Figure 8.11. UNSTRATIFIED POPULATIONS: One-Stage EPSWOR of Individual Elements

1. Background Information

The mathematics on pages 8.52 and 8.53 in Section 5 of this Figure 8.11 is a centrepiece of the theory of survey sampling (de-sign-based' inference - recall Section 7 in Figure 6.1); we can appreciate it more fully with the following background information.

* In introductory probability, we use upper case italic letters (usually near the end of the alphabet, like X, Y and Z) for random variables and the corresponding lower cases letters (e.g., x, y and z) for their values. We now further distinguish $u p$ -per-case bold letters for population quantities; for example, $\mathbf{Y}_{\mathbf{i}}$ is the response variate for the ith element in the respondent population.
- The line through population symbols is make distinguishable italic and bold upper-case handwritten letters and we say, for instance, ' \mathbf{Y}. cross' for the response variate of the ith respondent population element.
* In introductory statistics courses, the number of elements in the population (also called the population size) is seldom considered explicitly; in this Figure 8.11, this attribute is denoted \mathbf{N} (' \mathbf{N} cross').
- Including the population size in survey sampling theory is sometimes

Table 8.11.1: SYMBOL

8.11.1: Random variable Value Respondent population	DESCRIPTION		
Y	y	\mathbf{Y}	Response variate
-	j	i	Summation index
-	X	\mathbf{X}	Focal explanatory variate
-	Z	\mathbf{Z}	Explanatory variate
$\overline{\bar{Y}}$	n	\mathbf{N}	Number of units/elements
R	r	$\overline{\mathbf{Y}}$	Average (sum \div number)
S	s	\mathbf{R}	Residual [or Ratio]

* When investigating a Question with a descriptive aspect [one whose Answer will involve primarily values for population/process attributes (past, present, future), a useful way to think of (or to 'model') the response variate of a respondent population element is as shown in equation (8.11.1) at the right;

$$
\mathbf{Y}_{\mathrm{i}}=\overline{\mathbf{Y}}+\mathbf{R}_{\mathrm{i}} \quad----(8.11 .1)
$$

this model is useful because it expresses a quantity we can observe $\left(\mathbf{Y}_{\mathbf{i}}\right)$ in terms of an attribute of interest ($\overline{\mathbf{Y}}$, the population average) and a quantity (\mathbf{R}_{i}, the population residual for element i) whose behaviour is amenable to probability modelling which, ultimately, enables us to quantify imprecision due to sample error and (in some contexts) measurement error.

- The response model for a non-comparative Plan - the type of Plan usually appropriate to answer a Question with a descriptive aspect - involving equiprobable (simple random) selecting (EPS) of n units from an unstratified population is:

$$
\begin{equation*}
Y_{j}=\mu+R_{j}, \quad j=1,2, \ldots, . \mathrm{n}, \quad R_{j} \sim N(0, \sigma), \quad \text { independent }, \quad \text { EPS }, \tag{8.11.2}
\end{equation*}
$$

where Y_{j} is a random variable whose distribution represents the possible values of the measured response variate for the j th unit in the sample of n units selected equiprobably from the respondent population, if the selecting and measuring processes were to be repeated over and over;
R_{j} is a random variable (called the residual) whose distribution represents the possible differences, from the structural component of the model, of the measured value of the response variate for the j th unit in the sample of n units selected equiprobably from the respondent population, if the selecting and measuring processes were to be repeated over and over.
The symbol μ in the model (8.11.2), and two related entities $\hat{\mu}$ and $\widetilde{\mu}$, have the following meanings:
μ : a parameter representing the average $(\overline{\mathbf{Y}})$ of the measured response variate of the elements of the respondent population.
$\hat{\mu}$: the least squares estimate of μ - a number whose value is derived from an appropriate set of data;

- for the model (8.11.2), $\hat{\mu}=\bar{y}$, reflecting the intuitive idea that, under EPS, the measured sample average estimates the measured respondent population average;
$\tilde{\mu}$: the least squares estimator of μ - a random variable whose distribution represents the possible values of the estimate $\hat{\mu}$ if the selecting, measuring and estimating processes were to be repeated over and over;
- here, $\widetilde{\mu}=\bar{Y}$, the random variable representing the sample average under EPS.
* We met σ (on page 5.6 in Figure 5.1), and two related entities $\hat{\sigma}$ and $\widetilde{\sigma}$, in the context of response models like (8.11.2) above;
σ : the (probabilistic) standard deviation of the normal model for the distribution of the residual, is a model parameter representing the (data) standard deviation (S) of the measured response variate of the respondent population elements; this (data) standard deviation (and, hence, σ) quantifies the variation of the measured response variate over the elements of the respondent population - as this variation increases, so does \mathbf{S} (and, hence, so does σ).
\circ two other characteristics of variation are its location and its shape - these are, respectively, 0 and normal for (8.11.2);
$\hat{\sigma}$: the least squares estimate of σ - a number whose value is derived from an appropriate set of data;
$\widetilde{\sigma}$: the least squares estimator of σ - a random variable whose distribution represents the possible values of the estimate $\hat{\sigma}$ if the selecting, measuring and estimating processes were to be repeated over and over.
How σ is estimated, reflected by differing expressions for $\hat{\sigma}$, depends on the sampling protocol in the Plan for the investigation and the response model

$$
\begin{equation*}
\hat{\sigma}=\sqrt{\frac{1}{\mathrm{n}-1} \sum_{j=1}^{n}\left(y_{j}-\bar{y}\right)^{2}} \tag{8.11.3}
\end{equation*}
$$ appropriate for this Plan; for the model (8.11.2), $\hat{\sigma}$ is given by equation (8.11.3).

* In this Figure 8.11, we meet overleaf (on page 8.50) four quantities which are called 'standard deviation'; the first two and an
associated quantity S correspond to the three σ s given overleaf on page 8.49 but, unlike $\hat{\sigma}, s$ is called a standard deviation.
- S: the respondent population (data) standard deviation - it is defined in Section 4 in Table 8.11 .5 on page 8.52 and is a number which quantifies the variation over the respondent population of the response variate \mathbf{Y} about its average $\overline{\mathbf{Y}}$;
- like most population attributes
except \mathbf{N}, usually the value of \mathbf{S} is unknown;
- s : the sample (data) standard deviation - it is defined in Table 8.11.5

Table 8.11.2: SUMMARY OF STANDARD DEVIATIONS

Response Models	
σ Model parameter	S Respondent population standard deviation - an attribute
$\hat{\sigma}$ Estimate of σ	S Sample standard deviation - an estimate of \mathbf{S}
$\tilde{\sigma}$ Estimator of σ	S Estimator corresponding to $s-$ a random variable

- under EPS, s is used to estimate \mathbf{S} - that is, to provide a value we can use for \mathbf{S};
- this Figure 8.11 is concerned with only one sampling protocol - EPS from an unstratified population to estimate an average or total - and so there is only one expression for the estimate (s) of \mathbf{S};
- S : the estimator corresponding to s - under EPS, it is a random variable, of which s is one (realized) value;
$+s d .(\bar{Y})$: the standard deviation of the sample average - under EPS, it provides a theoretical basis for quantifying uncertainty due to sample error in estimates of respondent population attributes like an average or total;
$+\hat{s d} \cdot(\bar{Y})$: the estimated standard deviation of the sample average which, under EPS, is the basis for calculating values for the end points of confidence intervals for respondent population attributes like an average or total.
The expressions for $s d .(\bar{Y})$ and $\hat{s d} .(\bar{Y})$ differ in that \mathbf{S} is replaced by its estimate $s-$ see equation (8.11.9) and equation (8.11.17) on page 8.53. [In a non-probability sampling context concerned only with data, s would usually be denoted s.]
* We capitalize on having two words - average and mean - in English to make a useful distinction for a measure of location:
- the average is a measure of location for a set of data;
- the mean is a measure of location for (the distribution of) a random variable.

