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Figure 8.11. UNSTRATIFIED POPULATIONS: Betmaiog an Average or o Togal - e

1. Background Information

The mathematics on pages 8.52 and 8.53 in Section 5 of this Figure 8.11 is a centrepiece of the theory of survey sampling (‘de-
sign-based’ inference — recall Section 7 in Figure 6.1); we can appreciate it more fully with the following background information.

¢ In introductory probability, we use upper case italic letters (usually near the end of the alphabet, like X, ¥ and Z) for ran-
dom variables and the corresponding lower cases letters (e.g., x, y and z) for their values. We now further distinguish up-
per-case bold letters for population quantities; for example, ¥, is

- . . . Table 8.11.1: SYMBOL DESCRIPTION
the response variate for the ith element in the respondent population. Random yy,e Respondent
— The line through population symbols is make distinguishable italic variable " population :
and bold upper-case handwritten letters and we say, for instance, Y; Y 'y ¥ Response V%ﬂgte
cross’ for the response variate of the itk respondent population element. J ! Summation index
) o _ X X Focal explanatory variate
* In introductory statistics courses, the number of elements in the pop- -z Z Explanatory variate
ulation (also called the population size) is seldom considered explicitly; -~ n N Number of units/elements
in this Figure 8.11, this attribute is denoted N (‘N cross’). Yoy Y Average (sum - number)
) K .. . . . R r R Residual [or Ratio]
- Including the population size in survey sampling theory is sometimes S s S Standard deviation

called dealing with a finite population, but this is unhelpful terminology
(perhaps carrying over from mathematics where infinity often arises). A population in statistics is a real-world entity
and so, by its nature, has a finite number of elements — see also Note 2 on page 8.53.

* When investigating a Question with a descriptive aspect [one whose Answer will involve primarily values for population/pro-
cess attributes (past, present, future), a useful way to think of (or to ‘model’) the response ¥oF4R 1L
variate of a respondent population element is as shown in equation (8.11.1) at the right;
this model is useful because it expresses a quantity we can observe (¥;) in terms of an attribute of interest (¥, the popula-
tion average) and a quantity (R;, the population residual for element i) whose behaviour is amenable to probability modelling
which, ultimately, enables us to quantify imprecision due to sample error and (in some contexts) measurement error.

— The response model for a non-comparative Plan — the type of Plan usually appropriate to answer a Question with a des-
criptive aspect — involving equiprobable (simple random) selecting (EPS) of n units from an unstratified population is:
Y=u+R, j=1,2,..,n, R/LINQ©,o0), independent, EPS, - 8.11.2)
where ¥ is a random variable whose distribution represents the possible values of the measured response variate
for the jth unit in the sample of n units selected equiprobably from the respondent population,
if the selecting and measuring processes were to be repeated over and over;
R; is a random variable (called the residual) whose distribution represents the possible differences,
from the structural component of the model, of the measured value of the response variate
for the jth unit in the sample of n units selected equiprobably from the respondent population,
if the selecting and measuring processes were to be repeated over and over.
The symbol 4 in the model (8.11.2), and two related entities 2 and E, have the following meanings:
A a parameter representing the average (¥) of the measured response variate of the elements of the respondent population.
[i: the least squares estimate of (1— a number whose value is derived from an appropriate set of data;
o for the model (8.11.2), fi =, reflecting the intuitive idea that, under EPS, the measured sample average estimates
the measured respondent population average;
E the least squares estimator of y— a random variable whose distribution represents the possible values of the estimate
[1if the selecting, measuring and estimating processes were to be repeated over and over;

O here, ,E' Y, the random variable representing the sample average under EPS.

k We met o (on page 5.6 in Figure 5.1), and two related entities & and &} in the context of response models like (8.11.2) above;

o: the (probabilistic) standard deviation of the normal model for the distribution of the residual, is a model parameter
representing the (data) standard deviation (S) of the measured response variate of the respondent population elements;
this (data) standard deviation (and, hence, o) quantifies the variation of the measured response variate over the elements
of the respondent population — as this variation increases, so does S (and, hence, so does o).

O two other characteristics of variation are its location and its shape — these are, respectively, 0 and normal for (8.11.2);
0 the least squares estimate of 0 — a number whose value is derived from an appropriate set of data;
& the least squares estimator of o— a random variable whose distribution represents the possible values of the estimate
0 if the selecting, measuring and estimating processes were to be repeated over and over.
How o is estimated, reflected by differing expressions for 8, depends on the
sampling protocol in the Plan for the investigation and the response model
appropriate for this Plan; for the model (8.11.2), & is given by equation (8.11.3).

————— 8113

s In rhis Figure 8.11, we meet overleaf (on page 8.50) four quantities which are called ‘standard deviation’, the first two and an

1995-04-20 (continued overleaf’)

#8.49



University of Waterloo STAT 220 — W. H. Cherry

*

associated quantity S correspond to the three os given overleaf on page 8.49 but, unlike 3, s is called a standard deviation.

