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Figure 6.3. QUA NTIFYIN G UNCERTA I NTY: Con fide nce Int ervals

When ameasurem ent is made, its accurac y (e ven its meaning) depends on the exi stenc eof a sta n dar d un it; by‘s tandard,’
we mean that all par tie sconc e rne dag ree that this standard repre sents the truevalue of a unit of the type of mea s urement. For
ma s s, for exa mple, it is agreed by int e rnation a l treaty that the Int e rnation a lPrototype Kilogr am ,a cylin drical pla t i num -ir idi-
um ingo t held at the Int e rnation a lBu r eau of Weights and Mea s ure snear Paris , ha sa mass that defi nes the unit on ekilogr am.
Ultimately, all ot he rmea s urements of mass depend for thei r accur acy on a comparison wit h this standard in Paris; in practi ce,
direc tco mparison wit h the int e rnation a lst andard is ext rem ely rare. Ins tea d, the re is a chain of comparisons inv olv ing int e rme di-
at e‘s tandards’ of progres siv ely inc rea sing authenticity; the fur the ra comparison is along the chain, the les sfrequ ently it is made.
People typically encou nter the start of such a  chain in the super marke t, whe re they gen erally accep tthat a one kilogr ambag of
sugar (say) con tains this mass (or ‘weight’) of sugar, to wit hin a cer tain tolera nce. (Se ealso Appendix 5 on pag es 6.31 and 6.32).

1. An Illustr ation of a Measuri ng Pro cess – the Mass of NB10
Each cou ntr y ha son eor more arms of gov ernment or other orga n ization sconc e rne dwith standards for the many types of

qu antit ies and methods of mea s urement. The activ ities of thes eor ganization sin clu de the maint enanc eof hon est measure sin the
marketplace and the pre ser vation and calib r ation of nation a lst andards; the latt e rare needed becau se it is not fea sib le to con sul t
the in ternation a lprototype standards on a rou tin ebasi s . The fol low ing dat aset comes from calib r ation wor k in the U.S. on the
reprodu cib i lity of mea s urements of mass (‘w e ight’); the data are 100 repli c ate mea s urements, made at what was then the U.S.
Na t ion a lBu r eau of Standards (NBS) in Washington, D.C., of the weight of the U.S. nation a l ten-gr am st andard, NB1 0. For
conv enienc e, the data are code das the number of mi crogr ams (µg) belo w10 gra ms; for exa mple, the first rea ding (‘Wt .’) of
409 cor responds to a mea s ure dweight of 9.999 591 grams. [Fo r ea s eof referenc e, the rea ding sare numbere d(‘#’) 1 to 100 in
the order in whi c hthey were obtain ed on a rou ghly weekly basis ove r the per iod 1962- 63.]

Ta ble
6.3.1:

# Wt. # Wt. # Wt. # Wt. # Wt. # Wt. # Wt. # Wt. # Wt. # Wt.

1 409 11 398 21 408 31 403 41 405 51 404 61 404 71 412 81 408 91 401
2 400 12 403 22 399 32 400 42409 52 406 62 405 72 406 82406 92 407
3 406 13 407 23 399 33410 43 399 53 407 63 392 73 409 83401 93 412
4 399 14 402 24 402 34401 44 402 54 405 64407 74 400 84 41 2 94 375
5 402 15 401 25 399 35 407 45 407 55 411 65 406 75 408 85 393 95 409

6 406 16 399 26 397 36 423 46406 56 410 66 404 76 404 86 437 96 406
7 401 17 400 27 407 37406 47 413 57 410 67 403 77 401 87 418 97 398
8 403 18 401 28 401 38 406 48 409 58 410 68 408 78 404 88 415 98 406
9 401 19 405 29 399 39 402 4940 4 59 401 69 404 79 408 89 40 4 99 403

10 403 20 402 30401 40 405 50 402 60 402 70 407 80 406 90401 100 404

Fo r thes edata:
sum = 40,459,

sum of
squ are s= 16, 373,447,

so the ave r age and
(d ata) standard
devi a t io nare:

y− = 404.59µg,
s = 6.47µg.

(6.466 846µg)

DATA SOURCE: Freedma n, D., Pis a n i, R. & Pur ves, R.: St atist i cs. W. W. Nor ton & Company, Inc., 1978, pag e91.
The quotation from NBS in Not e1 bel owis taken from the same sou rce(page 95).

A his t ogr amof the data is giv en at
the rig ht; the bars are 2 µg wid e with
thei r edge sat half-in tege rvalue s– for
ex ample, the left-mos tbar cov ers the in-
ter val 373.5 to 375.5µg bel ow10 grams.
The number at the top of each bar is
the number of obs ervation sfo r the bar.
Super impos ed on the his t ogr amare two
no rma lprobability density fun ction s(p.d.f.s) ;
the wid er sho rter one has mean 404.59 µg
and(probabilis ti c) standard dev iation 6.47µg
and the narrowe rtaller one has mean 404.48µg and (probabilis ti c) standard dev iation 3.88µg.