However, for the magnitude of variation there is only one term - standard deviation - for the commonly-used measure, and this can be a source of confusion. Ideally, we would like:

- the (new word) as a measure of variation for a set of data,
- the standard deviation as a measure of variation for a random variable,
but the use of 'standard deviation', regardless of context, is too well-established in statistics for this ideal to be attainable. A compromise, to assist beginning students, is to distinguish a data standard deviation from a probabilistic standard deviation - see Table 8.11.3 at the right. Note that we use one symbol (e.g., \mathbf{S}, s) for a data standard deviation and the abbreviation $s d$. for a probabilistic standard deviation.

Table 8.11.3
$\left.\begin{array}{lc}\text { Respondent population standard deviation } & \mathbf{S} \\ s\end{array}\right\}$ data standard deviation

Figure 8.12 of these Materials helps us appreciate the distinction between the sample standard deviation (s; represented visually by the 16 'hooked' horizontal lines in each diagram) and the standard deviation of the sample average [s.d. (\bar{Y}); as estimated from the 16 sample averages and denoted $s_{\bar{y}}$ near the lower right-hand corner of each diagram].

* The standard deviation of \bar{Y} is sometimes referred to as the standard error of \bar{Y} (e.g., Barnett, pp. 26, 45) but this term has been avoided in these Course Materials because it is used by different authors for both s.d. (\bar{Y}) and $\hat{s d} .(\bar{Y})$ (see also Cochran, pages $24,25-27$ and 53), potentially confusing a quantity and its estimate. [References are given on page 8.56 in Section 7.]
* The following suggestions may help avoid confusion arising from (careless use of) the terminology discussed above.
- when you encounter the word mean, be sure you understand whether it refers to:
- an average of data (and whether the data are from a sample or a census), OR
- a random variable [and whether it is an individual random variable or a (linear) combination (e.g., an average, sum or difference),, $\mathbf{O R}$
- a parameter of a response model or probability model.
- when you encounter the term standard deviation or standard error, be sure you understand whether it refers to:
- the variation of data (and whether the data are from a sample or a census), OR
- a random variable [and whether it is an individual random variable or a (linear) combination (e.g., an average, sum or difference)], OR
- a parameter of a response model or probability model.
- when you encounter the word inaccuracy, remember that it is a real-world quantity and is defined only in the context of repetition of a process - like selecting or measuring.
- Estimating bias (a model quantity) differs from inaccuracy in that it decreases with increasing sample size and so may not be of much practical concern in actual sample surveys.
[There is further discussion of bias in Appendix 3 and Appendix 4 on pages 8.57 and 8.58.]
(continued)

Figure 8.11. UNSTRATIFIED POPULATIONS: One-Stage EPSWOR of Individual Elements
One-Stage EPSWOR of Individual Elements
Estimating an Average or a Total (continued 1)

2. Equiprobable (Simple random) Selecting

The definition of equiprobable selecting (EPS) is: If a sample of n units is obtained from a respondent population of \mathbf{N} units in such a way that every sample of size n has an equal probability of being selected, the selecting process is called equiprobable selecting. [Elsewhere, you may see it called simple random selecting (SRS).]
In practice, we often think of EPS as being implemented by selecting each unit of the sample equiprobably ('at random') and without replacement ('EPSWOR') from the (unstratified) respondent population. [The element-unit distinction is discussed in Appendix 1 at the bottom of page 8.56 and the top of page 8.57.]

Because we commonly think of EPS in terms of how we select the units, we may overlook the fact that the definition is in terms of sample probabilities. In particular, we need to recognize that, while the definition implies that each unit has the same inclusion probability of n / \mathbf{N}, there are selecting processes with equal unit inclusion probabilities that are not EPS. An illustration is given at the right below; for this respondent population of $\mathbf{N}=4$ units, six samples of size $n=2$ can be obtained by EPS but only two such samples are obtained by systematic selecting; however, provided the starting point of the systematic selecting process is chosen equiprobably, any unit has an inclusion probability of $1 / 2$ under either process.
Another way of making the same point is to say that, under systematic selecting, two of the six possible samples of size 2 have probability $1 / 2$ and four have zero probability.

$\mathbf{N}=4$ Population units

1, 2, 3, 4;
the samples of size 2 are:
EPS: $(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)$; systematic selecting: $(1,3),(2,4)$.

The emphasis in statistics on EPS (or its equivalent) is because it is the basis of theory which provides:

- unbiased estimating of a population average (an attribute commonly of interest);
- a connection between sampling imprecision and sample size (or level of replicating);
- an expression for a confidence interval for a population average - such an interval, under suitable modelling assumptions, quantifies sampling and measuring imprecision (as demonstrated in Figure 6.1 of these STAT 220 Course Materials).
[These three provisions of statistical theory refer to behaviour under repetition - Answer(s) obtained in a particular investigation remain uncertain, as reflected by their limitations.]
EPS does not, of itself, reduce sample error or sampling imprecision, as implied in (wrong) statements such as:
- EPS generates a representative sample;
- EPS generates a sample which provides a proper basis for generalization;
as well as misrepresenting the statistical benefits of using EPS, such statements confuse repetition (the process of EPS) with a component of a particular investigation (the actual sample). A correct statement is:
EPS, in conjunction with adequate replicating (or an adequate sample size), provides for quantifying sampling imprecision and so allows a particular investigation to obtain an Answer with acceptable limitation due to sample error.
- What constitutes acceptable limitation depends on the investigation requirements for its Answer(s); for instance, in a poll to estimate one or more proportions, an acceptable limitation may be quantified as the proportion(s) estimated to within 2 percentage points 19 times out of 20. [Limitations may also be imposed by the resources available for the investigating].

3. Sample Size and Sample Error under EPS

Example 8.11.1: A respondent population of $\mathbf{N}=4$ units has the following integer \mathbf{Y}-values for its response variate:

$$
1,2,4,5 \quad \text { (so that: } \quad \overline{\mathbf{Y}}=3, \quad \mathbf{S} \simeq 1.8257 \text {); }
$$

we examine the behaviour of sample error under EPS as the sample size increases from 1 to 2 to 3 to 4 . The number at the bottom of the four error columns of Tables 8.11 . 4 below is the average magnitude of the sample error for that sample size.

Table 8.11.4a EPS of $\mathbf{n}=1$ unit		Table 8.11.4b EPS of $\mathbf{n}=2$ units		
Sample	\bar{y} Error	Sample	\bar{y}	Error
(1)	$1-2$	$(1,2)$	11/2	$-11 / 2$
(2)	$2-1$	$(1,4)$	$2^{1 / 2}$	-1/2
(4)	$4 \quad 1$	$(1,5)$	3	0
(5)	$5 \quad 2$	$(2,4)$	3	0
	11/2	$(2,5)$	$31 / 2$	1/2
		$(4,5)$	$41 / 2$	11/2
				2/3

Table 8.11.4c				Table 8.11.4d				
EPS of $\mathbf{n}=\mathbf{3}$	units						\quad	EPS of $\mathbf{n}=\mathbf{4}$ units
:---:	:---:	:---:	:---:					

8.11.1 reminds us of general results under EPS that follow from the theory in Section 5 on pages 8.52 and 8.53.

- as the sample size increases, the average magnitude (and, hence, the standard deviation) of sample error decreases - this is what we mean when we say that increasing sample size decreases sampling imprecision under EPS;
- taking the sign of sample error into account, the average error is zero for each n - this is what we mean by saying that, under EPS, (the random variable representing) the sample average is an unbiased estimator of the respondent population average;
- note that both the selecting method and the population attribute and its estimator are involved in this statement;
$=$ another statement with these components, which contrasts with the statement above about \bar{Y}, is that, for the population attribute which is the ratio of the average of two response variates $(\mathbf{R}=\overline{\mathbf{Y}} / \overline{\mathbf{Y}})$, the sample ratio $r=\bar{y} / \bar{x}$ is biased $[E(R) \neq$ \mathbf{R}] under EPS but unbiased if the first sample unit is selected with probability proportional to its \mathbf{X} value and the remainder selected equiprobably (see Cochran, p.175).
- there is no sample error when a census is taken - when all units of the respondent population are selected.