- S: the respondent population (data) standard deviation —it is defined in Section 4 inTable 8.11.5 on page 8.52 and_is
a number which quantifies the variation over the respondent population of the response variate ¥ about its average Y;

O like most population attributes Table 8.11.2: SUMMARY OF STANDARD DEVIATIONS
except N, usually the value of Response Models | Survey Sampling
S is unknown; o Model parameter | S Respondent population standard deviation — an attribute
= s: the sample (data) standard devia- & Estimate of o s Sample standard deviation — an estimate of S
tion — it is defined in Table 8.11.5 & Estimator of S Estimator corresponding to s — a random variable

on page 8.52 and is a number which quantifies the variation over the sample of the response y about its average y;

the expression for s is (8.11.3) at the bottom right overleaf on page 8.49, the same as that for & in the model (8.11.2).

o under EPS, s is used to estimate S — that is, to provide a value we can use for S;

o this Figure 8.11 is concerned with only one sampling protocol — EPS from an unstratified population to estimate an
average or total — and so there is only one expression for the estimate (s) of S;

S: the estimator corresponding to s — under EPS, it is a random variable, of which s is one (realized) value;

sd(Y): the standard deviation of the sample average — under EPS, it provides a theoretical basis for quantifying uncer-
tainty due to sample error in estimates of respondent population attributes like an average or total;

§d(Y): the estimated standard deviation of the sample average which, under EPS, is the basis for calculating values
for the end points of confidence intervals for respondent population attributes like an average or total.

The expressions for sd.(Y) and §d(Y) differ in that S is replaced by its estimate s — see equation (8.11.9) and equation

(8.11.17) on page 8.53. [In a non-probability sampling context concerned only with data, s would usually be denoted s.]

+

+

We capitalize on having two words — average and mean — in English to make a useful distinction for a measure of location:
- the average is a measure of location for a set of data;

— the mean is a measure of location for (the distribution of) a random variable.

However, for the magnitude of variation there is only one term — standard deviation — for the commonly-used measure, and
this can be a source of confusion. Ideally, we would like:

~ the (new word) as a measure of variation for a set of data,

= the standard deviation as a measure of variation for a random variable,

but the use of ‘standard deviation, regardless of context, is too well-established in statistics for this ideal to be attainable. A
compromise, to assist beginning students, is to distinguish a data standard deviation from a probabilistic standard deviation

— see Table 8.11.3 at the right. Note Table 8.11.3

that we use one symbol (e.g., S, s) Respondent poplﬂati(.)n.standard deviation S } data standard deviation

for a data standard deviation and the Sample standard deviation s

abbreviation sd for a probabilistic Sta.ndard deviation of. the sample average s’fl.(ii) probabilistic standard deviation
standard deviation. Estimated standard deviation of the sample average s.d.(Y)

Figure 8.12 of these Materials helps us appreciate the distinction between the sample standard deviation (s; represented vis-
ually by the 16 ‘hooked’ horizontal lines in each diagram) and the standard deviation of the sample average [s.d.(Y); as
estimated from the 16 sample averages and denoted sy near the lower right-hand corner of each diagram].

The standard deviation of Y is sometimes referred to as the standard error of Y (e.g. Barnett, pp. 26, 45) but this term has
been avoided in these Course Materials because it is used by different authors for both s.d.(Y) and £d.(Y) (see also Cochran,
pages 24, 25-27 and 53), potentially confusing a quantity and its estimate. [References are given on page 8.56 in Section 7]

The following suggestions may help avoid confusion arising from (careless use of) the terminology discussed above.
@ when you encounter the word mean, be sure you understand whether it refers to:
= an average of data (and whether the data are from a sample or a census), OR

- a random variable [and whether it is an individual random variable or a (linear) combination (e.g., an average, sum or
difference)], OR
= a parameter of a response model or probability model.

@ when you encounter the term standard deviation or standard error, be sure you understand whether it refers to:
= the variation of data (and whether the data are from a sample or a census), OR
= a random variable [and whether it is an individual random variable or a (linear) combination (e.g., an average, sum or
difference)], OR
= a parameter of a response model or probability model.
@ when you encounter the word inaccuracy, remember that it is a real-world quantity and is defined only in the context of
repetition of a process — like selecting or measuring.
= Estimating bias (a model quantity) differs from inaccuracy in that it decreases with increasing sample size and so may
not be of much practical concern in actual sample surveys.
[There is further discussion of bias in Appendix 3 and Appendix 4 on pages 8.57 and 8.58]

(continued)
1995-04-20
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Figure 8.11. UNSTRATIFIED POPULATIONS: Betimaiia an Average or a Total " (continued 1)

2. Equiprobable (Simple random) Selecting

The definition of equiprobable selecting (EPS) is: If a sample of n units is obtained from a respondent population of N
units in such a way that every sample of size n has an equal probability of being selected, the selecting process is called equi-
probable selecting. [Elsewhere, you may see it called simple random selecting (SRS).]
In practice, we often think of EPS as being implemented by selecting each unit of the sample equiprobably (‘at random’) and
without replacement (‘EPSWOR’) from the (unstratified) respondent population. [The element-unit distinction is discussed in
Appendix 1 at the bottom of page 8.56 and the top of page 8.57]

Because we commonly think of EPS in terms of how we select the units, we may overlook the fact that the definition is in
terms of sample probabilities. In particular, we need to recognize that, while the definition implies that each unir has the same
inclusion probability of n/N, there are selecting processes with equal unit inclusion probabilities that are not EPS. An illus-
tration is given at the right below; for this respondent population of N =4 units, six samples of size n =2 can be obtained by
EPS but only two such samples are obtained by systematic selecting; however, provided the starting point of the systematic

selecting process is chosen equiprobably, any unit has an inclusion proba- N = 4 Population units

bility of %2 under either process. L2 3 4

Another way of making the same point is to say that, under systematic the samples of size 2 are:

selecting, two of the six possible samples of size 2 have probability 2 and EPS: (1,2), (1,3), (1,4), (2,3), (2,4), (3,4);
four have zero probability. systematic selecting: (1, 3), (2, 4).

