing sample size decrea s es sampling impre c isi on un d er EPS;
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• taking the sign of sample error into accou nt, the ave r age error is zero fo r each n – this is what we mean by sayi ng that, unde r
EPS, (the random variable repre senting) the sample ave r age is an unbi ase d estim ato r of the respondent popula t ion ave r age;

−− note that both the selecting met hod and the popula t ion attribute and its estim ato r are inv olved in this statement;

−− an othe r st atement wit h thes e co mponents, whi c h cont r asts wit h the statement above about Y
−
, is that, for the popula t ion

att rib u t e which is the ra tio of the ave r age of two respons e variat es (−R = Y
−−/X

−−), the sample ratio r = y−/x− is bi ase d [E(R) ≠
−R] un d er EPS but unbia s ed if the first sample unit is selected with probability pro por tio nal to its X− value and the rem ain -
de r sele cted equ iprobably (se e Cochran, p.175).

• there is no sa m p le er ror when a ce nsus is taken – when all un its of the respondent popula t ion are selected .

We als o se e that the re can be a sample size(s) for which none of its (−N
n ) samples has zero sample error – no sample has y− =Y

−−.

4. Not ation

Ta ble 8.11. 5 below giv es the not ation use d in the theor y deve loped in this Fig ure 8.11; the last colum n of the table inclu des
the ‘model.’ It is a model only in the sense of bei ng an idea lization or math ematical abstra ction involv ing the equ al probabilit ies
att ain ed unde r EPS; it is not a model in the sense of a symboli c ex pre ssi on like a respons e model [su ch as equ ation (8.11 .2) on
the first sid e (page 8.49) of this Fig ure 8.11].

Ta ble 8.11.5: ....QUA NTITY...... RESPONDENT POPULATION ....... SAMPLE [MODE L].....................

Si ze (elem e n t s/un its) −N n

Re spons e Y−i (i =1, 2, ...., −’N) yj (j =1, 2, ...., n) [r.v.s areYj]

Av erage

To tal

St andard dev iation

Y
−− = 1

−NΣ
i =1

−N

Y−i = 1
−N TY− y− = 1

n Σ
j =1

n
yj [r.v. isY

−]

TY− = −NY− = Σ
i =1

−N

Y−i T
y = −Ny− [r.v. is TY]

S− = 1
−N −1

SSY− ≡ 1
−N −1Σ

i =1

−N

(Y−i −Y− )
2

s = 1
n −1

SSy ≡ 1
n −1

Σ
j =1

n
(yj −y)

2
[r.v. is S]

√ √ √ √

T
y, the es tim ate of the popula t ion tot al TY−, is not the sa m p le tot al, whi c h is ny− = Σ

j =1

n
yj and is usually not a sample att rib u t e of interest.

5. Estimating Y
−−, the Respondent Popul ation Ave rage

We want bot h a value (or poin t es tim ate) for this respondent popula t ion attribute and a mea s ure of the (sampling) un cer-
tain ty of the estim ate, for which we use a confid e n ce int e rval.

To dev elo p the relev a n t theory, we first est ablis h re sul ts for E(Yj), s.d.(Yj) and cov(Yj, Yl
):

(i) E(Yj) =Σ
i =1

−N

Y−i⋅Pr(Yj =Y−i) (the mean of a dis cret e random variable).

We can find Pr(Yj =Y−i) in any of three ways :

(a) becau se eve ry pos sib le ordered sample is equ ally probable unde r equiprobable selecting, any popula t ion unit is equ ally
probable at any posit ion in the sample and, becau se the re are −N un its in the popula t ion, this probability is 1/−N;

(b) ordered cou nting:

(c ) unordered cou nting:

number of ordered samples with Yj = Y−i

total number of samples of size n
= (−N −1)(n−1)

−N(n)
= 1

−N
;

number of unordered samples with Y−i at any position

total number of samples of sze n
. 1

number of sample positions
= [(−N −1

n−1)/(−N
n)].[1/n] = 1

−N
;

-----(8.11 .4)

... E(Yj) =Σ
i =1

−N

Y−i⋅ 1
−N

= 1
−NΣ

i =1

−N

Y−i = Y
−−. -----(8.11 .5)

(ii) E(Yj
2) =Σ

i =1

−N

Y−i
2⋅Pr(Yj =Y−i) = 1

−NΣ
i =1

−N

Y−i
2

[u sing the res ult for Pr(Yj =Y−i) fr om (i)] ;

... s.d.(Yj) = E(Yj
2) − [E(Yj)]

2
= 1

−NΣ
i =1

−N

Y−i
2−Y

−− 2

= 1
−N[Σ

i =1

−N

Y−i
2− −NY

−− 2] = −N −1
−N

S−. -----(8.11 .6)√ √ √ √

(iii) E(Yj Yl ) =Σ
i =1

−N

Σ
k≠i=1

−N

Y−iY−k⋅Pr(Yj =Y−i, Yl =Y−k) (the mean of a produ ct of dis cret e random variable s).