We also see that there can be a sample size(s) for which none of its $\binom{\mathbf{N}}{\mathbf{n}}$ samples has zero sample error - no sample has $\bar{y}=\overline{\mathbf{Y}}$.

4. Notation

Table 8.11.5 below gives the notation used in the theory developed in this Figure 8.11; the last column of the table includes the 'model'. It is a model only in the sense of being an idealization or mathematical abstraction involving the equal probabilities attained under EPS; it is not a model in the sense of a symbolic expression like a response model [such as equation (8.11.2) on the first side (page 8.49) of this Figure 8.11].

Table 8.11.5:QUANTITY......
Size (elements/units)
Response
Average
Total

Standard deviation

RESPONDENT POPULATION
N
$\mathbf{Y}_{\mathrm{i}}(\mathrm{i}=1,2, \ldots,,-\mathbf{N})$ $\overline{\mathbf{Y}}=\frac{1}{\mathbf{N}^{\mathrm{N}}=1} \sum_{\mathrm{i}}^{\mathrm{N}} \mathbf{Y}_{\mathrm{i}}=\frac{1}{\mathbf{N}} \mathbf{Y}^{\mathbf{Y}}$ $\mathbf{Y}=\mathbf{N} \overline{\mathbf{Y}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{Y}_{\mathrm{i}}$
$\mathbf{S}=\sqrt{\frac{1}{\mathbf{N}-1} \mathrm{SS}_{\mathbf{Y}}} \equiv \sqrt{\frac{1}{\mathbf{N}-1} \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathbf{Y}_{\mathrm{i}}-\overline{\mathbf{Y}}\right)^{2}}$
.......SAMPLE [MODEL].....................
n
$y_{j}\left(j=1,2, \ldots .\right.$, n) $\quad\left[\right.$ r.v.s are $\left.Y_{j}\right]$
$\bar{y}=\frac{1}{\mathrm{n}} \sum_{j=1}^{\mathrm{n}} y_{j} \quad$ [r.v. is $\left.\bar{Y}\right]$
${ }_{\mathrm{T}} y=\mathbf{N} \bar{y} \quad\left[\right.$ r.v. is $\left.{ }_{\mathrm{T}} Y\right]$
$s=\sqrt{\frac{1}{\mathrm{n}-1} \mathrm{SS}} \equiv \sqrt{\left.\frac{1}{\mathrm{n}-\sum_{j=1}^{\mathrm{n}}\left(y_{j}-\bar{y}\right)^{2}} \quad \text { [r.v. is } S\right]}$
${ }_{\mathrm{T}} y$, the estimate of the population total $\mathbf{T} \mathbf{Y}$, is not the sample total, which is $n \bar{y}=\sum_{j=1}^{n} y_{j}$ and is usually not a sample attribute of interest.

5. Estimating $\overline{\mathbf{Y}}$, the Respondent Population Average

We want both a value (or point estimate) for this respondent population attribute and a measure of the (sampling) uncertainty of the estimate, for which we use a confidence interval.
To develop the relevant theory, we first establish results for $E\left(Y_{j}\right), s d .\left(Y_{j}\right)$ and $\operatorname{cov}\left(Y_{j}, Y_{l}\right)$:
(i) $E\left(Y_{j}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{Y}_{\mathrm{i}} \cdot \operatorname{Pr}\left(Y_{j}=\mathbf{Y}_{\mathrm{i}}\right) \quad$ (the mean of a discrete random variable).

We can find $\operatorname{Pr}\left(Y_{j}=\mathbf{Y}_{\mathrm{i}}\right)$ in any of three ways:
(a) because every possible ordered sample is equally probable under equiprobable selecting, any population unit is equally probable at any position in the sample and, because there are \mathbf{N} units in the population, this probability is $1 / \mathbf{N}$;
(b) ordered counting: $\quad \frac{\text { number of ordered samples with } Y_{j}=\mathbf{Y}_{\mathrm{i}}}{\text { total number of samples of size } \mathrm{n}}=\frac{(\mathbf{N}-1)^{(\mathrm{n}-1)}}{\mathbf{N}^{(\mathrm{n})}}=\frac{1}{\mathbf{N}}$;
(c) unordered counting: $\frac{\text { number of unordered samples with } \mathbf{Y}_{\mathrm{i}} \text { at any position }}{\text { total number of samples of sze } \mathrm{n}} \cdot \frac{1}{\text { number of sample positions }}=\left[\binom{\mathbf{N}-1}{\mathrm{n}-1} /\binom{\mathbf{N}}{\mathrm{n}}\right] \cdot[1 / \mathrm{n}]=\frac{1}{\mathbf{N}}$;
$\therefore E\left(Y_{j}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{Y}_{\mathrm{i}} \cdot \frac{1}{\mathbf{N}}=\frac{1}{\mathbf{N}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{Y}_{\mathrm{i}}=\overline{\mathbf{Y}}$.
(ii) $E\left(Y_{j}^{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{Y}_{\mathrm{i}}^{2} \cdot \operatorname{Pr}\left(Y_{j}=\mathbf{Y}_{\mathbf{i}}\right)=\frac{1}{\mathbf{N}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{Y}_{\mathrm{i}}^{2} \quad$ [using the result for $\operatorname{Pr}\left(Y_{j}=\mathbf{Y}_{\mathbf{i}}\right)$ from (i)];
$\therefore \operatorname{sd} .\left(Y_{j}\right)=\sqrt{E\left(Y_{j}^{2}\right)-\left[E\left(Y_{j}\right)\right]^{2}}=\sqrt{\frac{1}{\mathbf{N}} \sum_{i=1}^{\mathbf{N}} \mathbf{Y}_{i}^{2}-\overline{\mathbf{Y}}^{2}}=\sqrt{\frac{1}{\mathbf{N}}\left[\sum_{i=1}^{\mathbf{N}} \mathbf{Y}_{i}^{2}-\mathbf{N} \overline{\mathbf{Y}}^{2}\right]}=\sqrt{\frac{\mathbf{N}-1}{\mathbf{N}} \mathbf{S} .}$
(iii) $E\left(Y_{j} Y_{l}\right)=\sum_{\mathrm{i}=1}^{\mathrm{N}} \sum_{\mathrm{k} *=1=1}^{\mathbb{N}} \mathbf{Y}_{\mathbf{i}} \mathbf{Y}_{\mathrm{k}} \cdot \operatorname{Pr}\left(Y_{j}=\mathbf{Y}_{\mathrm{i}}, Y_{l}=\mathbf{Y}_{\mathrm{k}}\right) \quad$ (the mean of a product of discrete random variables).