The emphasis in statistics on EPS (or its equivalent) is because it is the basis of theory which provides:

® unbiased estimating of a population average (an attribute commonly of interest);

@ a connection between sampling imprecision and sample size (or level of replicating);

@ an expression for a confidence interval for a population average — such an interval, under suitable modelling assumptions,
quantifies sampling and measuring imprecision (as demonstrated in Figure 6.1 of these STAT 220 Course Materials).

[These three provisions of statistical theory refer to behaviour under reperition — Answer(s) obtained in a particular investi-

gation remain uncertain, as reflected by their limitations.]

EPS does not, of itself, reduce sample error or sampling imprecision, as implied in (wrong) statements such as:

O EPS generates a representative sample; ‘

O EPS generates a sample which provides a proper basis for generalization; .

as well as misrepresenting the statistical benefits of using EPS, such statements confuse repetition (the process of EPS) with a

component of a particular investigation (the actual sample). A correct statement is:

EPS, in conjunction with adequate replicating (or an adequate sample size), provides for quantifying sampling imprecision and

so allows a particular investigation to obtain an Answer with acceptable limitation due to sample error.

® What constitutes acceptable limitation depends on the investigation requirements for its Answer(s); for instance, in a poll to
estimate one or more proportions, an acceptable limitation may be quantified as the proportion(s) estimated to within 2 per-
centage points 19 times out of 20. [Limitations may also be imposed by the resources available for the investigating].

3. Sample Size and Sample Error under EPS
Example 8.11.1: A respondent population of N =4 units has the following integer ¥Y-values for its response variate:
,2,4,5 (sothat ¥=3, SHIL8257);
we examine the behaviour of sample error under EPS as the sample size increases from 1to 2 to 3 to 4.

The number at the bottom of the four error columns of Tables 8.11.4 below is the average magnitude of
the sample error for that sample size.

Table 8.11.4a Table 8.11.4b Table 8.11.4¢ Table 8.11.4d
EPS of n=1 unit EPS of n=2 units EPS of n=3 units EPS of n=4 units
y Sample | y Error Sample ‘ y Error Sample ‘ y Error
(1,2) | 1 -1% (1L2,4) | 26 % (12,45 |3 0
(1,4) 21a - (1,2,5) | 2% -» 0
(1,5) 3 0 (1,4,5) | 3% s
2,4 3 0 2,45 | 3% %
2,5 | 3% » 1z
4,5) 4 1

7
Example 8.11.1 reminds us of general results under EPS that follow from the theory in Section 5 on pages 8.52 and 8.53.

@ as the sample size increases, the average magnitude (and, hence, the standard deviation) of sample error decreases — this is
what we mean when we say that increasing sample size decreases sampling imprecision under EPS;

(continued overleaf)
1995-04-20
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@ taking the sign of sample error into account, the average error is zero for each n — this is what we mean by saying that, under
EPS, (the random variable representing) the sample average is an unbiased estimator of the respondent population average;
= note that both the selecting method and the population attribute and its estimator are involved in this statement;
- another statement with these components, which contrasts with the statement above about Y, is that, for the population
attribute which is the ratio of the average of two response variates (R =¥/X), the sample ratio r = y/X is biased [E(R) #
R] under EPS but unbiased if the first sample unit is selected with probability proportional to its X value and the remain-
der selected equiprobably (see Cochran, p.175).
@ there is no sample error when a census is taken — when all units of the respondent population are selected.

We also see that there can be a sample size(s) for which none of its (ﬁ) samples has zero sample error — no sample has y =¥

4. Notation

Table 8.11.5 below gives the notation used in the theory developed in this Figure 8.11; the last column of the table includes
the ‘model. It is a model only in the sense of being an idealization or mathematical abstraction involving the equal probabilities

attained under EPS; it is not a model in the sense of a symbolic expression like a response model [such as equation (8.11.2) on
the first side (page 8.49) of this Figure 8.11].

Table 8.11.5: ....QUANTITY...... RESPONDENT POPULATION ... SAMPLE [MODEL|..........ccccc....
Size (elements/units) N n
Response ¥ (=12,..,2N) y (j=12,...m) [cvsareY]
Average Y= §§1§=;{TY )7=%_i); Lv.isY]
= 5
Total ¥=NY=3¥ Yy=Ny  [ovis.Y]

Standard deviation S= /ﬁ SSy = /ﬁg@z ¥ s=/LSS,=LL3(y-5) [bviss]

. the estimate of the population total ¥, is not the sample total, which is ny = i y, and is usually not a sample attribute of interest.
J=1

5. Estimating ¥ the Respondent Population Average

We want both a value (or point estimate) for this respondent population attribute and a measure of the (sampling) uncer-
tainty of the estimate, for which we use a confidence interval.

To develop the relevant theory, we first establish results for E(Y)), sd.(¥) and cov(¥, ¥):
i EX)= %Yi @(X =¥X) (the mean of a discrete random variable).
We can find Pr(¥,=¥)) in any of three ways:

(@ because every possible ordered sample is equally probable under equiprobable selecting, any population unit is equally
probable at any position in the sample and, because there are N units in the population, this probability is 1/N;

(b) ordered counting; number of ordered samples with ¥ =¥ _ N —1)(n_l) _ 1.