Bu t fr om (i), becau se Pr(A∩ B) = Pr(A).Pr(B|A), Pr(Yj =Y−i, Yl =Y−k) = Pr(Yj =Y−i)⋅Pr(Yl =Y−k|Yj =Y−i) = 1
−N⋅ 1

−N −1
;

... E(YjYl) = 1
−N⋅ 1

−N −1Σ
i =1

−N

Y−i Σ
k≠i=1

−N

Y−k = 1
−N⋅ 1

−N −1Σ
i =1

−N

Y−i(−NY
−− −Y−i) = 1

−N⋅ 1
−N −1

[−NY
−− 2

− Σ
i =1

−N

Y−i
2] (becaus eΣ

i =1

−N

Y−i = −NY−);

... cov(Yj, Yl
) = E(YjYl ) − E(Yj).E(Yl )

= 1
−N(−N −1)

[−N2
Y− 2−Σ

i =1

−N

Y−i
2] − Y

−−⋅Y−− =
−N2 −Y2−Σ

i =1

−N

Y−i
2− −N(−N −1)−Y2

−N(−N −1)
=

−Σ
i =1

−N

Y−i
2 + −N −Y2

−N(−N −1)
= − S−2

−N
. -----(8.11 .7)
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Figure 8.11. UNSTRATIFIED POPULATIONS: Estimating an Ave rage or a Tot al (c o ntinue d 2)
One- Stage EPSWOR of Indivi du a l Elements

He n ce, when we use Y
−

(t he random variable repre senting the sample ave r age) as an estim ato r of Y
−− (the respondent popula t ion

av erage), unde r EPS we hav e:

E(Y
−) = E[1

n Σ
j =1

n

Yj] = 1
n E[Σ

j =1

n

Yj] = 1
n Σ

j =1

n

E(Yj) = 1
n[Y−−+ Y

−−+ ..... +Y
−−] = Y

−−; i.e., Y
−

is an unbi ase d estim a-
to r of Y

−− un d er EPS;

s.d.(Y
−) = s.d.[1

n Σ
j =1

n

Yj] = 1
n s.d.[Σ

j =1

n

Yj]

= 1
n Σ

j =1

n
[s.d.(Yj)]

2 +Σ
j =1

n

Σ
l≠ j =1

n
cov(Yj, Yl

) = 1
n n(−N −1)S−2/−N + n(n −1)[− S−2/−N] = S− 1

n − 1
−N

[the standard dev iation of the sample ave r age unde r EPS (fr om an unst r atifie d re spondent popula t ion)] .

Thus, the dist rib u tio n of (the estim ato r of) the sample ave r age unde r EPS is: Y
−∼.. N(Y−−, S− 1

n − 1
−N

)

-----(8.11 .8)

-----(8.11 .9)

-----(8.11 . 10)

-----(8.11 . 11)

n ter ms from (i)

n equ al ter ms
fr om (ii)

n2−n equ al
ter ms from (iii)

√ √ √

√

NO TES: 1. Equ ation (8.11 .9) fo r s.d.(Y
−) sh ows that the effect of the finit e si ze of the respondent popula t ion is to modify the fami-

li ar expre ssi on by inclu ding a secon d ter m, 1/−N, unde r the squ are root mul t i p lyi ng S−. Other matt e rs of int e rest are:

• when n = −N, s.d.(Y
−) = 0, rem inding use that sample error is zero in a census.

• when n << −N (i.e., when the sample size is a sma l l propor tio n of the respondent popula t ion
si ze, say 5% or les s), the expre ssi on for s.d.(Y

−) beco m e s es s entia l ly the more famili ar for m S− 1
n.

• the for m of the squ are root mul t i p lyi ng S− means that the pre cisio n of estim ating Y
−− by Y

−
un d er EPS is det e r-

mine d prim arily by the sa m p le si ze and only weakly by the popu lation si ze.
−− This insight of statis ti c a l theory is cou nter-intuitive – the re is essentia l ly the sa m e sampling impre cisio n in a

nation a l poll of 1,500 people selected from a popula t ion of 30 mil lio n Cana dians or 300 mil lio n Amer icans.

√

2. The expre ssi on (8.11 .9) may be writt en as shown in equ ation s
(8.11 . 12) and (8.11 . 13) at the rig ht. The for mer, whe re S−
ha s been replaced by its expre ssi on in ter ms of Y−, is of
in terest to compare wit h equation (8.11 . 14) below; equ ation (8.11 . 13)
give s the standard dev iation of Y

−
as the famili ar for m (8.11 . 11) mu lti-

plie d by the squ are root of a finit e popu lation cor rec tion 1− f, whe re f = n/−N is the sa m p ling fra ction. BUT:

• Thinking of s.d.(Y
−) as an ‘infin ite popula t ion’ res ult times a ‘c orrection facto r’ unhel pfully encou rag es conf usi ng a

model with the real world – recall the com ment below Table 8.11.1 at the end of the secon d aster isk (*) on pag e 8.49.

s.d.(Y
−) = 1

−N −1
(1
n − 1

−N
)Σ

i =1

−N

(Y−i −Y−)
2

s.d.(Y
−) = (1− f )S− 1

n

-----(8.11 . 12)

-----(8.11 . 13)

√

√ √

3. The co effici ent of var iation (c.v.) of Y
− [a mea s ure of

rela tive im pre cisio n] is giv en in equ ation (8.11 . 14)
at the rig ht. Rela t ive impre cisio n decrea s es [i.e.,
s.d.(Y

−) beco m e s sm aller rel ative to Y
−−] as n becomes large r and when the Y−i have les s variation abou t thei r av erageY

−−.

c.v.(Y
−) ≡ s.d.(Y )

Y−
= 1

−N −1
(1
n − 1

−N
)Σ

i =1

−N

(
Y−i

Y−
−1)

2
-----(8.11 . 14)√

4. Y
−

is the lin ear unbia s ed estim ato r of Y
−− with sma l lest standard dev iation base d on a sample of size n units selected

by EPS (e.g., see Bar nett, pp. 26-27).