But from (i), because $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B \mid A), \operatorname{Pr}\left(Y_{j}=\mathbf{Y}_{\mathrm{i}}, Y_{l}=\mathbf{Y}_{\mathrm{k}}\right)=\operatorname{Pr}\left(Y_{j}=\mathbf{Y}_{\mathrm{i}}\right) \cdot \operatorname{Pr}\left(Y_{l}=\mathbf{Y}_{\mathrm{k}} \mid Y_{j}=\mathbf{Y}_{\mathrm{i}}\right)=\frac{1}{\mathbf{N}} \cdot \frac{1}{\mathbf{N}-1} ;$
$\therefore \quad E\left(Y_{j} Y_{l}\right)=\frac{1}{\mathbf{N}} \cdot \frac{1}{\mathbf{N}-1} \sum_{i=1}^{\mathbf{N}} \mathbf{Y}_{1} \sum_{\mathrm{k} \in \mathrm{i}=1=1}^{\mathrm{N}} \mathbf{Y}_{\mathrm{k}}=\frac{1}{\mathbf{N}} \cdot \frac{1}{\mathbf{N}-1} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{Y}_{\mathrm{i}}\left(\mathbf{N} \overline{\mathbf{Y}}-\mathbf{Y}_{\mathrm{i}}\right)=\frac{1}{\mathbf{N}} \cdot \frac{1}{\mathbf{N}-1}\left[\mathbf{N} \overline{\mathbf{Y}}^{2}-\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{Y}_{\mathrm{i}}^{2}\right] \quad$ (because $\left.\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{Y}_{\mathrm{i}}=\mathbf{N} \overline{\mathbf{Y}}\right)$;
$\begin{aligned} \therefore \operatorname{cov}\left(Y_{j}, Y_{l}\right) & =E\left(Y_{j} Y_{l}\right)-E\left(Y_{j}\right) \cdot E\left(Y_{l}\right) \\ & =\frac{1}{\mathbf{N}(\mathbf{N}-1)}\left[\mathbf{N}^{2} \overline{\mathbf{Y}}^{2}-\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{Y}_{\mathrm{i}}^{2}\right]-\overline{\mathbf{Y}} \cdot \overline{\mathbf{Y}}=\frac{\mathbf{N}^{2} \overline{\mathbf{Y}}^{2}-\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{Y}_{\mathrm{i}}^{2}-\mathbf{N}(\mathbf{N}-1) \overline{\mathbf{Y}}^{2}}{\mathbf{N}(\mathbf{N}-1)}=\frac{-\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{Y}_{\mathrm{i}}^{2}+\mathbf{N} \overline{\mathbf{Y}}^{2}}{\mathbf{N}(\mathbf{N}-1)}=-\frac{\mathbf{S}^{2}}{\mathbf{N}} .\end{aligned}$

Figure 8.11. UNSTRATIFIED POPULATIONS: ©ne-Stage EPSWOR of Individual Elements
(continued 2)
Hence, when we use \bar{Y} (the random variable representing the sample average) as an estimator of $\overline{\mathbf{Y}}$ (the respondent population average), under EPS we have:

$$
\begin{align*}
& E(\bar{Y})=E\left[\frac{1}{n} \sum_{j=1}^{n} Y_{j}\right]=\frac{1}{n} E\left[\sum_{j=1}^{n} Y_{j}\right]=\frac{1}{n} \sum_{j=1}^{n} E\left(Y_{j}\right)=\frac{1}{\mathrm{n}}[\underbrace{\overline{\mathbf{Y}}+\overline{\mathbf{Y}}+\ldots . . \overline{\mathbf{Y}}}]=\overline{\mathbf{Y}} ; \quad \text { i.e., } \bar{Y} \text { is an unbiased estima- } \tag{8.11.8}\\
& \mathrm{n} \text { terms from (i) } \quad \text { tor of } \overline{\mathbf{Y}} \text { under EPS; } \\
& s d .(\bar{Y})=s d .\left[\frac{1}{n_{j}} \sum_{j=1}^{\mathrm{n}} Y_{j}\right]=\frac{1}{\mathrm{n}} s d .\left[\sum_{j=1}^{\mathrm{n}} Y_{j}\right] \tag{8.11.9}
\end{align*}
$$

[the standard deviation of the sample average under EPS (from an unstratified respondent population)].
Thus, the distribution of (the estimator of) the sample average under EPS is:

$$
\begin{equation*}
\bar{Y} \div N\left(\overline{\mathbf{Y}}, \mathbf{S}_{\left.\sqrt{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}\right)}\right. \tag{8.11.10}
\end{equation*}
$$

NOTES: 1. Equation (8.11.9) for $s d .(\bar{Y})$ shows that the effect of the finite size of the respondent population is to modify the familiar expression by including a second term, $1 / \mathbf{N}$, under the square root multiplying \mathbf{S}. Other matters of interest are:

- when $\mathrm{n}=\mathbf{N}, s d .(\bar{Y})=0$, reminding use that sample error is zero in a census.
- when $\mathrm{n} \ll \mathbf{N}$ (i.e., when the sample size is a small proportion of the respondent population
size, say 5% or less), the expression for $s d .(\bar{Y})$ becomes essentially the more familiar form $\mathbf{S} \sqrt{\frac{1}{\mathrm{n}}}$.
- the form of the square root multiplying \mathbf{S} means that the precision of estimating $\overline{\mathbf{Y}}$ by \bar{Y} under EPS is determined primarily by the sample size and only weakly by the population size.
- This insight of statistical theory is counter-intuitive - there is essentially the same sampling imprecision in a national poll of 1,500 people selected from a population of 30 million Canadians or 300 million Americans.

2. The expression (8.11.9) may be written as shown in equations (8.11.12) and (8.11.13) at the right. The former, where \mathbf{S} has been replaced by its expression in terms of \mathbf{Y}, is of interest to compare with equation (8.11.14) below; equation (8.11.13) gives the standard deviation of \bar{Y} as the familiar form (8.11.11) multi-

$$
\begin{align*}
& s d .(\bar{Y})=\sqrt{\frac{1}{\mathbf{N}-1}\left(\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}\right) \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathbf{Y}_{\mathrm{i}}-\overline{\mathbf{Y}}\right)^{2}} \tag{8.11.12}\\
& \text { 1.13) } \tag{8.11.13}\\
& \text { nulti- } \\
& \quad \text { sd. }(\bar{Y})=\sqrt{(1-f)} \mathbf{S} \sqrt{\frac{1}{\mathrm{n}}}
\end{align*}
$$

plied by the square root of a finite population correction $1-f$, where $f=\mathrm{n} / \mathbf{N}$ is the sampling fraction. BUT:

- Thinking of $s d .(\bar{Y})$ as an 'infinite population' result times a 'correction factor' unhelpfully encourages confusing a model with the real world - recall the comment below Table 8.11.1 at the end of the second asterisk (*) on page 8.49.

3. The coefficient of variation (c.v.) of \bar{Y} [a measure of relative imprecision] is given in equation (8.11.14)

$$
\begin{equation*}
c . v .(\bar{Y}) \equiv \frac{s . d .(\bar{Y})}{\overline{\mathbf{Y}}}=\sqrt{\frac{1}{\mathbf{N}-1}\left(\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}\right) \sum_{\mathrm{i}=1}^{\mathbf{N}}\left(\frac{\mathbf{Y}_{\mathbf{i}}}{\overline{\mathbf{Y}}}-1\right)^{2}} \tag{8.11.14}
\end{equation*}
$$ $s d .(\bar{Y})$ becomes smaller relative to $\overline{\mathbf{Y}}]$ as n becomes larger and when the \mathbf{Y}_{i} have less variation about their average $\overline{\mathbf{Y}}$.

4. \bar{Y} is the linear unbiased estimator of $\overline{\mathbf{Y}}$ with smallest standard deviation based on a sample of size n units selected by EPS (e.g., see Barnett, pp. 26-27).
5. The expression (8.11.9) for $s d .(\bar{Y})$ under EPS is useful in three ways:

- it gives the imprecision of the estimator \bar{Y};
- it allows us to calculate the approximate sample size needed to attain a specified imprecision for estimating $\overline{\mathbf{Y}}$ recall Section 5 on page 6.26 in Figure 6.3 of these STAT 220 Course Materials;
- it allows us to compare the efficiency of \bar{Y} with that of other estimators of $\overline{\mathbf{Y}}$.