Befo re we pursue an analys is of the data in Table 6.3.1 above, we not efr om them matt e rs of statis ti c a l in terest.
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NO TES: 1. The data set show sseve r al outl iers (i.e., obs ervation sfar from the maj ority of the data) and is a rare illust r ation
of there al perfor manc eof a mea s uring process; it illum in ates the fol low ing com mentby NBS:

A maj or diffic ulty in the appli c ation of statis ti c a lmethods to the analys is of mea s urement data is that of obtaining
suit able col lectio ns of dat a. The problem is more often associat e dwith con scious, or perhaps uncon scious, att emp t s
to make a par ticular process per for mas one wou ld like it to per for mrather than accep ting the actual per for manc e
..... Rej ectio n of dat aon the basis of arbit r ary per for manc eli mit s seve rely dis t orts the estim ate of real process
variability. Such procedure sdefe at the purpose of the ..... prog ram . Re a lis ti c perfor manc eparameters requi re the
accep tanc eof all data that cannot be rej ect e dfo r caus e.

The inv a luable statis ti c a lle sson for us is that, if this is the per for manc eof a mea s uring process for which:

• the operato r(s) are hig hly-train ed profe ssi onals,
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NO TES: 1. •(c o nt.)
the mea s uring ins trument is of the hig hest quali ty,

• the quantity bei ngmea s ure dis rela t ive ly st r aight for ward,
we mu s tav oid uncr iti c a l accep tanc eof the stat e d(o r im p lie d) in accur acy and/or impre cisio n of the ple tho r aof
currently-acces sib le dat awhos ege neration may hav emet only some (or non e) of thes ethre econdition s.
As s essment of the inaccur acy and impre cisio n of mea s uring processes shoul d be in teg ral to data analys is but, reg ret ably,
is sel d o mso in practic e– see the secon dparagr aph of Section 1 onpage HL38.1 in Statis ti c a lHighlig ht #38.

2. The diagr amov erleaf on pag e6.15 illust r ates the idea of modelling the shape of a dis tributio n arising from vari -
ation in dat a– in this inst anc e, we are usi ng :

• a nor ma ldist rib u tio n with mean 404.59 and standard dev iation 6.47 as a model for all 100 obs ervation s;

• a nor mal dist rib u tio n with mean 404.48
and standard dev iation 3.88 as a model for
the cent r al94 obs ervation s, omitting the six
mos tdevi ant measurements.

Fo r thes emodels , relevant infor mation calcu -
la ted from the data set and three sub set sof it
are giv en in Table 6.3.2 at the rig ht

Ta ble 6.3.2
Observat ions Sample Sum Sum of Ave rage (Data)

omitte d (#) size square s (µµg) S.d. (µµg)

No ne 100 40,459 16, 373,447 404.59 6.47
375(94), 437 (86) 98 39,647 16,041,853 404.56 4.78
393(85), 423 (36) 96 38,831 15,708,475 404.49 4.28
392(63), 418 (87) 94 38,021 15, 380,087 404.48 3.88

Looking at the his t ogr amov erleaf on pag e6.15 wit h it s two super impos ed nor mal p.d.f.s, we see that :
the N(40 4.59, 6.47) model doesnot fit the dist rib u tio n of all 100 obs ervation s– mos tnotably, it mis repre sents
the ext ent of outli ers;
theN(40 4.48, 3.88) model is a fair (but not a good) fit to the cent r al94 obs ervation s.

With dat asets like the NB1 0obs ervation sov erleaf in Table 6.3.1 on pag e6.15, the re is a tem ptation for inv estig a tors
not to mentio n discarding the six outli ers and to repor t on ly the cent r al94 mea s urements, becau se:

* it is easie r to model the shape of their dist rib u tio n,

* they confor mto themisconc eptio n that dat afr om most mea s uring processes can be fitt e dby a nor mal model ,

* it is wid ely believe dthat the pre senc eof outli ers in a dat aset necessar ily refle cts unfav o urably on the inv estig a tor,

* they provi de aless impre c iseestim ate of the mass of NB1 0at the cos tof ign oring the risk of gr eater inaccurac y.

3. In the sou rce cit e dov erleaf on pag e6.15 for the NB1 0data and the NBS quotation, a (surprising) in ter val widt h of 2½
µg was chosen for the his t ogr am; only three (not six) obs ervation s(n umbers 94, 86 and 36) we re then exc luded for
the ‘cent r al’ dat aset of 97 (not 94) obs ervation s, whi c hha sav erage 404.37µg and (data) standard dev iation 4.41µg.