=L 8.11.4)
total number of samples of size n N® N’
(© unordered counting: number of unordered samples with ¥; at any position 1 — N —1) / N |- [1/n] = 1.
N | __ total number of samples of sze n number of sample positions (n—l (n) /= N’
E() =3¥, % =qZ¥=¥ e 8.11.5)
i) E07) =2 X BHy=¥) = 12 ¥ [using the result for Pr(¥;=¥.) from (i)];
. 1& 52 1rd ) N-1
CLosdX) =JEX) - [EQ)) = /NiZ:IYf—Y = ‘/N[izzl‘i’f—NY ]= /T s (8.11.6)
(iii) EXY) = i ki‘li’iYk@(}j:Yi, Y=Y, (the mean of a product of discrete random variables).
But from (i), because Pr(A n B) = Pr(4)-Pr(B|A), Pr(¥ =¥, ¥ =X,) = Pr(¥=¥)) @(Z:‘i’kW:Yi) = % 1_] ;
—l l N N —l 1 N —_ —l 1 —z_N‘z NA_ .
p = JLEY IR s SEL AT w - LALF-EY]  teomsedy =)
. cov(,Y)=EXY)-EX)-E(Y _ —, _
%Y ( ./11) 2112 (Nl) o NY— i:]Yiz_ NN-D¥ _iYiz_l_ NY ¢ s
- N(N—l)[NY_aznm_Yﬁz NN-D) NSy N o

1995-04-20 (continued)
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Figure 8.11. UNSTRATIFIED POPULATIONS: Eetmaia an Average or a Total " (continued 2)

Hence, when we use Y (the random variable representing the sample average) as an estimator of ¥ (the respondent population
average), under EPS we have:

EY) = E[liY-] = lE[i Y] = 1SEY EY) = L¥+¥+... +¥] =¥ i.e, Y is an unbiased estima- ~ ----- (8.1.8)
nEY nTEE s v e f ¥ under EPS;
_ n n terms from (i) tor o under ’
sd(Y) = sd.[L; 1Y,] Lsd [/zly/]
=L [3sd@Y+2 oo ) = L AN-DS/N+p@ DN =g/L-L (8.11.9)
' ' n equal terms n?-n equal
from (i) terms from (iii)
[the standard deviation of the sample average under EPS (from an unstratified respondent population)].
Thus, the distribution of (the estimator of) the sample average under EPS is: YEINGE S/ % - %) ————— (8.11.10)

NOTES: 1. Equation (8.11.9) for sd.(Y) shows that the effect of the finite size of the respondent population is to modify the fami-
liar expression by including a second term, 1/N, under the square root multiplying S. Other matters of interest are:
e whenn=N, sd.(Y) =0, reminding use that sample error is zero in a census.
® when n <N (.e., when the sample size is a_small proportion of the respondent population
size, say 5% or less), the expression for sd. (Y) becomes essentially the more familiar form Sf ————— 81111
o the form of the square root multlply]ng S means that the precision of estlmatmg Y by Y under EPS is deter-
mined primarily by the sample size and only weakly by the population size.
= This insight of statistical theory is counter-intuitive — there is essentially the same sampling imprecision in a
national poll of 1,500 people selected from a population of 30 million Canadians or 300 million Americans.

2. The expression (8.11.9) may be written as shown in equations

(8.1112) and (8.1L13) at the right. The former, where S sd(Y) = \/ﬁ(% - §)§(§§ . - 81112
has been replaced by its expression in terms of ¥; is of _
interest to compare with equation (8.11.14) below; equation (8.11.13) sdY)=/0-f )S‘/% ----- 8.11.13)

gives the standard deviation of Y as the familiar form (8.11.11) multi-

plied by the square root of a finite population correction 1~ f, where f=n/N is the sampling fraction. BUT:

® Thinking of sd.(Y) as an ‘infinite population’ result times a ‘correction factor’ unhelpfully encourages confusing a
model with the real world — recall the comment below Table 8.11.1 at the end of the second asterisk () on page 8.49.

3. The coefficient of variation (c.v) of Y [a measure of —  sd(T) 1
relative imprecision] is given in equation (8.11.14) cv)== ; = \/ﬁ(% 1 )1ZI(Y ----- (81114
at the right. Relative imprecision decreases [i.e.,
sd/(Y) becomes smaller relative to ¥ as n becomes larger and when the ¥; have less variation about their averageY

4. Y is the linear unbiased estimator of ¥ with smallest standard deviation based on a sample of size n units selected
by EPS (e.g, see Barnett, pp. 26-27).

3. The expression (8.11.9) for sd.(Y) under EPS is useful in three ways:
@ it gives the imprecision of the estimator Y;

o it allows us to calculate the approximate sample size needed to attain a specified imprecision for estimating Y-
recall Section 5 on page 6.26 in Figure 6.3 of these STAT 220 Course Materials;
o it allows us to compare the efficiency of Y with that of other estimators of ¥.

A practical difficulty in using the expression (8.11.9) above for sd(Y) is that S is usually unknown; a way around this dif-
ficulty is to use the sample standard deviation, s, as an estimate of S, ostensibly because of the following:

$= el -l = gy -ty (81115)
LESY) = fERY ] - RET) = phnd ¥ - R (W d () {fsd00F = BT - O
<2 ) 0 equal terms from (i) and: E(Y) =¥ so that
=F{N(iz=lY‘ -NY) —(%—%)S} EYY) =¥ +[sd¥ )}

N-lg )
-0 {TS—(%—@S}:SZ; ————— (8.11.16)

i.e., §* [the random variable representing the square of the sample (data) standard deviation under equiprobable selecting] is an
unbiased estimator of S; the square of the respondent population (data) standard deviation [but see Appendix 3 on page 8.57.