A practical difficulty in using the expression (8.11.9) above for $s d .(\bar{Y})$ is that \mathbf{S} is usually unknown; a way around this difficulty is to use the sample standard deviation, s, as an estimate of \mathbf{S}, ostensibly because of the following:

$$
\begin{align*}
& s^{2}=\frac{1}{\mathrm{n}-1}\left[\sum_{j=1}^{\mathrm{n}} y_{j}^{2}-\mathrm{n} \overline{\mathrm{y}}^{2}\right]=\frac{1}{\mathrm{n}-1} \sum_{j=1}^{\mathrm{n}} y_{j}^{2}-\frac{\mathrm{n}}{\mathrm{n}-1} \bar{y}^{2} ; \tag{8.11.15}\\
& \therefore E\left(S^{2}\right)=\frac{1}{\mathrm{n}-1} E\left[\sum_{j=1}^{\mathrm{n}} Y_{j}^{2}\right]-\frac{\mathrm{n}}{\mathrm{n}-1} E\left(\bar{Y}^{2}\right)=\frac{1}{\mathrm{n}-1} \underbrace{\mathrm{n}} \frac{1}{\sum_{i=1}^{N} \mathbf{Y}_{i}^{2}}-\frac{\mathrm{n}}{\mathrm{n}-1}\left\{\overline{\mathbf{Y}}^{2}+[s d .(\bar{Y})]^{2}\right\} \\
& =\frac{\mathrm{n}}{\mathrm{n}-1}\left\{\frac{1}{\mathbf{N}}\left(\sum_{i=1}^{N} \mathbf{Y}_{\mathrm{i}}^{2}-\mathbf{N} \overline{\mathbf{Y}}^{2}\right)-\left(\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}\right) \mathbf{S}^{2}\right\}^{\mathrm{n}} \\
& =\frac{\mathrm{n}}{\mathrm{n}-1}\left\{\frac{\mathbf{N}-1}{\mathbf{N}} \mathbf{S}^{2}-\left(\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}\right) \mathbf{S}^{2}\right\}=\mathbf{S}^{2} ; \tag{8.11.16}
\end{align*}
$$

$\left\{[\mathrm{sd} .(\bar{Y})]^{2}=E\left(\bar{Y}^{2}\right)-[E(\bar{Y})]\right.$,
and: $E(\bar{Y})=\overline{\mathbf{Y}}$ so that
$\left.E\left(\bar{Y}^{2}\right)=\overline{\mathbf{Y}}^{2}+[s . d .(\bar{Y})]^{2}\right\}$
i.e., S^{2} [the random variable representing the square of the sample (data) standard deviation under equiprobable selecting] is an unbiased estimator of \mathbf{S}^{2}, the square of the respondent population (data) standard deviation [but see Appendix 3 on page 8.57].
Thus, the estimated standard deviation of \bar{Y} under EPS is given by: $\quad \hat{s} d .(\bar{Y})=s \sqrt{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}$

On the basis of the approximate normality of the distribution of \bar{Y} as a consequence of the Central Limit Theorem, and arguing in a general way from the use of the t distribution in normal theory when the population standard deviation is estimated by the sample standard deviation, the theory developed above leads to a probabilistic interval:

$$
\begin{equation*}
I=\left[\bar{Y}-{ }_{\alpha} t_{\mathrm{n}-1}^{*} S \sqrt{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}, \quad \bar{Y}+{ }_{\alpha} t_{\mathrm{n}-1}^{*} S \sqrt{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}\right] \tag{8.11.18}
\end{equation*}
$$

such that $\operatorname{Pr}(I \ni \overline{\mathbf{Y}}) \simeq 100(1-\alpha) \%$, where $\alpha_{\mathrm{n}-1}^{*}$ is the $100(1-\alpha / 2) t h$ percentile of the $t_{\mathrm{n}-1}$ distribution. For calculating an approximate $100(1-\alpha) \%$ confidence interval for $\overline{\mathbf{Y}}$, we use:

$$
\begin{equation*}
\bar{y} \pm{ }_{\alpha} t_{\mathrm{n}-1}^{*} S \sqrt{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}=\left[\bar{y}-\alpha_{\mathrm{n}-1}^{*} S \sqrt{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}, \bar{y}+{ }_{\alpha} t_{\mathrm{n}-1}^{*} S \sqrt{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}\right] \tag{8.11.19}
\end{equation*}
$$

NOTES: 6 . The first expression in (8.11.19) is convenient when assessing sampling imprecision; the second is a more direct Answer.
7. The values of sample attributes determine two characteristics of the approximate confidence interval for $\overline{\mathbf{Y}}-$ the sample average (\bar{y}) defines its centre, the sample standard deviation (s) determines its width; both characteristics (centre and width) of a confidence interval may be adversely affected by inaccurate selecting or measuring processes.
8. Using the t distribution requires that the population unit responses be probabilistically independent and normally distributed; in equiprobable selecting, successive observations are (weakly) dependent and not (necessarily) normally distributed, so this use of the t distribution has a weakened theoretical basis.

- This weaker theoretical basis is one reason why the confidence interval expressions (8.11.19) are approximate.

9. An important consideration in assessing the nominal level of a confidence interval is how large the sample size needs to be for reasonable normality of \bar{Y} as a consequence of the Central Limit Theorem; unfortunately, there is no reliable general rule but, when the deviation from normality is mainly a positive skewness, a crude rule (see Cochran, page 42) which is occasionally useful is that n should be greater than $25 G_{1}^{2}$, where:

$$
\begin{equation*}
G_{1}=\frac{1}{\mathbf{N S}^{3}} \sum_{i=1}^{\mathrm{N}}\left(\mathbf{Y}_{\mathrm{i}}-\overline{\mathbf{Y}}\right)^{3}, \quad\left[\text { estimated from the sample as: } \quad g_{1}=\frac{1}{\mathrm{~ns} s^{3}} \sum_{j=1}^{\mathrm{n}}\left(y_{j}-\bar{y}\right)^{3}\right] \tag{8.11.20}
\end{equation*}
$$

- The approximate normality of the distribution of \bar{Y} is a second (related) reason why the confidence interval expressions (8.11.19) are approximate.

10. The results derived in (i), (ii) and (iii) on the fourth side (page 8.52) of this Figure, which provide the theoretical basis for the confidence interval expressions, all involve the equal unit selection probabilities that are a consequence of EPS and, in (iii), the joint probability $1 / \mathbf{N}(\mathbf{N}-1)$, which comes from the formal requirement for equiprobable samples under EPS. There is thus no basis for using these expressions to calculate a confidence interval from a sample obtained by other selecting methods (accessibility, haphazard, judgement, quota, systematic, volunteer, etc.). - Likewise, use throughout this Figure 8.11 of lower-case italic ys (values of random variables) to represent the measured sample response variate data values is based on EPS as the sample selecting process; other (nonprobability) selecting processes would entail using instead Roman ys to represent such data values and there would be no reasonable basis for treating these ys as the y s of the foregoing theory (recall the comment in Figure 6.1 at the top of page 6.4 and Note 11 at the top of page 6.28 of Figure 6.3).
11. The theory leading to equation (8.11.9) overleaf on page 8.53 considers only sample error but using equation (8.11.17) when calculating a confidence interval for $\overline{\mathbf{Y}}$ or \mathbf{Y} involves using the measured sample y_{j} s to calculate s. As a consequence, the confidence expressions (8.11.19) above for $\overline{\mathbf{Y}}$ and (8.11.23) near the bottom of the facing page 8.55 for YY quantify both sample error and (fortuitously) measurement error.

- We see that this is so by considering a respondent population whose elements all have the same \mathbf{Y} value; variation in the $y_{j} \mathrm{~s}$ would then reflect only measurement error. Hence, in the usual case of varying $\mathbf{Y}_{\mathrm{i}} \mathrm{s}$, the measured y_{j} values reflect both sample and measurement error.
- The confidence interval expressions (8.11.19) above and (8.11.23) on page 8.55 quantify the combined uncertainty due to sample error and measurement error - their effects could be estimated individually if replicate measurements were to be made on the sample units, but this is rare in sample surveys because there would be little benefit, extra cost and the difficulty of maintaining (real-world) independence of replicate measurements, especially when the population elements are humans and the measuring instrument is a questionnaire.
This matter is the survey sampling analogue of the theory developed in Figure 6.1 for the model (8.11.2) on page 8.49 - for example, recall equation (6.1.18) on page 6.6.
- It would be useful if the ('finite population') theory in this Figure 8.11 could inform that of Figure 6.1 so that it would be correct, when $\quad \bar{Y} \sim N\left(\mu, \sigma \sqrt{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}\right)$ the population size is \mathbf{N}, to write equation (6.1.18) on page 6.6 as equation (8.11.21).