2. A Con fide nce Int erval for µµ Re pre senting the (true) Mass of NB10
A confidence inter val (a bbrev iat e dCI) is a wid ely-use dst atis ti c a ltool for quantifyi ng the impre cisio n (e.g., arisi ngfr om sam -

ple and/or mea s urement error) of an estim ate from sample dat aof (the value of) a popula t ion attribute; the sim p le num erical
att rib u t eco mmonly of int e rest is the (study or respondent) popula t ion ave r age,Y−−. The (tr ue) mass of NB1 0, here den oted −M ,
can be thoug ht of as the ave r age of a ver y large (in principle, an infin ite) number of mea s urements made by a mea s uring pro -
cess wit h no in accur acy. The fol low ing der ivation of a CI for the mass of NB1 0 fr om the data in Table 6.3.1 uses probabilis ti c
id e as from Fig ure s5.1, 5.3, 5.1 4and 5.1 6and statis ti c a l id e as from Fig ure 6.1 of thes eSTAT 220 Course Mat e ria ls.

We model in words an outco m eof the process of mea s uring the mass of NB1 0as:
mea s ure dvalue = true value + haphazard mea s urement error;

mea s urement error usually change sin value from mea s urement to measurement and, for a par ticular mea s urement, may be posi-
tive or negative (or, con ceivably, zero) so the measure dvalue may be above or bel ow (o r, con ceivably, equ al to) the true value.
As indicated by the adj ectiv e‘haphazard’ in equ ation (6. 3.1), we assume initia l ly no in accur acy in the NBS mea s uring process,
meaning that, ove ra large set of mea s ure dvalue sof the mass of NB1 0, theaver agemea s urement error is (cl ose to) zero.

-----(6. 3.1)

Expres sing the model in equ ation (6. 3.1) sy mboli c a l ly for the jth mea s urement of a set of n =100 mea s urements, using the
notation of equation (5.1.7) on pag e5.6 in Fig ure 5.1 of thes eSTAT 220 Course Mat e ria ls ,we hav e:

Yj = µ +Rj, j =1, 2, ....,n, E(Rj) = 0, s.d.(Rj) = σ, independent, EPS, -----(6. 3.2)
where: µ is the model mean– it repre sents the(tr ue) mass of NB1 0, −M , AND:

σ is the model (probabilis ti c) sta n dar d devi ation – it quantifie svariation in the measuring process, arisi ngfr om sou rces
li ke the measuring ins trument, the operato r(s) and the envi ron ment alcondition sun d er whi c ha mea s urement is made.

Equation (6. 3.2) ha sno bia ster m(a n dRj ha szero mean) becau se of our initia l assump tion of no inaccur acy in the measuring
proces s; two addit ion a lmodelling assump tion s(w hos ediscus sio n is pursued in poi nt 6 on pag es 6.21 and 6.22) are:

* the set of mea s ure dvalue scan be tre ated as thoug hit is a sample of size 100 obtaine dby eq uiprobable sel e cting (EPS) fr om
the (hy pot heti c a l) popula t ion of all such value s ,

* the random variable swe use to repre sent the outco m e sobtain ed unde rrepetit ion of the measuring process are pr obabi lis-
tically indep enden tfo r any two different value sof j – see the dis cus sio n on pag eHL38.5 in Statis ti c a lHighlig ht #38.
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Figure 6.3. QUA NTIFYIN G UNCERTA I NTY: Con fide nce Int ervals (continue d 1)

Adding the n equ ation s(6. 3.2) and divi ding each ter mby n, we hav e:
1
nΣ

j =1

n

Yj = 1
nΣ

j =1

n
µ + 1

nΣ
j =1

n

Rj OR: Y− = µ +R−. -----(6. 3.3)

Us ing the res ult s in Fig ure 5.1 4on pag e5. 36 for the ave r age of n probabilis ti c a l ly independent random variable s ,toge the rwith
the Cent r alLi mit Theorem approxi mation in equation (5.16 .5) on pag e5. 39 of Fig ure 5.1 6, we hav e:

R−∼.. N(0,σ 1
n) so that: Y−∼.. N(µ,σ 1

n) and so: Y−− µ
σ

≡ Y−− µ ∼.. N(0,1);

the den ominato r of the rig htmos tex pre ssi on is writt en in two for ms to empha size their equ ivalenc e.