5. The expre ssi on (8.11 .9) fo r s.d.(Y
−) un d er EPS is useful in three ways :

• it giv es the impre cisio n of the estim ato rY
−
;

• it allow s us to calcula te the approxi mat e sample size needed to att ain a specifie d im pre cisio n fo r estim ating Y
−− –

re call Sectio n 5 on pag e 6. 26 in Fig ure 6.3 of thes e STAT 220 Course Mat e ria ls;

• it allow s us to compare the efficie n cy of Y
−

with that of oth er estim ato rs of Y
−−.

A practical diffic ulty in usi ng the expre ssi on (8.11 .9) abov e fo r s.d.(Y
−) is that S− is usually unknow n; a way aroun d this dif-

fic ulty is to use the sa m p le st andard dev iation, s, as an estim ate of S−, ost ensibly becau se of the fol low ing :

s2 = 1
n − 1

[Σ
j =1

n

yj
2 − ny−2] = 1

n − 1Σj =1

n

yj
2 − n

n − 1
y−2;

... E(S2) = 1
n − 1

E[Σ
j =1

n

Yj

2] − n
n − 1

E(Y
−2

) = 1
n − 1

n 1
−NΣ

i =1

−N

Y−i
2 − n

n − 1
{Y− 2+ [s.d.(Y

−)]2}

= n
n − 1

{1
−N

(Σ
i =1

−N

Y−i
2−−NY− 2) − (1

n − 1
−N

)S−2}

= n
n − 1

{−N −1
−N

S−2 − (1
n − 1

−N
)S−2}= S−2

;

i.e., S2 [the random variable repre senting the square of the sample (data) standard dev iation unde r equiprobable selecting] is an
unbia s ed estim ato r of S−2

, the square of the respondent popula t ion (data) standard dev iation [but see Appendix 3  on pag e 8. 57].

-----(8.11 . 15)

-----(8.11 . 16)

-----(8.11 . 17)

{[s.d.(Y
−)]2

= E(Y
−2

) − [E(Y
−)]

2
,

and: E(Y
−) =Y

−− so that

E(Y
−2

) = Y
−− 2

+ [s.d.(Y
−)]2}

n equ al ter ms from (ii)

Thus, the es tim ated st andard dev iation of Y
−

un d er EPS is giv en by: s.d.ˆ (Y
−) = s 1

n − 1
−N√
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On the basis of the approxi mat e no rma lity of the dist rib u tio n of Y
−

as a con seque n ce of the Cent r al Li mit Theorem , and
arguing in a gen eral way from the use of the t dist rib u tio n in nor mal theor y when the popula t ion standard dev iation is estim a-
ted by the sample standard dev iation, the theor y deve loped above lea ds to a probabilis ti c in ter val:

I = [Y
−−αt*n−1S

1
n − 1

−N
, Y

−
+αt*n−1S

1
n − 1

−N
]

su ch that Pr(I ∋ Y
−−) −∼100(1−α)%, whe re αt*n−1 is the 100(1−α/2)th perc entile of the tn −1 dist rib u tio n. For calcula t i ng an approxi-

mate 100(1−α)% confidence inter val fo r Y
−−, we use:

y− ± αt*n−1s 1
n − 1

−N
= [y− −αt*n−1s 1

n − 1
−N

, y− +αt*n−1s 1
n − 1

−N
].

-----(8.11 . 18)

-----(8.11 . 19)

√ √

√ √ √

NO TES: 6. The fir st ex pre ssi on in (8.11 . 19) is conve n ient when assessing sampling impre cisio n ; the se con d is a more direc t Answe r.

7. The value s of sample att rib u t es det e rmine two charact e ris ti cs of the approxi mat e confid e n ce int e rval for Y
−− – the sam-

ple ave r age (y−) defi nes its ce ntre, the sample standard dev iation (s) det e rmines its width; both charact e ris ti cs (cent re
and widt h) of a confid e n ce int e rval may be adversely affected by inaccurate sele cting or mea s uring processes.

8. Usi ng the t dist rib u tio n requ ire s that the popula t ion unit respons es be pr obabi lis tically indep enden t and normally
dist rib u t e d; in equ iprobable selecting, successiv e obs ervation s are (we a kly) dependent and not (ne c essarily) nor-
ma l ly dis tributed, so this use of the t dist rib u tio n ha s a weaken ed theoretical basis.

• This weaker theoretical basis is one rea son why the confid e n ce int e rval expre ssi ons (8.11 . 19) are approxi mat e.

9. An impor tant con sid eration in assessing the nominal le vel of a confid e n ce int e rval is how large the sample size
ne e ds to be for rea son able nor mality of Y

−
as a con seque n ce of the Cent r al Li mit Theorem; unfor tun ately, the re is

no reliable gen eral rule but, when the devi a t io n fr om nor mality is mainly a posit ive skew nes s, a crude rule (se e
Cochran, pag e 42) which is occasio nally useful is that n shoul d be gre ater than 25G1

2, whe re:

G1 = 1

−NS−3Σ
i =1

−N

(Y−i −Y−)
3
, [estim ated from the sample as: g

1
= 1

ns3Σ
j =1

n
(yj − y)

3
].

• The approxi mat e no rma lity of the dist rib u tio n of Y
−

is a secon d (r ela ted) re ason why the confid e n ce int e rval ex-
pres sio ns (8.11 . 19) are approxi mat e.

-----(8.11 .20)

10 . The res ult s de riv ed in (i), (ii) and (iii) on the fou rth sid e (page 8.52) of this Fig ure, whi c h prov ide the theoretical
basi s fo r the confid e n ce int e rval expre ssi ons , all inv olve the equ al unit sele ction probabilit ies that are a cons equ enc e
of EPS and, in (iii), the joi nt probability 1/−N(−N−1), whi c h co m e s fr om the for mal requi rement for equ iprobable
sa m p les un d er EPS. The re is thu s no basi s fo r using thes e ex pre ssi ons to calcula te a confid e n ce int e rval from a
sample obtaine d by oth er sele cting met hods (acces sib i lity, haphazard, judgement, quota, sys tem ati c, volun teer, etc.) .