Example 8.11.2: In an audit of hospital accounts, 200 accounts were obtained by equiprobable selecting from a total of 1,000 accounts; for all 200 accounts, the sample average was $\bar{y}=\$ 392.42$ and the sample standard deviation was $s=\$ 20.11$. Find an approximate 90% confidence interval for the average amount per account $(\overline{\mathbf{Y}})$ at the hospital.

Figure 8.11. UNSTRATIFIED POPULATIONS: One-Stage EPSWOR of Individua
(continued 3)
Solution: NOTES: 12. In calculating the 90% confidence interval for $\overline{\mathbf{Y}}$, the value of ${ }_{.1} t_{199}^{*}=1.65255$ has been obtained by linear interpolation from the relevant entries (viz., 1.65291 and 1.65251) from Table 6.4 (pages 6.33 and 6.34) for 190 and 200 degrees of freedom.
13. In calculations like those in the solution of Example 8.11.2, we must use and show enough significant figures to avoid rounding inaccuracy; however, it is an essential part of a proper solution to give a final answer rounded to a number of figures appropriate to the Question context.

Example 8.11.3: In the same hospital as in Example 8.11.2, $n=9$ accounts were obtained by equiprobable selecting from the total of 484 open accounts; the data, and their numerical summaries, were as follows:

$$
\begin{array}{llllll}
\$ 333.50 & 332.00 & 352.00 \\
\$ 345.00 & 342.50 & 339.00
\end{array} \quad 343.00 \quad 340.00341 .00 \quad \sum_{j=1}^{9} y_{j}=3,068.00, \quad \sum_{j=1}^{9} y_{j}^{2}=1,046,132.50
$$

Find an approximate 95% confidence interval for the average amount per open account at the hospital.
Solution: The solution of this Example 8.11.3 is like that of Example 8.11.2 except we must calculate the values of \bar{y} and s from the numerical summaries of the sample data.
We have: $\quad \mathbf{N}=484, \quad \mathrm{n}=9, \quad \bar{y}=\frac{3,068.00}{9}=\$ 340 . \dot{8}, \quad{ }_{.05} t_{8}^{*}=2.30600$ for 95% confidence,

$$
s=\sqrt{\frac{1,046,132.50-3,068.00^{2} / 9}{8}}=\$ 5.972739 .
$$

Then: $\quad \sqrt[s]{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}=5.97274 \sqrt{\frac{1}{9}-\frac{1}{484}}=\$ 1.972315622$.
Hence, an approximate 95% confidence interval for $\overline{\mathbf{Y}}$, the average amount per open account at the hospital, is: $\bar{y} \pm 2.30600 \times \hat{s} d .(\bar{Y})=340 . \dot{8} \pm 2.30600 \times 1.972316 \Longrightarrow(336.34,345.44)$ or about $(\$ 336, \$ 346)$.

NOTES: 14. Despite the small sample size of 9, the confidence interval is, as in Example 8.11.2, relatively narrow (i.e., the Answer shows relatively low imprecision for estimating $\overline{\mathbf{Y}}$) because the value of the population standard deviation \mathbf{S} is small in relation to the value of $\overline{\mathbf{Y}}$, as indicated by their estimates from the sample of about $\$ 6$ for s and about $\$ 340$ for \bar{y}.

- The small sample size in Example 8.11.3, where all the sample data are given, is only for classroom convenience; a real sample survey like this would usually have a much larger sample size.

15. For interest, we can carry out the check discussed in Note 9 on the facing page 8.54 for the adequacy of the sample size with respect to the assumed normality of \bar{Y}; for convenience, estimating the sum of cubes from the sample data is set out in Ta- ble 8.11.6 at the right; dividing the sum of cubes by $\mathrm{n} s^{3}=1,917.622626$, we find $25 g_{1}^{2}=4.453978$, which is less than $\mathrm{n}=9$ as the check requires.

Table 8.11.6:	j	y_{j}	\bar{y}	$y_{j}-\bar{y}$	$\left(y_{j}-\bar{y}\right)^{3}$
	1	333.50	$340 . \dot{8}$	$-7.3 \dot{8}$	-403.401405
	2	332.00	$340 . \dot{8}$	$-8.8 \dot{8}$	-702.331959
ma-	3	352.00	$340 . \dot{8}$	$11 . \dot{1}$	$1,371.742116$
of	4	343.00	$340 . \dot{8}$	$2 . \dot{1}$	9.408779
ble	5	340.00	$340 . \dot{8}$	$-0 . \dot{8}$	-0.702332
by	6	341.00	$340 . \dot{8}$	$0 . \dot{1}$	0.001372
978,	7	345.00	$340 . \dot{8}$	$4 . \dot{1}$	69.482854
b.	8	342.50	$340 . \dot{8}$	$1.6 \dot{1}$	4.181927
	9	339.00	$340 . \dot{8}$	$-1 . \dot{8}$	-6.739369

6. Estimating \mathbf{T}, the Respondent Population Total

Under the assumption that the population size, \mathbf{N}, is a known constant, the theory of equiprobable selecting for estimating ${ }_{\mathrm{T}} \mathbf{Y}$ is a straight-forward extension of the results for $\overline{\mathbf{Y}}$. Because the population total is $\mathbf{T}_{\mathbf{T}}=\mathbf{N} \overline{\mathbf{Y}}$, its estimator is $\mathbf{N} \bar{Y}$; the standard deviation of this estimator is then $\mathbf{N} \times s . d .(\bar{Y})$. Hence, we obtain a probabilistic interval:

$$
\begin{equation*}
I=\left[\mathbf{N} \bar{Y}-{ }_{\alpha} t_{\mathrm{n}-1}^{*} \mathbf{N} S \sqrt{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}, \quad \mathbf{N} \bar{Y}+{ }_{\alpha} t_{\mathrm{n}-1}^{*} \mathbf{N} S \sqrt{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}\right] \tag{8.11.22}
\end{equation*}
$$

such that $\operatorname{Pr}\left(I \ni_{\mathrm{T}} \mathbf{Y}\right) \simeq 100(1-\alpha) \%$, where ${ }_{\alpha} t_{\mathrm{n}-1}^{*}$ is the $100(1-\alpha / 2)$ th percentile of the $t_{\mathrm{n}-1}$ distribution. For calculating an approximate $100(1-\alpha) \%$ confidence interval for \mathbf{T}, we use:

$$
\begin{equation*}
\mathbf{N} \bar{y} \pm{ }_{\alpha} t_{\mathrm{n}-1}^{*} \mathbf{N} S \sqrt{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}=\left[\mathbf{N} \bar{y}-{ }_{\alpha} t_{\mathrm{n}-1}^{*} \mathbf{N} S \sqrt{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}, \mathbf{N} \bar{y}+{ }_{\alpha} t_{\mathrm{n}-1}^{*} \mathbf{N} S \sqrt{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}\right] . \tag{8.11.23}
\end{equation*}
$$

Example 8.11.4: A company was concerned about the time per week its 750 managers spent on unimportant tasks. For 50 managers obtained by equiprobable selecting, it was found that the average time spent on such tasks was 10.31 hours and the standard deviation was 1.5 hours. Find an interval estimate for the total person-hours spent per week by the 750 managers on these unimportant tasks.
(continued overleaf)

Solution: Estimating \mathbf{Y} is like estimating $\overline{\mathbf{Y}}$ except that we must multiply by \mathbf{N} in appropriate places; the solution of this Example 8.11.4 therefore follows the pattern of Examples 8.11.2 and 8.11.3.
We have: $\quad \mathbf{N}=750, \quad \mathrm{n}=50, \quad \bar{y}=10.31$ hours, $\quad s=1.5$ hours, ${ }_{.05} t_{49}^{*}=2.00958$ for 95% confidence.
Then: $\sqrt[s]{\frac{1}{\mathrm{n}}-\frac{1}{\mathbf{N}}}=1.5 \sqrt{\frac{1}{50}-\frac{1}{750}}=0.204939$ hours.
Hence, an approximate 95% confidence interval for ${ }_{\mathrm{T}} \mathbf{Y}$, the total number of hours spent by the 750 managers on unimportant tasks, is:
$\mathbf{N} \bar{y} \pm 2.00958 \times \mathbf{N} \times \hat{s} . \hat{d} .(\bar{Y})=750 \times 10.31 \pm 2.00958 \times 750 \times 0.204939 \Longrightarrow(7,424,8,041)$
or about $(7,400,8,100)$ hours per week.
NOTES: 16. When the confidence level is not specifed in the Question, we take the default as 95%.
17. Population totals are often large numbers and so the widths of confidence intervals for $\mathbf{T}_{\mathrm{T}} \mathbf{Y}$ may be large in absolute terms but not necessarily large relative to the magnitude of \mathbf{T}.
18. It would be difficult to implement an accurate and precise measuring system for quantifying personal time usage for activities like those in Example 8.11.4; this is why the end points of the final confidence interval have been rounded to only two significant digits.