-----(6. 3.4)
1
n

σ/√n√ √
√

Fo ra random variable Z with aN(0,1) dist rib u tio n, we know from pag e5.11 of Fig ure 5.4 in thes eSTAT 220 Course Mat e ria ls that :
Pr(−1.96< Z ≤1.96) = 0.95;

re call also the middle diagr amof the three at the bottom of the first sid e(page 5.9) of Fig ure 5.3.
-----(6. 3.5)

Us ing equ ation (6. 3.4) in equation (6. 3.5), we hav e:

Pr(−1.96< Y−− µ ≤1.96) −−∼ 0.95;σ/√n
the probability of 0.95 is now only appr oximatebecaus eof the approxi mat eno rma lity in equ ation (6. 3.4).

∴ Pr(−1.96σ/√n <Y−− µ ≤1.96σ/√n) −−∼ 0.95;
∴ Pr(Y−−1.96σ/√n < µ ≤ Y−+1.96σ/√n) −−∼ 0.95 (in two steps). -----(6. 3.6)

The ‘probability’ expre ssi on of equ ation (6. 3.6) differs from a more usual expre ssi on like equ ation (6. 3.5) in that:
it s end poi nts are stocha stic (not ‘fixed’ ) qu antit ies, AND:
it s cent re is a‘fi xed’ (not a stocha stic) quantity;

to reflect thes edifferenc es,we change the wording and the pre sent ation of equation (6. 3.6) to:
an appr oximate 95% confidence inter val for µ re prese nting−M is (Y−−1.96σ/√n, Y−+1.96σ/√n). -----(6. 3.7)

The foregoi ng lengt hy der ivation of the CI expre ssi on of equ ation (6. 3.7) is giv en to show the re aso ning le ading to this wid ely-
us ed statis ti c a lmethod for estim ating from sample dat a(the value of) a popula t ion attribute, in this inst anc ean ave r age. To find
a re alizedCI in practic e, we wor k with equ ation (6. 3.7) as given, usi ngap pro priat evalue sfo rY−,σ and n;

an appr oximate re alized 95% confidence inter val for µ re prese nting−M is (y−−1.96σ/√n, y−+1.96σ/√n). -----(6. 3.8)
We wil l us u ally omit the adj ectiv e‘r ealized’ becau se, els ewhe re, the distin ction israrel yma de bet ween:

equation (6. 3.7), thege ner al CI expre ssi on inv olv ing a random variable, hereY−, AND:
equation (6. 3.8), the expre ssi on for anumer ica l CI base don value sarising from a par ticular dat aset;

rather, equ ation (6. 3.7) may be omitt e dand equ ation (6. 3.8) pres ented as the (un quali fi ed) CI for a mean repre senting an ave r age.

Fo r the NB1 0ma s smea s urements in Table 6.3.1 on pag e6.15 : y− = 40 4.59µg, s= 6.47µg and n=100, so that:
an appr oximate 95% confidence inter val for µ re prese nting−M is (403.32, 405.86) µg bel ow10 grams,

using, at this poi nt in the discus sio n, the value of s for that ofσ.
-----(6. 3.9)

3. Underst anding Con fide nce Int ervals for a Model Mean Rep resenting a Popul ation Ave rage
To use confid e n ce int e rvals pro perly, the re is much to unde rst andabou t them; dis cus sio n fo llows unde rsi x hea ding s(‘ poi nts’) .

1. Interpret ation of a CI. A CI is an int e rval of plau sib le value s ,in lig ht of the data, for a popula t ion attribute(li ke Y−− ) rep -
re sent e dby a model parameter (li ke µ).

2. The value use dfo r the con fide nce leve l. The CIs giv en in equ ation s(6. 3.7), (6. 3.8) and(6. 3.9) have a confid e n ce lev el of
95%; this is the mos tco mmonvalue in practic e, alt hou gh 90% and 99% are als o encou ntered . To change the confid e n ce
leve l, we change the nume rical coefficie n t, as illust r ated in Table 6.3.3 bel ow – the number in thefir st colu mn of this table,
and its desig n ation ‘α ,’ is only for complet eness after (mu ch) lat e rdiscus sio n of another statis ti c a lestim ating met hod called a
te st of
st atist i-
cal sig ni-
ficance.