• Li kew ise, use throu ghout this Fig ure 8.11 of lowe r-case it ali c ys (value s of random variable s) to repre sent the
mea s ure d sample respons e variat e data value s is base d on EPS as the sample selecting process; other (non-
probability) selecting processes wou ld ent ail usi ng in stead Roman ys to repre sent such dat a value s and the re
woul d be no rea son able basis for treating thes e ys as the ys of the foregoi ng theor y (r ecall the com ment in Fig -
ure 6.1 at the top of pag e 6.4 and Not e 11 at the top of pag e 6. 28 of Fig ure 6.3).

11 . The theor y le ading to equ ation (8.11 .9) ov erleaf on pag e 8. 53 con sid ers on ly sample error but usi ng equation (8.11 . 17)
when calcula t i ng a confid e n ce int e rval for Y

−− or TY− involves using the measured sample yjs to calcula te s. As a con -
sequ enc e, the confid e n ce expre ssi ons (8.11 . 19) abov e fo r Y

−− and (8.11 .23) near the bottom of the facing pag e 8. 55 for
TY− qu antify both sample error and (fo rtuit ou sly) mea s urement error.

• We see that this is so by con sid ering a respondent popula t ion whose ele ments all have the sa m e Y− value; vari-
ation in the yjs wou ld then reflect on ly mea s urement error. Henc e, in the usual case of varying Y−is, the meas-
ure d yj value s refle ct bot h sample and measurement error.

• The confid e n ce int e rval expre ssi ons (8.11 . 19) abov e and (8.11 .23) on pag e 8. 55 quantify the co mbi ned un cer tain ty
due to sample error and measurement error – thei r ef fects cou ld be estim ated in dividua lly if repli c ate mea s ure -
ments were to be made on the sample units, but this is rare in sample sur veys becau se the re wou ld be lit tle ben e-
fit, ext r a cos t and the diffic ulty of maint aining (re a l-world) in dep enden ce of repli c ate mea s urements, especi ally
when the popula t ion ele ments are hum ans and the measuring ins trument is a que s tionnaire.

This matt e r is the sur vey sampling analog ue of the theor y deve loped in Fig ure 6.1 for the model (8.11 .2) on
page 8.49 – for exa mple, recall equ ation (6.1.1 8) on pag e 6.6.

• It wou ld be useful if the (‘fi nit e popula t ion’) theor y in this Figure
8.11 cou ld infor m that of Fig ure 6.1 so that it wou ld be cor rect, when
the popula t ion size is −N, to write equ ation (6.1.1 8) on pag e 6.6 as equ ation (8.11 .21).

Y
−∼N(µ, σ 1

n − 1
−N

) ----(8.11 .21)
√

Example 8.11.2: In an audit of hospi tal accou nts, 200 accou nts were obtaine d by equ iprobable selecting from a tot al of 1,000
accou nts; for all 200 accou nts, the sample ave r age was y− = $392.42 and the sample standard dev iation was
s = $20.11. Fin d an approxi mat e 90% confid e n ce int e rval for the aver age amou nt per accou nt (Y−−) at the hospit al.
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Figure 8.11. UNSTRATIFIED POPULATIONS: Estimating an Ave rage or a Tot al (c o ntinue d 3)
One- Stage EPSWOR of Indivi du a l Elements

Solution: NOTES: 12. In calcula t i ng the 90% confid e n ce int e rval for Y
−−, the value of .1t*

199 =1.65255 ha s been obtaine d
by li near interpola tion fr om the relev a n t ent rie s (viz., 1.65291 and 1.65251) fr om Table 6.4
(page s 6. 33 and 6.34) fo r 190 and 200 deg rees of fre e dom .

13. In calcula t ion s li ke those in the solutio n of Example 8.11. 2, we must use and show enoug h signi-
fic a n t fig ure s to avo id rou nding inaccur acy; howeve r, it is an es sent ial part of a pro per solutio n
to giv e a final answe r roun d ed to a number of figure s ap pro priat e to the Que s tion con tex t.

Example 8.11.3: In the same hospit al as in Exa mple 8.11. 2, n = 9  accou nts were obtaine d by equ iprobable selecting from the
tot al of 484 open accou nts; the data, and their nume rical sum marie s , we re as fol low s :

$333.50 332.00 352.00 343.00 340.00 341.00
$345.00 342.50 339.00

Σ
j =1

9

yj = 3, 068.00, Σ
j =1

9

yj
2 = 1, 046,132. 50.

Find an approxi mat e 95% confid e n ce int e rval for the ave r age amoun t per open accou nt at the hospit al.

Solution: The solutio n of this Example 8.11. 3 is like that of Exa mple 8.11. 2 except we mu s t calcula te the value s of y− and
s fr om the nume rical sum marie s of the sample dat a.

We hav e: −N = 484, n = 9, y− = 3, 068. 00
9

= $340.8
.
, .05t*

8 = 2.30600 for 95% confid e n ce,

s = 1, 046,132. 50 − 3, 068.002/9
8

= $5.972 739.√
Then: s 1

n − 1
−N

= 5.97274 1
9

− 1
484

= $1.972 315 622.

He n ce, an approxi mat e 95% confid e n ce int e rval for Y
−−, the ave r age amoun t per open accou nt at the hospit al, is:

y− ± 2. 30600 × s.d.ˆ (Y
−) = 340.8

.
± 2. 30600 ×1.972 316 ==> (336.34, 345.44) or about ($336, $346).