. . . v . . . A1V 1 1
Thus, the estimated standard deviation of Y under EPS is given by: §d(Y) = 8/=~ ~ 8.11.17)

1995-04-20 (continued overleaf)
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On the basis of the approximate normality of the distribution of Yasa consequence of the Central Limit Theorem, and
arguing in a general way from the use of the # distribution in normal theory when the population standard deviation is estima-
ted by the sample standard deviation, the theory developed above leads to a probabilistic interval:

I[=[Y—-,t:,S % - % 17+ar::_ls/% - %] ----- (8.11.18)

such that Pr(Z 0¥) E100(1 — )%, where ot~ 1s the 100(1 — a/2)th percentile of the £, -, distribution. For calculating an approxi-
mate 100(1 — a)% confidence interval for ¥, we use:

Viaias/h- L= -diag/L- L yretigA-000 (8.1119)

#8.54

NOTES: 6. The first expression in (8.11.19) is convenient when assessing sampling imprecision; the second is a more direct Answer.

7. The values of sample attributes determine two characteristics of the approximate confidence interval for ¥ - the sam-

ple average (y) defines its centre, the sample standard deviation (s) determines its width; both characteristics (centre
and width) of a confidence interval may be adversely affected by inaccurate selecting or measuring processes.

8. Using the 7 distribution requires that the population unit responses be probabilistically independent and normally
distributed; in equiprobable selecting, successive observations are (weakly) dependent and not (necessarily) nor-
mally distributed, so this use of the ¢ distribution has a weakened theoretical basis.

® This weaker theoretical basis is one reason why the confidence interval expressions (8.11.19) are approximate.

9. An important consideration in assessing_the nominal Jevel of a confidence interval is how large the sample size
needs to be for reasonable normality of Y as a consequence of the Central Limit Theorem; unfortunately, there is
no reliable general rule but, when the deviation from normality is mainly a positive skewness, a crude rule (see
Cochran, page 42) which is occasionally useful is that n should be greater than 25G7, where:

N J— n
G, = NIS3 Z:I(Yi -Y), [estimated from the sample as: g = é;(yj i i A— (8.11.20)
® The approximate normality of the distribution of Y is a second (telated) reason why the confidence interval ex-
pressions (8.11.19) are approximate.

10. The results derived in (i), (ii) and (iii) on the fourth side (page 8.52) of this Figure, which provide the theoretical
basis for the confidence interval expressions, all involve the equal unit selection probabilities that are a consequence
of EPS and, in (iii), the joint probability 1/N®N—1), which comes from the formal requirement for equiprobable
samples under EPS. There is thus no basis for using these expressions to calculate a confidence interval from a
sample obtained by other selecting methods (accessibility, haphazard, judgement, quota, systematic, volunteer, etc.).
® Likewise, use throughout this Figure 8.11 of lower-case italic ys (values of random variables) to represent the

measured sample response variate data values is based on EPS as the sample selecting process; other (non-
probability) selecting processes would entail using instead Roman ys to represent such data values and there
would be no reasonable basis for treating these ys as the ys of the foregoing theory (recall the comment in Fig-
ure 6.1 at the top of page 6.4 and Note 11 at the top of page 6.28 of Figure 6.3).

11. The theory leading to equation (8.11.9) overleaf on page 8.53 considers only sample error but using equation (8.11.17)
when calculating a confidence interval for ¥ or ;¥ involves using the measured sample ys to calculate s As a con-
sequence, the confidence expressions (8.11.19) above for ¥ and (8.11.23) near the bottom of the facing page 8.55 for
X quantify both sample error and (fortuitously) measurement error.
® We see that this is so by considering a respondent population whose elements all have the same ¥ value; vari-
ation in the ys would then reflect only measurement error. Hence, in the usual case of varying ¥s, the meas-
ured y, values reflect both sample and measurement error.

® The confidence interval expressions (8.11.19) above and (8.11.23) on page 8.55 quantify the combined uncertainty
due to sample error and measurement error — their effects could be estimated individually if replicate measure-
ments were to be made on the sample units, but this is rare in sample surveys because there would be little bene-
fit, extra cost and the difficulty of maintaining (real-world) independence of replicate measurements, especially
when the population elements are humans and the measuring instrument is a questionnaire.
This matter is the survey sampling analogue of the theory developed in Figure 6.1 for the model (8.11.2) on
page 8.49 — for example, recall equation (6.1.18) on page 6.6.

® It would be useful if the (‘finite population’) theory in this Figure =
8.11 could inform that of Figure 6.1 so that it would be correct, when YN (w, a¢ % - i)
the population size is N, to write equation (6.1.18) on page 6.6 as equation (8.11.21).

----(8.11.21)

Example 8.11.2: In an audit of hospital accounts, 200 accounts were obtained by equiprobable selecting from a total of 1,000
accounts; for all 200 accounts, the sample average was y = $392.42 and the sample standard deviation was

s =$20.11. Find an approximate 90% confidence interval for the average amount per account (¥) at the hospital.

1995-04-20 (continued)
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Figure 8.11. UNSTRATIFIED POPULATIONS: Betmatia an Average or a otal " (continued 3)

Solution: NOTES: 12. In calculating the 90% confidence interval for i_’, the value of ,#5, =1.65255 has been obtained
by linear interpolation from the relevant entries (viz., 1.65291 and 1.65251) from Table 6.4
(pages 6.33 and 6.34) for 190 and 200 degrees of freedom.

13. In calculations like those in the solution of Example 8.11.2, we must use and show enough signi-
ficant figures to avoid rounding inaccuracy; however, it is an essential part of a proper solution
to give a final answer rounded to a number of figures appropriate to the Question context.