Ta ble 6.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equ ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CI
α 1− α Leve l Coeff. . . . . . . . . . .(6.3.7) . . . . . . . . .  . . . . . . . . .(6.3.8) . . . . . . . . . .  . . .(6.3.9) . . . . width

0.10 0.90 90% 1.6449 (403.53, 405.65) 2.12
0.05 0.95 95% 1.9600 (403.32, 405.86) 2. 54
0.01 0.99 99% 2.5758 (402.92, 406.26) 3. 34

(Y−−1.6449σ/√n, Y−+1.6449σ/√n) (y−−1.6449σ/√n, y−+1.6449σ/√n)
(Y−−1.9600σ/√n, Y−+1.9600σ/√n) (y−−1.9600σ/√n, y−+1.9600σ/√n)
(Y−−2. 5758σ/√n, Y−+2. 5758σ/√n) (y−−2. 5758σ/√n, y−+2. 5758σ/√n)

• The num erical coefficie n t (n ow to fou r de cim al places) in the fou rth colum nof the table is the ordin ate of the negative
and posit ive bou ndaries of thece ntra l 90%, 95% and 99% of the are aun d er theN(0,1) p.d.f. – re call the three diagr ams
at the bottom of the first sid e(page 5.9) of Fig ure 5.3 in thes eSTAT 220 Course Mat e ria ls.
−− Us ing thes evalue sin equation (6. 3.8) give sthe respectiv e 90%, 95% and 99% CIs in the secon d-last colum nof the table.
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• In principle, any value for a confid e n ce lev el can be chosen; for ins tanc e, we cou ld use as the coefficie n tany (except the
first) of the 64 value sin the lowe r table for the N(0,1) dist rib u tio n on pag e5.11 of Fig ure 5.4 in thes eSTAT 220 Course
Ma ter ials; inpr act i ce, lev els other than(the rou nd numbers) 95%, 90% and 99% are rarely (if eve r) use d.

• The lowe rtable on pag e5.11 giv es selectedpercen tilesfo r the rig ht-hand half of theN(0,1) p.d.f. – that is, an F(z) value is
the are aun d er the p.d.f. from −∞ to z. Howeve r, a CI inv olves thece ntra l area from −z to z, so that
−− the coefficie n tof 1.6449 for a 90% CI appears for an F(z) value of.95,
−− the coefficie n tof 1.9600 for a 95% CI appears for an F(z) value of.975,
−− the coefficie n tof 2.5758 for a 99% CI appears for an F(z) value of.995.
It is a com mon mis take to for get this min or complication when using a so-calledon e-tai led table (li ke that in Fig ure 5.4)
to look up coefficie n tvalue sfo r calcula t i nga CI. It is pos sib le to avo id this complication by refor matting to atwo-taile d
table, but this only trades a mino rco mplication in one situation for one in another.

• The last colum nof Table 6.3.3 ove r leaf near the bottom of pag e6.17 is thewidthof each CI – its upper end minus its lowe r
end – and it is dis cus s ed at the end of the first bul let of poi nt 4, wit h refe renc eto Table 6.3.4, on the facing pag e6.19.

3. Interpret ation of the confidence leve l. We use here the idea of repeating ove rand ove r, implem e n ted as a computer simu-
la t ion of a (me re) 100 repetit ion sof calcula t i nga CI and shown graphically bel owat the rig ht.

• The simulation requi re sa value for
µ, here taken as 405 µg bel ow10
gr ams; als o, it uses N(405, 5) and
N(405, 20) models for the ‘cent r al’
and ‘ou tly ing’ mea s urements of the
ma s s of NB1 0, wit h re spectiv e
weights of 96% and 4%.

• Each CI in the diag ram is shown
as a hor izont al li ne running from
the value of its lowe rend to that of
it s up per end; for exa mple, the first
in ter val is (402. 27, 405.03).
−− Fo r vi sual conve n ienc e, the re is

ex tra hor izont al whit e sp ace in
the diagr amafter each ten CIs.

• The cent re and the widt h of thes e
hu ndred CIs change as different sim -
ulat e dsamples of 100 obs ervation s
yi eld different (re a lized) value sfo r
the random variable sY− andS rep -
re senting the sample ave r age and
sample (data) standard dev iation
un d er repetit ion of the (sampling
and) mea s uring processes.

• The lev el of a CI is its coverage,
meaning that, for a 95% CI, about
95 of eve ry hun dre d in ter vals that
woul d be obtaine dun d er repetit ion
woul d cont ain the value of the
model parameter repre senting the
popula t ion attribute and about 5%
woul d not. In the simulation, we
se ethat 96 CIs do cross the heavy
ve rti c a l li ne at the value of µ and
fo ur CIs do not – they are marked
with an ast e risk (*).
−− If the simulation wit h100 repeti-

tion swe re to be don efo r a 90%
or a 99% CI ins tea dof a 95%
CI, we wou ld expect to see
(r espective ly) about ten CIs and
abou t on eCI that did not cov er
the value ofµ.