√ √

NO TES: 14 . Despit e the sma l l sample size of 9, the confid e n ce int e rval is, as in Exa mple 8.11. 2, rela t ive ly
narrow (i.e., the Answe r sh ows rela t ive ly lo w im pre cisio n fo r estim ating Y

−− ) becaus e the value
of the popula t ion standard dev iation S− is sm all in rela t ion to the value of Y

−−, as indicated by
thei r estim ates from the sample of about $6 for s and about $340 for y−.

• The sma l l sample size in Exa mple 8.11. 3, whe re all the sample dat a are giv en, is only for cla s s-
room conve n ienc e; a re a l sample sur vey like this wou ld usually hav e a much larger sample size.

15. For int e rest, we can carry out the
che ck dis cus s ed in Not e 9 on the
faci ng pag e 8. 54 for the adequ acy of the
sample size wit h re spect to the assume d no rma -
li ty of Y

−
; for conve n ienc e, estim ating the sum of

cubes from the sample dat a is set out in Ta- ble
8.11 .6 at the rig ht; divi ding the sum of cubes by
ns3 =1,91 7.622 626, we find 25g2

1 = 4.453 978,
which is le ss than n = 9  as the check requi re s.

Ta ble 8.11.6: j yj y− yj − y− (yj − y−)
3

1 333.50 340.8
.

−7. 38
.

−403.401 405
2 332.00 340.8

.
−8.88

.
−702. 331 959

3 352.00 340.8
.

11.1
.

1, 371.7 42 116

4 343.00 340.8
.

2.1
.

9.408 779
5 340.00 340.8

.
−0.8

.
−0.702 332

6 341.00 340.8
.

0.1
.

0.001 372

7 345.00 340.8
.

4.1
.

69.482 854
8 342. 50 340.8

.
1.61

.
4.181 927

9 339.00 340.8
.

−1.8
.

−6.739 369

341.641 983

6. Estimating TY−, the Respondent Popul ation Tot al

Un d er the assump tion that the popula t ion size, −N, is a known con sta nt, the theor y of equiprobable selecting for estim ating
TY− is a straig ht-for ward ext ensio n of the res ult s fo r Y

−−. Becau se the popula t ion tot al is TY− = −NY
−
, its estim ato r is −NY

−
; the standard

devi a t io n of this estim ato r is then −N × s.d.(Y
−). Henc e, we obtain a probabilis ti c in ter val:

I = [−NY
−−αt*n−1−NS 1

n − 1
−N

, −NY
−

+αt*n−1−NS 1
n − 1

−N
]

su ch that Pr(I ∋ TY−) −∼100(1−α)%, whe re αt*n−1 is the 100(1−α/2)th perc entile of the tn −1 dist rib u tio n. For calcula t i ng an approxi-
mate 100(1−α)% confidence inter val fo r TY−, we use:

−Ny− ± αt*n−1−Ns 1
n − 1

−N
= [−Ny− −αt*n−1−Ns 1

n − 1
−N

, −Ny− +αt*n−1−Ns 1
n − 1

−N
].

-----(8.11 .22)

-----(8.11 .23)

√ √

√ √ √

Example 8.11.4: A company was con cer ned about the tim e per week its 750 manage rs spent on unimpor tant tasks. For 50
ma n age rs obtaine d by equ iprobable selecting, it was fou nd that the ave r age time spent on such tasks was
10 .31 hou rs and the standard dev iation was 1.5 hou rs. Fin d an int e rval estim ate for the tot al person -hours
spent per week by the 750 manage rs on thes e un impor tant tasks.
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Solution: Estimating TY− is like estim ating Y
−− except that we must mul t i p ly by −N in appropriat e places; the solutio n of this

Example 8.11.4 the refore fol low s the patt e rn of Exa mples 8.11. 2 and 8.11. 3.

We hav e: −N = 750, n = 50, y− =10. 31 hou rs, s =1.5 hou rs, .05t*
49 = 2.00958 for 95% confid e n ce.

Then: s 1
n − 1

−N
= 1. 5 1

50
− 1

750
= 0. 204 939 hou rs.

√ √
He n ce, an approxi mat e 95% confid e n ce int e rval for TY, the total number of hou rs spent by the 750 manage rs
on unim por tant tasks, is:

−Ny− ± 2.00958 × −N × s.d.ˆ (Y
−) = 750 ×10 .31 ± 2.00958 ×750 × 0. 204 939 ==> (7,424, 8,0 41)

or about (7,400, 8,1 00) hours per week.

NO TES: 16 . When the confid e n ce le vel is not speci fed in the Que s tion, we take the defau lt as 95%.

17. Popula t ion to t als are often large numbers and so the widt hs of confid e n ce int e rvals for TY− may
be large in abso l ute ter ms but not necessarily large rela tive to the mag n itude of TY−.

18 . It wou ld be diffic ult to implem e n t an accur ate and pre cis e mea s uring sys tem for quantifyi ng
person a l time usage for activ ities like those in Exa mple 8.11.4; this is why the end poi nts of
the final confid e n ce int e rval have been rou nde d to only two signific a n t digits.

Example 8.11.5: One hun dre d wa ter met e rs, obtaine d by equ iprobable selecting from a com mun ity of 10,000 hou seh olds, are
monito red ove r a par ticular dry spell of weather. For all 100 met e rs, the sample ave r age and standard dev ia-
tion (in suitable units) are fou nd to be 12. 5 and 35.4 respectiv ely. Fin d an approxi mat e 99% confid e n ce int e r-
val for the to t al wa ter con sump tion in the com mun ity dur ing the dry spell.