Example 8.11.5: One hundred water meters, obtained by equiprobable selecting from a community of 10,000 households, are monitored over a particular dry spell of weather. For all 100 meters, the sample average and standard deviation (in suitable units) are found to be 12.5 and 35.4 respectively. Find an approximate 99% confidence interval for the total water consumption in the community during the dry spell.

Solution: We have: $\mathbf{N}=10,000, \mathrm{n}=100, \bar{y}=12.5$ units, $s=35.4$ units, ${ }_{.01} t_{99}^{*}=2.62641$ for 99% confidence. Then: $\quad \sqrt[s]{\frac{1}{\mathrm{n}}-\frac{1}{\mathrm{~N}}}=35.4 \sqrt{\frac{1}{100}-\frac{1}{10,000}}=3.522256$ units.
Hence, an approximate 99% confidence interval for $T \mathbf{Y}$, the total water consumption of the 10,000 households over the dry spell, is:
$\mathbf{N} \bar{y} \pm 2.62641 \times \mathbf{N} \times \hat{s} d .(\bar{Y})=10,000 \times 12.5 \pm 2.62641 \times 10,000 \times 3.522256 \Rightarrow(32,491,217,509)$
or about $(32,000,220,000)$ units.
NOTE: 19. The wide confidence interval (i.e., the high imprecision) for estimating ${ }_{\mathrm{T}} \mathbf{Y}$ in Example 8.115 is mainly a consequence of a very variable population of household water consumptions: $s / \bar{y}=283 \%$. Because water consumption is an inherently non-negative quantity, these sample attribute values suggest a highly (positively) skewed population distribution of water consumptions which, in turn, raises concerns about the accuracy of the nominal confidence level of an interval based on the t distribution. In a real sample survey, this matter would need to be followed up.

- The high imprecision for estimating ${ }_{T} \mathbf{Y}$ in Example 8.11 .5 could be managed by stratifying the population into groups of households more homogeneous with respect to their water consumptions; stratifying is discussed briefly in Appendix 5 on the last side (page 6.12) of Figure 6.1 and is pursued in more detail in Part 4 of the STAT 332 Course Materials.

7. REFERENCES: 1. Barnett, V. Sample Survey Principles and Methods. Second edition, Edward Arnold, London, 1991; (First edition: Elements of Sampling Theory. The English Universities Press Ltd., London, 1974).
8. Cochran, W. G. Sampling Techniques. John Wiley \& Sons, Inc., New York, 3rd Edition, 1977.

8. Appendix 1: Population Elements and Population Units

As discussed in Section 1 on page 8.3 in Figure 8.1, we distinguish:

- Elements: the entities that make up a population; for example, a person is an element of the population of Canadians, but we recognize that many populations in data-based investigating have non-human or inanimate elements.
- Units: the entities selected for the sample; a unit may be one element (e.g., a person) or more than one (e.g., a household).

This Figure 8.11 is concerned with (survey) sampling and so refers in most places to units, but population attributes of interest (like $\mathbf{N}, \overline{\mathbf{Y}}, \mathbf{Y}$ and \mathbf{S}) refer to elements. In introductory courses like STAT 220 and STAT 231, we restrict attention to units which are elements so the distinction is of no consequence but, anticipating Figures 2.14 and 2.16 in STAT 332, when units are groups of elements (as in cluster sampling), some expressions in the theory must be modified. This is illustrated in Table 8.11.8 at the upper right of the facing page 8.57 by comparing expressions in this Figure 8.11 with those for selecting equal-sized clusters, like cardboard boxes in a supermarket that each contain, say, 24 cans of soup, or cartons from a component manufacturing

Figure 8.11. UNSTRATIFIED POPULATIONS:

One-Stage EPSWOR of Individual Elements Estimating an Average or a Total
process that each contain a set number (say, 10) of the component. Table 2.3 .7 at the right gives additional notation we need, where the repondent population is considered as \mathbf{N} elements of which n are selected (by EPS) for the sample, or as \mathbf{M} clusters each of L elements, of which m are selected (by EPS) to yield a sample of mL elements.

Given the respondent population 'models' of \mathbf{N} elements or \mathbf{M} clusters, the structural similarity of corresponding expressions in the two columns of Table 8.11.8 are clear; noteworthy points are:

- when estimating $\overline{\mathbf{Y}}, \bar{y}$ involves element responses y_{j} but $\bar{y}_{e c}$ involves cluster average responses \bar{y}_{j};
- $\mathbf{S}_{e c}$ (estimated by $S_{e c}$), which quantifies variation of cluster averages in the respondent population, is to be distinguished from the variation of element responses quantified by \mathbf{S} (estimated by s).
The cluster sampling expressions in the right-hand column of Table 8.11.8 are taken from Figure 2.14 of the STAT 332 Course Materials. The theory for unequal-sized clusters is more complicated - see Figure 2.16 of the STAT 332 Materials.

Table 8.11.7:	Elements Clusters			Relationships
Respondent population	\mathbf{N}	\mathbf{M}	$\mathbf{N}=\mathbf{M L}, \mathrm{L}=\mathbf{N} / \mathbf{M}$	
Sample	n	m	$\mathrm{n}=\mathrm{mL}, \mathrm{L}=\mathrm{n} / \mathrm{m}$	

Also: $\overline{\mathbf{Y}}_{\mathrm{i}}=\frac{1}{\mathrm{~L}} \sum_{k=1}^{\mathrm{L}} \overline{\mathbf{Y}}_{\mathrm{ik}}$ is the average response of the ith population cluster, $\bar{y}_{j}=\frac{1}{\mathrm{~L}} \sum_{k=1}^{\mathrm{L}} y_{j k}$ is the average response of the j th sampled cluster, the subscript ec in Table 8.11 .8 below denotes 'equal-sized clusters'.

\[

\]

9. Appendix 2: Representative Sampling

The appealing intuitive idea of a 'representative sample' - one that 'looks like' the (respondent) population with respect to the attribute(s) of interest - is equivocal statistically for four reasons:

- a sample selected by EPS is unlikely to be 'representative' in the sense just given for all attributes of potential interest - for instance, a sample may have small [possibly (close to) zero] sample error for estimating $\overline{\mathbf{Y}}$ but large sample error for estimating \mathbf{S};
- the sample, of itself, provides no information about its 'representativeness';
- there is no selecting process known to yield a 'representative' sample, except taking a census;
- the terminology tends to obscure the distinction between the individual case (the particular sample) and behaviour under repetition (the properties of the selecting process).
Less equivocal terminology is representative sampling, with its implication of a selecting process (like EPS) which, in conjunction with adequate replicating, provides for quantifying sampling imprecision and so allows a particular investigation to obtain an Answer with acceptable limitation (in the Question context) due to sample error. However, the writer's preference is to avoid in statistics the terms 'representative' and 'representativeness' in relation to a sample (or a sampling protocol).
- Kruskal and Mosteller devote 50 pages to discussing the (sometimes ill-defined) meanings in statistical contexts of representative sampling in three articles in the International Statistical Review, 47, 13-24, 111-127, 245-265 (1979). [UW Library call number HA 11.I505]

NOTE: 20. An illustration, involving bivariate data, of another instance of sample-attribute dependence is:

- when estimating the least squares slope of a straight-line relationship, sample points more concentrated near the ends of the interval of observation will reduce sampling imprecision (although this will increase imprecision of any inference needed to show that the relationship is a straight line);
- similar considerations apply when estimating correlation, although estimating this attribute is rarely discussed.