Example 8.11.3: In the same hospital as in Example 8.11.2, n=9 accounts were obtained by equiprobable selecting from the
total of 484 open accounts; the data, and their numerical summaries, were as follows:
9

9
$333.50 332.00 352.00 343.00 340.00 341.00 > =3,068.00, Zyﬁ = 1,046,132.50.
$345.00 342.50 339.00 j=1 =1

Find an approximate 95% confidence interval for the average amount per open account at the hospital.

Solution: The solution of this Example 8.11.3 is like that of Example 8.11.2 except we must calculate the values of y and
s from the numerical summaries of the sample data.

We have: ~ N=484, n=9 y=29800_g3408  7=2.30600 for 95% confidence,

9
= /1,046,132.508— 30680079 _ ¢5 972 739,
. /1_1 - 11 -
Then: S/~ N =921/ 5 ~ is $1.972 315 622.

Hence, an approximate 95% confidence interval for ¥ the average amount per open account at the hospital, is:
¥ £2.30600 x£4(Y) =340.8 +2.30600x1.972 316 = (336.34, 345.44) or about ($336, $346).

NOTES: 14. Despite the small sample size of 9, the confidence interval is, as in Example 8.11.2, relatively
narrow (i.e., the Answer shows relatively low imprecision for estimating ¥) because the value
of the population standard deviation S is small in relation to the value of ¥, as indicated by
their estimates from the sample of about $6 for s and about $340 for .

® The small sample size in Example 8.11.3, where all the sample data are given, is only for class-
room convenience; a real sample survey like this would usually have a much larger sample size.

15. For interest, we can carry out the Table 8.11.6: ; y ooy G-’
check discussed in Note 9 on the

, 1 33350 3408 =738 =-403.401 405
facing page 8.54 for the adequacy of the 2 33200 3408 -8.88 —702.331959
sample size with respect to the assumed norma- 3 35200 3408 11l 1,371742 116
lity of ¥; for convenience, estimating the sum of 4 34300 3408 21 9.408 779
cubes from the sample data is set out in Ta- ble 2 31(1)8(()) 3383 ‘818 ‘82) %% 2;;
8.11.6 at the right; dividing the sum of cubes by ; 345'00 340.8 4'i 69.482 8 s
ns’=1,917.622 626, we find 25g> =4.453 978, : " pr :

S ! . 8 34250 3408 1.6l 4181 927
which is less than n =9 as the check requires. 9 33900 3408 -18 ~6739 369

341.641 983

6. Estimating 1Y, the Respondent Population Total

Under the assumption that the population size, N, is a known constant, the theory of equiprobable selecting for estimating
1Y is a straight-forward extension of the results for ¥. Because the population total is ¥=NY, its estimator is NY; the standard
deviation of this estimator is then N xs5.d.(Y). Hence, we obtain a probabilistic interval:

[=INY=ofi-N§/L - L NywNs/-L (8.11.22)

such that Pr(7 0¥) E100( - )%, where 4t is the 100(1— a/2)th percentile of the f, -, distribution. For calculating an approxi-
mate 100(1 —a)% confidence interval for X, we use:

Ny #oti-Ns/l - L= Ny —ati-Ng/L - Lo Ny +orpnsg/l-13 (8.11.23)

Example 8.11.4: A company was concerned about the time per week its 750 managers spent on unimportant tasks. For 50
managers obtained by equiprobable selecting, it was found that the average time spent on such tasks was
10.31 hours and the standard deviation was 1.5 hours. Find an interval estimate for the total person-hours
spent per week by the 750 managers on these unimportant tasks.
(continued overleaf)
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Solution:

Example 8.11.5:

Solution:

Estimating 1Y is like estimating {’except that we must multiply by N in appropriate places; the solution of this
Example 8.11.4 therefore follows the pattern of Examples 8.11.2 and 8.11.3.

‘We have: N=750, n=50, y=103lhours, s=L5hours, i =2.00958 for 95% confidence.

. 1 —
Then: / 15/50 A5 =0.204939 hours.

Hence, an approxnnate 95% confidence interval for 1Y, the total number of hours spent by the 750 managers
on unimportant tasks, is:
Ny +2.00958 X N x {i(Y) =750 x10.31 + 2.00958 X750 X0.204 939 => (7,424, 8,041)

or about (7,400, 8,100) hours per week.

NOTES: 16. When the confidence level is not specifed in the Question, we take the default as 95%.

17. Population fotals are often large numbers and so the widths of confidence intervals for ¥ may
be large in absolute terms but not necessarily large relative to the magnitude of ;Y.

18. It would be difficult to implement an accurate and precise measuring system for quantifying
personal time usage for activities like those in Example 8.11.4; this is why the end points of
the final confidence interval have been rounded to only two significant digits.

One hundred water meters, obtained by equiprobable selecting from a community of 10,000 households, are
monitored over a particular dry spell of weather. For all 100 meters, the sample average and standard devia-
tion (in suitable units) are found to be 12.5 and 35.4 respectively. Find an approximate 99% confidence inter-
val for the total water consumption in the community during the dry spell.

We have: =10,000, =100, =12.5 units, s=354 units, t; =2.62641 for 99% confidence.

. 1 _ 1 —
Then: /ﬁ 4 =35, 4/100 —10 000 3.522 256 units.

Hence, an approx1mate 99% confidence interval for 1Y, the total water consumption of the 10,000 households
over the dry spell, is:

Ny +2.62641 x N x sAd.(?) =10,000 x12.5 +2.62641 x10,000 x 3.522 256 => (32,491, 217,509)
or about (32,000, 220,000) units.

NOTE: 19. The wide confidence interval (i.e., the high imprecision) for estimating 1Y in Example 8.115 is main-

ly a consequence of a very variable population of household water consumptions: s/y = 283%.