−− When a CI is calcula ted from dat aobtain ed in an inv estig a t ion, cov erage is interpret e din ter ms of the CIs that wou ld

Computer Simul ation of One Hundre d Ap p roximat e95% Con fide nce
Intervals for the True Mass of the U.S. 10-gram standard, NB10

µ

*

*

*

*

400 401 402 403 40 4 405 406 407 408 409 410
Nu mber of µg below 10 grams
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Figure 6.3. QUA NTIFYIN G UNCERTA I NTY: Con fide nce Int ervals (continue d 2)

(hy pot heti c a l ly) be obtaine dif the inv estig a t ion were to be repeated ove rand ove rwith the same Pla n.
−− The real-world analog ue of the simulation is the(daun ting) task of repeating one hun dre dtimes the process of mea s ur-

ing the mass of NB1 0on ehu ndred tim e s– that is, mak ing 10,000 mass mea s urements.
The inherent unc e rtain ty (due to sample error and measurement error, for exa mple) is reflected in not knowing, for the
data from oneactual inve s tig a t ion, whether the 95% (say) CI calcula ted from thes edata is:

on eof the 95 or so percent of int e rvals that docove rµ, OR:
on eof the 5 or so percent of int e rvals that do notcove rµ.

We are reminde dthat statis ti c a lmethods cannot re moveun cer tain ty arisi ngfr om one or more of our six cat egor ies of error
(a lthou gh their pro per use canre d uce it) but rather statis ti c a lmethodsqu ant ify the unc e rtain ty rem ain ing unde rthe Pla n.

• Cove r age is a for maliz ation of the change in perspective on pag e6.17 in writing equ ation (6. 3.6) as equ ation (6. 3.7).

• If we want to discus sa CI more gen erally wit hou tspecifyi ng the value of its confid e n ce lev el, we can refer to a100(1−α)%
CI – for exa mple, if α = 0.05, this is a 95% CI; this is one way ‘α’ i n the first colum nof Table 6.3.3 on pag e6.17 is useful.
−− In a sim ilar vei n,asymbolfo r the CI num erical coefficie n ttake nfr om theN(0,1) table is Z*

1−α (e.g., Z*
0.95 =1.9600)

4. Fa ctors affecting the width of a CI for the model mean µµ repr esent ing the popul ation ave rage Y−−. We need to unde r-
st andfact ors that affect the widt h of a CI becau se:

* anarrower CI det e rmines the int e rval of plau sible value sfo r the popula t ion attribute with sm aller im pre cisio n ;

* the Pla nfo r an inv estig a t ion may want to manage thes efact ors in order to obtain a CI of sp eci fiedwidt h.
Fo r this dis cus sio n, we write the CI of equ ation (6. 3.8) as: y− ± Z*

1−α σ /√n; -----(6. 3.1 0)
we see from equ ation (6. 3.1 0) that th reefact ors affect the widt h of a CI for a mean repre senting a popula t ion ave r age.

• Theconfidence level, whi c h is det e rmine dby the coefficie n tZ*
1−α – thehigh erthe confid e n ce lev el, thewider the CI and,

conv ersely, the lo wer the confid e n ce lev el, thenarrower the CI.
−− The fre e dom of an inv estig a tor to manipula te the confid e n ce lev el to alt e r the widt h of (us u ally, to make nar rowe r) a CI

is constrai nedbecaus e, onc edata hav ebeen col lect e dfr om the units of the sample, the data con tain afixedamou nt of
infor mation relev a n tto estim ating a model parameter repre senting a popula t ion attribute. If the CI calcula ted from the
data is too wid e to meet the requi rements of the inv estig a t ion, it can be made nar rowe r only by usi ng a lo wer con-
fid e n ce lev el. While thewidthof the CI may then be accep table, its confidence level may not be.

This is the sameideaas theHe ise nberg Uncer tai nty Princip le in phy sics –more precis eknow ledge of one variable (li ke
posit ion) can only be obtaine dby lessprecis eknow ledge of another variable (li ke momentum). The ‘fixed’ amoun t
of infor mation that must be par tit ion ed bet ween the measurement of two such can onical variable sinvolves Pla n ck’s
cons tant, whi c his so sma l l that effects of the Unc e rtain ty Principle are usually only impor tant at the atomic lev el.

−− A num erical illust r ation of the effect of confid e n ce lev el on CI widt h is giv en in the last colum nof Table 6.3.3 on pag e
6.17; thes ewidt hs, sup ple ment e dby infor mation for fou r high erconfid e n ce lev els , are giv en in Table 6.3.4 below. We
se e, for ins tanc e, that:

the 95% CI is about twe n ty percent wid er
than the 90% CI;
the 99% CI is ove r thir ty percent wid er
than the 95% CI;
the 99.9999% CI is nearly three tim e s
as wid eas the 90% CI.
The six ratios of succes sive CI widt hs in the secon d-last lin e of the table (and, in the last lin e, the ratio of each CI
widt h to that of the 90% CI) sh ow the re is no si m p lequ antit ative rela t ion s hipbetween lev el and widt h fo r a CI.