10. Appendix 3: The Mean of $S, E(S)$

The justification in equation (8.11.17), at the bottom of page 8.53 , for using s to estimate \mathbf{S} is compromised by the fact that S is not an unbiased estimator of \mathbf{S}. Because of the square root in the expression for s in equation (8.11.3) on page 8.49 (and in Table 8.11.5 on page 8.52), there is no simple expression for the estimating bias of the corresponding random variable S under EPS, but we know that bias exists from the following argument, which is an illustration of Jensen's Inequality and uses the fact that the variance of any (non-constant) random variable is positive. We have:

$$
\begin{equation*}
0<\operatorname{var}(S)=E\left(S^{2}\right)-[E(S)]^{2}=\mathbf{S}^{2}-[E(S)]^{2} \quad \text { so that, taking square roots: } \quad E(S)-\mathbf{S}<0 . \tag{8.11.24}
\end{equation*}
$$

NOTE: 21. For the model (8.11.2) on page 8.49, the mathematics is more tractable and leads to equation (8.11.25) at the right so that, because of equation (6.3.38) on page 6.29 of Figure 6.3, rewritten at the right as equation (8.11.26), the bias term multiplying σ on the RHS of equation (8.11.25) is the mean of a $K_{\mathrm{n}-1}$

$$
\begin{align*}
& E(\widetilde{\sigma})=\sqrt{\frac{2}{\mathrm{n}-1}} \frac{\Gamma\left(\frac{\mathrm{n}}{2}\right)}{\Gamma\left(\frac{\mathrm{n}-1}{2}\right)} \sigma \tag{8.11.25}\\
& \frac{\widetilde{\sigma}}{\sigma} \sim K_{\mathrm{n}-1} \quad \text { or: } \quad \tilde{\sigma} \sim \sigma K_{\mathrm{n}-1}
\end{align*}
$$ distribution. Table 6.3 .10 of its values for $\mathrm{n}=2$ to 51 (i.e., for 1 to 50 degrees of freedom) on page 6.31 of Figure 6.3 reminds us that estimating bias:

NOTE: 21. - decreases in magnitude with increasing sample size, unlike (real-world) inaccuracy;
(cont.)

- of S as an estimator of \mathbf{S} is likely to be unimportant practically for the sample sizes used in most real sample surveys.

11. Appendix 4: Bias and Rms Error

For a random variable Y and some constant c , we have:

$$
\begin{align*}
E\left\{[Y-\mathrm{c}]^{2}\right\} & =E\left\{[E(Y)-\mathrm{c}+Y-E(Y)]^{2}\right\}=E\left\{[E(Y)-\mathrm{c}]^{2}+[Y-E(Y)]^{2}+2[E(Y)-\mathrm{c}][Y-E(Y)]\right\} \\
& =E\left\{[E(Y)-\mathrm{c}]^{2}\right\}+E\left\{[Y-E(Y)]^{2}\right\}+2 E\{[E(Y)-\mathrm{c}][Y-E(Y)]\} \\
& =[E(Y-\mathrm{c})]^{2}+E\left\{[Y-E(Y)]^{2}\right\}+2[E(Y)-\mathrm{c}] E[Y-E(Y)] \\
\text { i.e., } \quad E\left\{[Y-\mathrm{c}]^{2}\right\} & =[E(Y-\mathrm{c})]^{2}+[s . d .(Y)]^{2} \quad \text { because } E[Y-E(Y)] \equiv 0 . \tag{8.11.27}
\end{align*}
$$

If we now think of Y as a random variable whose distribution represents the possible values of a response variate \mathbf{Y} and c as a true value, the left-hand side of equation (8.11.27) is a mean squared error and $E(Y-\mathrm{c})$ in the first term on the right-hand side is a bias; we can therefore interpret equation (8.11.27) as:
mean squared error $=$ bias $^{2}+$ standard deviation.
Taking the square root so we are working on the same scale as the variate represented by Y, the root mean squared error is:
rms error $=\sqrt{\text { bias }^{2}+\text { standard deviation }}{ }^{2}$.
Thus, the rms error is one concept that combines the two model quantities of bias and (probabilistic) standard deviation, corresponding to the two real-world entities of inaccuracy and imprecision.

Equation (8.11.29) provides useful insights about bias and variation in the context of survey sampling; different cases depend on how broad our focus is in terms of which true value c represents - see also the discussion and diagram showing four components of overall error on the lower half of page 5.25 in Figure 5.7 of the STAT 231 Course Materials.

* The narrowest focus is measuring when c is the true value of the response variate \mathbf{Y}; equation (8.11.29) is then:
measuring rms error $=\sqrt{\text { measuring bias }{ }^{2}+\text { measuring standard deviation }{ }^{2}}$.
* For measuring and sampling, c is the true value of the respondent population attribute of \mathbf{Y} and then:
measuring and sampling $=\sqrt{\text { measuring }+ \text { sampling } \text { bias }^{2}+\text { measuring and sampling standard deviation }}{ }^{2}$; rms error
NOTE: 22. Measuring and sampling $=\sqrt{\text { measuring standard deviation }^{2}+\text { sampling standard deviation }}$.
standard deviation
* For measuring and sampling and non-responding, c is the true value of the study population attribute of \mathbf{Y} and then, under our assumption that non-response is deterministic (not stochastic):
$\underset{\text { non-responding rms error }}{\text { measuring and sampling and }}=\sqrt{+ \text { mon-responding } \text { bias }^{2}}+$ measuring and sampling standard deviation ${ }^{2}$.
* For measuring and sampling and non-responding and specifying, c is the true value of the target population attribute of \mathbf{Y} and then, under our assumption that specifying the study population also is deterministic:

measuring and sampling
and non-responding and
studying rms error

| measuring + sampling
 + non-responding
 + studying bias ${ }^{2}$ |
| :---: | + measuring and sampling standard deviation.2.

NOTE: 23. In printed materials other than these Course Materials (e.g., see Cochran, p. 15), equation (8.11.27) [or (8.11.28)] is usually discussed only with respect to estimating bias. Although estimating bias is a relatively minor topic in STAT 220, it is useful to recognize the following [recall also Example 8.11.1 on pages 8.51 and 8.52]:

- Estimating bias (a model quantity) is the difference between the mean of an estimator and the value of the corresponding population attribute (or model parameter); for example, under EPS:
- the random variable \bar{Y} representing the sample average \bar{y} is an unbiased estimator of the respondent population average \mathbf{Y} because, as shown in equation (8.11.8) at the top of the fifth side (page 8.53) of this Figure 8.11, $E(\bar{Y})=\overline{\mathbf{Y}}$ or $E(\bar{Y})-\overline{\mathbf{Y}}=0 ; \quad$ BUT
- the sample ratio $r=\bar{y} / \bar{x}$ is a biased estimator of the respondent population ratio $\mathbf{R}=\overline{\mathbf{Y}} / \overline{\mathbf{Y}}$ because $E(R) \neq \mathbf{R}$ or $E(R)-\mathbf{R} \neq 0$, and likewise for S as an estimator of \mathbf{S} as discussed overleaf on page 8.57 in Appendix 3 .
- The rms error of an estimator is of interest because, while we prefer an unbiased estimator of a population attribute, there are times when a biased estimator has only small bias and appreciably smaller standard deviation than an available unbiased estimator; we may then prefer the biased estimator with smaller rms error.
- Unlike (real-world) inaccuracy, estimating bias decreases in magnitude with increasing sample size (as discussed in Appendix 3 overleaf on page 8.57 and above in Note 21).