Solution: We hav e: −N =10,000, n =100, y− =12. 5 un its, s = 35.4 units, .01t*
99 = 2.62641 for 99% confid e n ce.

Then: s 1
n − 1

−N
= 35.4 1

100
− 1

10 ,000
= 3. 522 256 un its.

He n ce, an approxi mat e 99% confid e n ce int e rval for TY, the total wat e r cons ump tion of the 10,000 hou seh olds
ov er the dry spell, is:

−Ny− ± 2.62641× −N × s.d.ˆ (Y
−) = 10,000 ×12.5 ± 2.62641×10 ,000 × 3. 522 256 == > (32,491, 217,509)

or about (32,000, 220,000) un its.

√ √

NO TE: 19. The wide confid e n ce int e rval (i.e., the hig h impre c isi on) for estim ating TY in Example 8.115 is main-
ly a con seque n ce of a ver y variable popula t ion of hou seh old wat e r cons ump tion s: s/y− = 283%.
Be cau se wat e r cons ump tion is an inherently non-negative quantity, thes e sample att rib u t e value s
sugg est a hig hly (posit ive ly) skewed popula t ion dis tributio n of wat e r cons ump tion s which , in
turn, raises con cer ns about the accur acy of the nominal confid e n ce le vel of an int e rval base d on
the t dist rib u tio n. In a real sample sur vey, this matt e r woul d ne e d to be fol lowe d up.

• The hig h im pre cisio n fo r estim ating TY in Example 8.11. 5 coul d be manage d by stra tifying the
popula t ion into groups of hou seh olds more homoge neous with respect to their wat e r con-
sump tion s; st r atifyi ng is dis cus s ed brief ly in Appendix 5 on the last sid e (page 6.1 2) of Fig -
ure 6.1 and is pursued in more det ail in Par t 4 of the STAT 332 Course Mat e ria ls.

7. REFERENCES: 1. Bar nett, V. Sa m p le Sur vey Princip les and Met hods. Se con d edit ion, Edward Arnol d, Lon d on, 1991;
(Fi rst edit ion: Elem ents of Sampling Theor y. The Englis h Un ive rsit ies Pre ss Ltd., Lon d on, 1974).

2. Cochran, W. G. Sa m p ling Techniques. Jo hn Wiley & Son s, Inc., New Yor k, 3rd Edition, 1977.

8. Appendix 1: Po p u lat ion Ele m e nts and Popul ation Units

As dis cus s ed in Section 1 on page 8.3 in Fig ure 8.1, we dis tinguis h:

• Elements: the entit ies that make up a popula t ion; for exa mple, a person is an ele ment of the popula t ion of Cana dians, but
we recog n ize that many popula t ion s in dat a-base d inve s tig a t i ng hav e non-hu man or inanimate ele ments.

• Unit s: the entit ies se lec ted fo r the sample; a un it may be one ele ment (e.g., a person) or more than on e (e.g., a hou seh old).

This Fig ure 8.11 is con cer ned with (survey) sa m p ling and so refers in mos t places to units, but popula t ion attributes of int e rest
(li ke −N, Y

−−, TY− and S−) refe r to el ements. In int roducto ry cou rses like STAT 220 and STAT 231, we rest rict att entio n to units
which are ele ments so the distin ction is of no con seque n ce but, anticip ating Fig ure s 2.14 and 2.1 6 in STAT 332, when units are
gr oups of ele ments (as in clu ster sampling), some expre ssi ons in the theor y mu s t be modifie d. This is illu s trated in Table 8.11.8
at the upper rig ht of the facing pag e 8. 57 by comparing expre ssi ons in this Fig ure 8.11 wit h thos e fo r sele cting eq ual-sized clu s-
ters, like cardboard boxes in a super marke t that each con tain, say, 24 cans of soup, or car ton s fr om a component manufactur ing
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Figure 8.11. UNSTRATIFIED POPULATIONS: Estimating an Ave rage or a Tot al (c o ntinue d 4)
One- Stage EPSWOR of Indivi du a l Elements

proces s that each con tain a set number (say, 10) of the com -
ponent. Table 2.3.7 at the rig ht giv es addit ion a l notation we
ne e d, whe re the repon d e n t popula t ion is con sid ere d as −N
elem e n t s of whi c h n are selected (by EPS) fo r the sample,
or as −M clust e rs each of L ele ments, of whi c h m are selec-
ted (by EPS) to yield a sample of mL ele ments.

Give n the respondent popula t ion ‘models’ of −N elem e n t s or −M
clust e rs, the structur al sim ilarity of cor responding expre ssi ons in the
two colum ns of Table 8.11.8 are cle ar; not ewo rthy poi nts are:

• when estim ating Y
−−, y− involves el ement re spons es yj but y−ec invol-

ve s clust e r aver age re spons es y−j;

• S−ec (e s tim ated by sec), whi c h qu antifie s variation of clu ster average s
in the respondent popula t ion, is to be dis tinguis hed from the vari-
ation of el ement re spons es quantifie d by S− (e s tim ated by s).

The clu s ter sampling expre ssi ons in the rig ht-hand colum n of Table
8.11 .8 are taken from Fig ure 2.1 4 of the STAT 332 Course Mat e ria ls.
The theor y fo r unequal-sized clu s ters is more complicated – see Fig -
ure 2.1 6 of the STAT 332 Mat e ria ls.

Ta ble 8.11.7: Elements Clu sters Relationships

Re spondent popula t ion −N −M −N = −ML, L = −N/−M
Sa mple n m n = mL, L = n/m
Also: Y

−−i = 1
L

Σ
k =1

L

Y−ik is the ave r age respons e of the ith popula t ion clu s ter,

y−j
= 1

LΣ
k =1

L

yjk is the ave r age respons e of the jth sampled clu s ter,

the sub scr ipt ec in Table 8.11.8 bel ow den otes ‘equal-sized clu s ters.’