Ta ble 6.3.4: Con fide nce Leve ls and CI W idths for the NB10 Dat a
α 0.10 0.05 0.01 0.001 0.0001 0.000 01 0.000 001
Leve l (%) 90 95 99 99.9 99.99 99.999 99.9999
Coefficie n t 1.6449 1.9600 2.5758 3.2905 3.8906 4.4172 4.8916
Width (µg) 2.12 2.54 3.34 4.26 5.04 5.72 6.33
Ratio --- 1.20 1.31 1.28 1.1 8 1.1 4 1.11
Ratio to 90% 1.00 1.20 1.58 2.01 2.37 2.7 0 2.99

• Thesta n dar d devi ation σ – the larger σ, thewider the CI and, conve rsely, thesm aller σ, thenarrower the CI.
−− This res ult is the basis of the intuitive idea that unc e rtain ty due to sample error is likely to decrea se with decrea sing

variation in the respons evariat eov er the ele ments of the (study or respondent) popula t ion.
In the ext rem e(a n dex tremely rare) case of a popula t ion wit h the sa m evalue of the respons evariat efo r all it s ele-
ments, the re is nosampling unc e rtain ty (zero sample error) in estim ating the ave r age from any sample of size n=1.

−− In the con tex t of our int roduction to confid e n ce int e rvals – estim ating the mass of NB10 from repeated mea s urement
data – the model standard dev iationσ of equation (6. 3.2) on the lowe r half of pag e6. 3.1 6 qu antifie s variation in the
mea s uring process; in this situation, the mag n itude of σ can, to some degree, be manage dby the inv estig a tor(s) by
means of that par tof the Pla nwhich deals wit h the mea s uring process.
Mo re gen erally,σ repre sents the (data) standard dev iation S− of the (study or respondent) popula t ion and so its value
cannotbealtere dby the inv estig a tor(s).
Thus,σ affe cts the widt h of a CI for µ repre senting the popula t ion ave r ageY−− but the value ofS− us u ally cannotbe alt e red .

−− Althou gh an inv estig a tor usually cannot alter the value ofS−, its ef fec tcan be reduced, and a narrowe rCI obtaine d, by
ap pro priat estrati fying of the popula t ion from whi c h the sample is selected – recall Appendix 5 on pag e6.12 in Fig -
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ure 6.1 of thes eSTAT 220 Course Mat e ria ls. The ‘cos t s’of such management of variation are:
the need to use a more complicated sampling protocol, AND:
know ledge for all the popula t ion unit s of the value sof a suitable [re spons eor exp lanato ry] variat e(s) on whi c hto stratify.

A pos sib le (un d e sir able) influe n ce of the inv estig a tor(s) on the valueusedfo r S− is pursued in Not e5 on pag e6. 23.

• Thesa m p lesizen – the larger n, thenarrower the CI and, conve rsely, thesm aller n, thewider the CI.
−− This res ult is the basis of the intuitive idea that unc e rtain ty due to sample error is likely to decrea se with in cre asi ng

sample size – infor mally:
a largesample is ‘bett e r’ than asm all sample becau se of the likely sm aller magnitude of sample error, OR:
the estim ate from a largesample is likely to becl o ser to the actual value of the popula t ion attribute than the estim ate
fr om asm all sample, PROVIDED THAT: the samples are other wise equ ivalent.

We need to recog n ize that this provi so is met only in exce ptional inve s tig a t ion s– exper ienc esh ows that the large rthe
sample size, the more diffic ult it becomes to manage inaccur acy and impre cisio n of estim ates der ive dfr om sample dat a.

An ext rem eca s eis a popula t ionce nsus, like that car rie dou tqu inque n ia l ly in Cana da; the 2006 census cos tabou t$500
millio n, reflecting the resou rces needed to try to manage inaccur acy and impre cisio n when gen erating a large dat aset.

−− Equation (6. 3.1 0) ov erleaf near the middle of pag e6.19 shows that the widt h of a CI for a mean repre senting a popula -
tion ave r age depends on the square root of n so that, to halve (say) the widt h of such a CI, the sample size must be
in cre ase dby a facto r of fo ur – recall also Appendix 3 on pag es 6.8 to 6.1 0of Fig ure 6.1.

A summary of the three facto rs whi c haffe ct the widt h of a CI forµ repre senting the popula t ion ave r ageY−− is:

* on ce the data hav ebeen col lect e d, the re is a trade-off bet ween confid e n ce lev el and int e rval widt h;

* the popula t ion standard dev iationS− cannot usually be alt e red but its effect can bemanage dby a stratifie d sampling protocol;

* CI widt h de cre ases wit h in cre asi ngsample size but only as the squ are root of n.