Because water consumption is an inherently non-negative quantity, these sample attribute values

suggest a highly (positively) skewed population distribution of water consumptions which, in

turn, raises concerns about the accuracy of the nominal confidence level of an interval based on

the ¢ distribution. In a real sample survey, this matter would need to be followed up.

® The high imprecision for estimating 1Y in Example 8.11.5 could be managed by stratifying the
population into groups of households more homogeneous with respect to their water con-
sumptions; stratifying is discussed briefly in Appendix 5 on the last side (page 6.12) of Fig-
ure 6.1 and is pursued in more detail in Part 4 of the STAT 332 Course Materials.

7. REFERENCES: 1. Barnett, V. Sample Survey Principles and Methods. Second edition, Edward Arnold, London, 1991,

(First edition: Elements of Sampling Theory. The English Universities Press Ltd., London, 1974).
2. Cochran, W. G. Sampling Techniques John Wiley & Sons, Inc., New York, 3rd Edition, 1977.

8. Appendix 1: Population Elements and Population Units
As discussed in Section 1 on page 8.3 in Figure 8.1, we distinguish:

@ Elements: the entities that make up a population; for example, a person is an element of the population of Canadians, but
we recognize that many populations in data-based investigating have non-human or inanimate elements.

o Units: the entities selected for the sample; a unit may be one element (e.g., a person) or more than one (e.g., a household).

This Figure 8.11is concerned with (survey) sampling and so refers in most places to units, but population attributes of interest
(like N, ¥ ¥ and S) refer to elements. In introductory courses like STAT 220 and STAT 231, we restrict attention to units
which are elements so the distinction is of no consequence but, anticipating Figures 2.14 and 2.16 in STAT 332, when units are
groups of elements (as in cluster sampling), some expressions in the theory must be modified. This is illustrated in Table 8.11.8
at the upper right of the facing page 8.57 by comparing expressions in this Figure 8.11 with those for selecting equal-sized clus-
ters, like cardboard boxes in a supermarket that each contain, say, 24 cans of soup, or cartons from a component manufacturing
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. One-Stage EPSWOR of Individual Elements .
Figure 8.11. UNSTRATIFIED POPULATIONS: Estimating an Average or a Total (continued 4)
process that each contain a set number (say, 10) of the com- Table 8.11.7: Elements Clusters  Relationships
ponent. Table 2.37 at the right gives additional notation we Respondent population N M N=ML, L=N/M
need, where the repondent population is considered as N Sample n m  n=mL, L=n/m
elements of which n are selected (by EPS) for the sample, Also: ¥, = %ZY,k is the average response of the ith population cluster,

or as M clusters each of L elements, of which m are selec-

ted (by EPS) to yield a sample of mL elements. %= sz:]yfk is the average response of the jth sampled cluster

the subscript ec in Table 8.11.8 below denotes ‘equal-sized clusters.
Given the respondent population ‘models’ of N elements or M
clusters, the structural similarity of corresponding expressions in the Table 8.11.8
two columns of Table 8.11.8 are clear; noteworthy points are: EPS of elements  page EPS of clusters
@ when estimating X y involves element responses y, but y,. invol-
ves cluster average responses y;
® S, (estimated by s,.), which quantifies variation of cluster averages
in the respondent population, is to be distinguished from the vari-
ation of element responses quantified by S (estimated by s).
The cluster sampling expressions in the right-hand column of Table
8.11.8 are taken from Figure 2.14 of the STAT 332 Course Materials.
The theory for unequal-sized clusters is more complicated — see Fig-
ure 2.16 of the STAT 332 Materials.

9. Appendix 2: Representative Sampling
The appealing intuitive idea of a ‘representative sample’ — one that ‘looks like’ the (respondent) population with respect to
the attribute(s) of interest — is equivocal statistically for four reasons:
e a sample selected by EPS is unlikely to be ‘representative’ in the sense just given for all attributes of potential interest — for in-
stance, a sample may have small [possibly (close to) zero] sample error for estimating ¥ but large sample error for estimating S;
o the sample, of itself, provides no information about its ‘representativeness’;
@ there is no selecting process known to yield a ‘representative’ sample, except taking a census;
o the terminology tends to obscure the distinction between the individual case (the parficular sample) and behaviour under
repetition (the properties of the selecting process).

Less equivocal terminology is representative sampling, with its implication of a selecting process (like EPS) which, in conjunc-
tion with adequate replicating, provides for quantifying sampling imprecision and so allows a particular investigation to obtain
an Answer with acceptable limitation (in the Question context) due to sample error. However, the writer’s preference is to avoid
in statistics the terms ‘representative’ and ‘representativeness’ in relation to a sample (or a sampling protocol).
® Kruskal and Mosteller devote 50 pages to discussing the (sometimes ill-defined) meanings in statistical contexts of repre-
sentative sampling in three articles in the International Statistical Review, 47,13-24, 111-127, 245-265 (1979). [UW Library
call number HA 11.1505]

NOTE: 20. An illustration, involving bivariate data, of another instance of sample-attribute dependence is:
@ when estimating the least squares slope of a straight-line relationship, sample points more concentrated near the
ends of the interval of observation will reduce sampling imprecision (although this will increase imprecision of
any inference needed to show that the relationship is a straight line);

@ similar considerations apply when estimating correlation, although estimating this attribute is rarely discussed.