Ta ble 8.11.8
EPS of ele m e nts Page EPS of clu sters

8. 52

8. 52

8. 52

8. 53

8. 54

y− = 1
nΣ

j =1

n
yj

s = 1
n −1

Σ
j =1

n
(yj −y)

2

S− = 1
−N −1Σ

i =1

−N

(Y−i −Y− )
2

s.d.(Y
−) = S− 1

n − 1
−N

y− ± αt*n−1s 1
n − 1

−N

y−ec = 1
mΣ

j =1

m
yj

sec = 1
m −1

Σ
j =1

m
(yj −yec)

2

S−ec = 1
−M −1Σ

i =1

−M

(Y−i −Y− )
2

s.d.(Y
−

ec) = S−ec
1
m − 1

−M

y−ec ± αt*m−1sec
1
m − 1

−M

√

√

√

√

√

√

√

√

9. Appendix 2: Re pre sentative Sampl ing

The appealing intuitive idea of a ‘r e pre sent ative sample’ – on e that ‘look s li ke’ the (re spondent) popula t ion wit h re spect to
the att rib u t e(s) of int e rest – is equ ivocal statis ti c a l ly for fou r re asons:

• a sample selected by EPS is unlikely to be ‘repre sent ative’ in the sense just giv en for all att rib u t es of pot entia l in terest – for in-
st anc e, a sample may hav e sm all [possib ly (cl ose to) zero] sample error for estim ating Y

−− but large sample error for estim ating S−;

• the sample, of its elf, provi des no infor mation abou t it s ‘r e pre sent ative nes s’;

• there is no selecting process known to yield a‘r e pre sent ative’ sample, exc ept tak ing a census;

• the ter min ology tends to obs cure the distin ction bet ween the indivi d ual case (the particular sample) and beh aviour unde r
repetit ion (the pro per tie s of the selecting pr ocess).

Less equ ivocal ter min ology is re prese nta tive sampling, wit h it s im p lication of a selecting pr ocess (li ke EPS) which , in conjun c-
tion wit h adequate repli c ating, provi des for quantifyi ng sampling impre cisio n and so allow s a par ticular inv estig a t ion to obtain
an Answe r with accep table limitation (in the Que s tion con tex t) due to sample error. Howeve r, the writer’s prefe renc e is to av oid
in statis ti cs the ter ms ‘repre sent ative’ and ‘repre sent ative nes s’ in rela t ion to a sample (or a sampling protocol).

• Kr usk al and Mos tel ler dev ote 50 pag es to dis cus sing the (so m etim e s il l-defi ned) meaning s in statis ti c a l cont ext s of repr e-
sent ative sampl ing in three article s in the In ter national Sta tis tical Revie w, 47, 13-24,111 -127, 245 -265 (1979). [UW Lib r ary
call number HA 11. I505]

NO TE: 20. An illust r ation, inv olv ing biv ariat e data, of another ins tanc e of sample-att rib u t e dependenc e is:

• when estim ating the lea st squ are s sl ope of a straig ht-lin e rela t ion s hip, sample poi nts more con cent r ated near the
en ds of the int e rval of obs ervation wil l re duce sampling impre cisio n (a lthou gh this wil l increa s e im pre cisio n of
any inferenc e ne e ded to show that the rela t ion s hip is a straig ht lin e);

• si milar con sid eration s ap ply when estim ating correl ation, alt hou gh estim ating this attribute is rarely dis cus s ed.

10. Appendix 3: The Mean of S, E(S)

The justific ation in equation (8.11 . 17), at the bottom of pag e 8. 53, for usi ng s to estim ate S− is compromise d by the fact that
S is not an unbia s ed estim ato r of S−. Becau se of the squ are root in the expre ssi on for s in equation (8.11 .3) on pag e 8.49 (and in
Ta ble 8.11. 5 on pag e 8. 52), the re is no sim p le expre ssi on for the estim ating bia s of the cor responding random variable S un d er
EPS, but we know that bia s ex ists from the fol low ing argum e n t, whi c h is an illust r ation of Jensen’s Inequ ali ty and uses the fact
that the varianc e of any (non-cons tant) random variable is posit ive. We hav e:

0 < var(S) = E(S2) − [E(S)]2
= S−2 − [E(S)]2

so that, tak ing square roots: E(S) − S− < 0. -----(8.11 .24)

NO TE: 21. For the model (8.11 .2) on pag e 8.49, the mat hem ati cs is more
tract able and lea ds to equ ation (8.11 .25) at the rig ht so that,
becaus e of equation (6. 3.38) on pag e 6. 29 of Fig ure 6.3, re-
writ ten at the rig ht as equ ation (8.11 .26), the bia s ter m mu lti-
plyi ng σ on the RHS of equ ation (8.11 .25) is the mean of a Kn −1

dist rib u tio n. Table 6.3.1 0 of its value s fo r n = 2  to 51 (i.e., for 1 to 50 deg rees of fre e dom) on pag e 6. 31 of Fig ure
6. 3 reminds us that estim ating bia s:

E(σ∼) = 2
n −1

Γ( )

Γ( )
σ

n
2

n −1
2

σ∼
σ ∼Kn −1 or: σ̃ ∼σKn −1

-----(8.11 .25)

-----(8.11 .26)

√
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NO TE: 21. •(c o nt.)
de cre ases in mag n itude wit h in cre asi ng sample size, unli ke (re a l-world) in accur acy;

• of S as an estim ato r of S− is likely to be unimpor tant practically for the sample sizes used in mos t re a l sample sur veys.

11 . Ap pendix 4: Bias and Rms Error

Fo r a random variableY and some con stant c, we hav e:

E{[Y− c]2} = E{[E(Y) − c + Y− E(Y)]2} = E{[E(Y) − c]2
+ [Y− E(Y)]2

+ 2[E(Y) − c][Y− E(Y)]}
= E{[E(Y) − c]

2}+ E{[Y− E(Y)]2}+ 2E{[E(Y) − c][Y− E(Y)]}
= [E(Y− c)]

2
+ E{[Y− E(Y)]2}+ 2[E(Y) − c]E[Y− E(Y)]

i.e., E{[Y− c]2} = [E(Y− c)]
2
+ [s.d.(Y)]2

becaus e E[Y− E(Y)] ≡ 0.

If we now think of Y as a random variable whose dis tributio n repre sents the pos sib le value s of a resp onse var iate Y− and c as a
true value, the left-hand sid e of equation (8.11 .27) is a mean squ are d er ror and E(Y− c) in the first ter m on the rig ht-hand sid e
is a bi as; we can the refore int e rpret equ ation (8.11 .27) as:

mean squ are d er ror = bia s2 + standard dev iation2.
Ta king the squ are root so we are wor king on the sa m e scale as the variat e repre sent e d by Y, the root mean squ are d er ror is:

rms error = bia s2 + standard dev iation2.
Thus, the rms error is on e conc ept that co mbi nes the two model quantit ies of bia s and (probabilis ti c) standard dev iation, cor-
re sponding to the two real-world entit ies of inaccur acy and impre cisio n.

-----(8.11 .27)

-----(8.11 .28)

-----(8.11 .29)√

Equation (8.11 .29) prov ides usef ul insig hts about bia s and variation in the con tex t of sur vey sampling; different cases depend
on how broad our focus is in ter ms of wh ich tr ue value c repre sents – see als o the dis cus sio n and diag ram showing fou r co m-
ponents of ove r all er ror on the lowe r half of pag e 5. 25 in Fig ure 5.7 of the STAT 231 Cou rse Mat e ria ls.

* The nar rowe s t focus is measur ing when c is the true value of the respons e variat e Y−; equ ation (8.11 .29) is then:

mea s uring rms error = mea s uring bia s2 + mea s uring standard dev iation2.

* Fo r mea s uring and sampling, c is the true value of the resp onden t popula t ion attribute of Y− and then:

mea s uring and sampling
rms error

= mea s uring + sampling bia s2 + mea s uring and sampling standard dev iation2;

NO TE: 22. Mea s uring and sampling
st andard dev iation

= mea s uring standard dev iation2 + sampling standard dev iation2.

* Fo r mea s uring and sampling and non-re sponding, c is the true value of the study popula t ion attribute of Y− and then, unde r
ou r assump tion that non -re spons e is determinis tic (not stocha stic):

mea s uring and sampling and measuring + sampling
non-re sponding rms error

=
+ non -re sponding bia s2 + mea s uring and sampling standard dev iation2.

* Fo r mea s uring and sampling and non-re sponding and specifyi ng, c is the true value of the target popula t ion attribute of Y−
and then, unde r ou r assump tion that speci fyi ng the study popula t ion als o is determinis tic:

mea s uring and sampling mea s uring + sampling
and non -re sponding and = + non -re sponding + mea s uring and sampling standard dev iation2.

studyi ng rms error + studyi ng bia s2.

-----(8.11 .30)

-----(8.11 .31)

-----(8.11 .32)

-----(8.11 .33)

-----(8.11 .34)

√

√

√

√

√

NO TE: 23. In print e d mater ials other than thes e Course Mat e ria ls (e.g., see Cochran, p. 15), equ ation (8.11 .27) [o r (8.11 .28)] is
us u ally dis cus s ed only wit h re spect to es tim ating bia s. Althou gh estim ating bia s is a rela t ive ly mino r to pic in
STAT 220, it is useful to recog n ize the fol low ing [re call also Exa mple 8.11.1 on pag es 8.51 and 8.52]:

• Estimating bias (a model qu antity) is the differenc e between the mean of an estim ato r and the value of the
co rre sponding popula t ion attribute (or model parameter); for exa mple, unde r EPS:

−− the random variable Y
−

repre senting the sample aver age y− is an unbia s ed estim ato r of the respondent popula -
tion ave r age Y

−− becaus e, as shown in equ ation (8.11 .8) at the top of the fifth sid e (page 8.53) of this Fig ure 8.11,
E(Y

−) = Y
−− or E(Y

−) −Y
−− = 0; BUT

−− the sample ratio r = y−/x− is a bi ase d estim ato r of the respondent popula t ion ratio −R =Y
−−/X

−− becaus e E(R) ≠ −R
or E(R) −−R ≠ 0, and likew ise for S as an estim ato r of S− as dis cus s ed ove r leaf on pag e 8. 57 in Appendix 3.

• The rms error of an estim ato r is of interest becau se, while we prefe r an unbia s ed estim ato r of a popula t ion attri-
bute, the re are tim e s when a bi ase d estim ato r ha s only sm all bia s and appre ciably sm aller st andard dev iation
than an availa ble unbia s ed estim ato r; we may then prefe r the bia s ed estim ato r with sm aller rms error.

• Unli ke (re a l-world) in accur acy, estim ating bia s decrea s es in mag n itude wit h in cre asi ng sample size (as dis cus s ed
in Appendix 3 ove r leaf on pag e 8. 57 and above in Not e 21).
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