10. Appendix 3: The Mean of S, E(S)

The justification in equation (8.11.17), at the bottom of page 8.53, for using s to estimate S is compromised by the fact that
S is not an unbiased estimator of S. Because of the square root in the expression for s in equation (8.11.3) on page 8.49 (and in
Table 8.11.5 on page 8.52), there is no simple expression for the estimating bias of the corresponding random variable S under
EPS, but we know that bias exists from the following argument, which is an illustration of Jensen’s Inequality and uses the fact
that the variance of any (non-constant) random variable is positive. We have:

0<var(S) = ES*) - [ES)'= 8- [ES)]" so that, taking square roots:  E(S)-§<0. e (8.11.24)
NOTE: 21. For the model (8.11.2) on page 8.49, the mathematics is more r@)
tractable and leads to equation (8.11.25) at the right so that, E(z% / e 1) ----- (8.11.25)
because of equation (6.3.38) on page 6.29 of Figure 6.3, re-
written at the right as equation (8.11.26), the bias term multi- EDKH_I or: &[okK,., - (8.11.26)

plying o on the RHS of equation (8.11.25) is the mean of aK, ,
distribution. Table 6.3.10 of its values for n=2 to 51 (i.e., for 1 to 50 degrees of freedom) on page 6.31 of Figure
6.3 reminds us that estimating bias:
(continued overleaf)
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NOTE: 21. @ decreases in magnitude with increasing sample size, unlike (real-world) inaccuracy;
(cont.) @ of S as an estimator of S is likely to be unimportant practically for the sample sizes used in most real sample surveys.

11. Appendix 4: Bias and Rms Error
For a random variable Y and some constant ¢, we have:

E{v- '} = E{[EQ) - c + Y- EQ))'} = E{[EQY) - o] + [Y- EQ)]' +2[EY) - J[Y- ED)]}
= E{[EY) - I'} + E{ly- EQX)['} + 2E{[EQY) - c]ly- EQv )]}
= [EY-ol'+E{y- EQY)'} + 2[EQY) - cJE[Y - E(Y)]
ie, E{Y-c’} = [EQ@-0l+[sd)]’ because E[y-EY)|=0. - 811.27)

If we now think of Y as a random variable whose distribution represents the possible values of a response variate ¥ and c as a
true value, the left-hand side of equation (8.11.27) is a mean squared error and E(Y—=¢) in the first term on the right-hand side
is a bias; we can therefore interpret equation (8.11.27) as:

mean squared error = bias’ + standard deviation> (8.11.28)
Taking the square root so we are working on the same scale as the variate represented by ¥, the root mean squared error is:
rms error =y bias® + standard deviaton> (8.11.29)

Thus, the rms error is one concept that combines the two model quantities of bias and (probabilistic) standard deviation, cor-
responding to the two real-world entities of inaccuracy and imprecision.

Equation (8.11.29) provides useful insights about bias and variation in the context of survey sampling; different cases depend
on how broad our focus is in terms of which true value c represents — see also the discussion and diagram showing four com-
ponents of overall error on the lower half of page 5.25 in Figure 57 of the STAT 231 Course Materials.

* The narrowest focus is measuring when c is the true value of the response variate ¥; equation (8.11.29) is then:

measuring rms error = y/measuring bias’> + measuring standard deviaton> . (8.11.30)
* For measuring and sampling, c is the true value of the respondent population attribute of ¥ and then:
measuring and sampling = y/measuring + sampling bias> + measuring and sampling standard deviation*; _-__- (8.11.31)
rms error

NOTE: 22. Measuring and sampling = y/measuring standard deviation’ + sampling standard deviation’

1pling = ymeasuring standard devialon” + sampling standard deviation~.— —--—- (8.11.32)
standard deviation

* For measuring and sampling and non-responding, c is the true value of the sfudy population attribute of Y and then, under
our assumption that non-response is deterministic (not stochastic):

measuring and sampling and _ /measuring + sampling

) ) .
non-responding rms error v+ non-responding bias> T TCasUTNg and sampling standard deviation” ... (811.33)

* For measuring and sampling and non-responding and specifying, c is the true value of the target population attribute of ¥
and then, under our assumption that specifying the study population also is deterministic:

measuring and sampling /measuring + sampling

and non-responding and = / +non-responding  + measuring and sampling standard deviation’
studying rms error + studying bias’

----- 8.11.34)
NOTE: 23. In printed materials other than these Course Materials (e.g., see Cochran, p. 15), equation (8.11.27) [or (8.11.28)] is
usually discussed only with respect to estimating bias. Although estimating bias is a relatively minor topic in
STAT 220, it is useful to recognize the following [recall also Example 8.11.1 on pages 8.51 and 8.52]:
o Estimating bias (a model quantity) is the difference between the mean of an estimator and the value of the
corresponding population attribute (or model parameter); for example, under EPS:
- the random variable Y representing the sample average y is an unbiased estimator of the respondent popula-
tion average ¥ because, as shown in equation (8.11.8) at the top of the fifth side (page 8.53) of this Figure 8.1,
EY)=YorEY)-¥=0; BUT _
— the sample ratio r= /X is a biased estimator of the respondent population ratio R =¥/X because E(R) ZR
or E(R) —R # 0, and likewise for S as an estimator of § as discussed overleaf on page 8.57 in Appendix 3.
® The rms error of an estimator is of interest because, while we prefer an unbiased estimator of a population attri-
bute, there are times when a biased estimator has only small bias and appreciably smaller standard deviation
than an available unbiased estimator; we may then prefer the biased estimator with smaller rms error.
® Unlike (real-world) inaccuracy, estimating bias decreases in magnitude with increasing sample size (as discussed
in Appendix 3 overleaf on page 8.57 and above in Note 21).
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