5. CI numer ical coefficients from the tν instead of the N(0,1) distri bution. One matt e rin our int roduction to confid e n ce
in ter vals needs to be change dto giv e the usual res ult for a CI for a mean repre senting a popula t ion ave r age; this matt e ris
the use of the sample standard dev iation (s) for the value ofσ. In practic e, the change involves merely looking up the CI
nume rical coefficie n t in a di ffere nt table from that of the N(0,1) dist rib u tio n, alt hou gh the theor y un d erlyi ng this change,
which is giv en in Appendix 3 on pag es 6.28 to 6.30, is more ext ensiv e; this is rem iniscent of the lengt hy deriva tion on pag es
6.16 and 6.1 7of equation (6. 3.7) but its straig ht-for ward implem enta tion in equation (6. 3.8).
Un d er this change, equ ation (6. 3.1 0) beco m e s: y− ± t*ν,1−α s/√n. -----(6. 3.11)

• The t dist rib u tio n, from whi c hthe num erical coeffic ent t*ν,1−α in equation (6. 3.11) is obtaine d, is tab ula ted in Fig ure 6.4 on
page s6. 33 and 6.34 in thes eSTAT 220 Course Mat e ria ls.
−− Thet dist rib u tio n ha son eparameter (he re den otedν, the Gre ek letternu) called its degr e esof free d o mfo r his t orical rea son s.

In a CI for a mean repre senting a popula t ion ave r age, ν = n−1; that is, the degrees of fre e dom are on eless than the
sa m p lesize– see equ ation (6. 3.1 2) at the rig ht. y− ± t*n−1,1−α s/√n. -----(6. 3.1 2)
The tν dist rib u tio n beco m e smo reli ke theN(0,1) dist rib u tio n asν in cre ases; the entries in the last lin e on the ove r-
le a fsi de (page 6.34) of Fig ure 6.4 for an in finite number of deg rees of fre e dom are those for the N(0,1) dist rib u tio n.
The six sig n ific a n tfig ure sfo r ent rie sin Fig ure 6.4 for the tν dist rib u tio n ab sci ssa sare giv en for two rea son s:
++ to improve the accur acy of in terpola ting the table for deg rees of fre e dom (table row s) or probabilit ies (colu mns)

which are not giv en – int e rpola t i ngis more accur ate for deg rees of fre e dom than for probabilit ies;
++ to avo id the practic eof car r ying many fig ure sin CI calcula t ion sbut, at a lat est age, usi nga num erical coefficie n t

fr om the t table wit h only three or fou r signific a n tfig ure s ,althou gh this (carele ss) practic e seldom affe cts the CI
in such a way as to hav ea practically impor tant effect on an Answe r.

The gap after thre esignific a n tfig ure sin each ent ry in Fig ure 6.4 is to make the entries easi er to rea d.
−− Li ke theN(0,1) dist rib u tio n, the tν dist rib u tio n ha sa bel l-shaped p.d.f. that is sym met rical about zero and wit h domain

(−∞,∞); the two dist rib u tio ns di ffer in that the tν dist rib u tio n ha s(s lig htly) les scent r al area and more tail are a(s ome -
times refer red to as hav ingheavier tai ls). A vi sual comparison of the p.d.f.s for the (da she d) N(0,1) and (soli d) tν dist ri-
butio ns forν = 5, 10, 25 and50 degrees of fre e dom are show nbelow; at the scale of thes ediag rams, the two dist rib u-
tion sdiffer alm o st imperceptib ly whenν re aches50.

ν =5

−4 −3 −2 −1 0 1 2 3 4

ν =10

−4 −3 −2 −1 0 1 2 3 4

ν =25

−4 −3 −2 −1 0 1 2 3 4

ν =50

−4 −3 −2 −1 0 1 2 3 4

−− The not ationY∼ tν means that the randon variableY ha sa t dist rib u tio n with ν degrees of fre e dom; in Fig ure 6.4:
colu mn hea ding sare le ft-tai l area s[a s they are for the N(0,1) dist rib u tio n in Fig ure 5.4 on pag es 5.11 and 5.1 2 in
thes eSTAT 220 Course Mat e ria ls.];
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Figure 6.3. QUA NTIFYIN G UNCERTA I NTY: Con fide nce Int ervals / (c o ntinue d 3)

the degr e esof free d o mare shown in the left-hand colum n(a n dare repeated at int e rvals at the rig ht of the table to
assis t with rea ding across a particular lin e);
the two it ali cizedcolu mns are those needed (mos t co mmonly) to find 95% and 99% confid e n ce int e rvals;
an illust r ation of table look-up is that if the random variableY∼ t15, then: Pr(Y≤ 2.13 145) = 0.975 so that:
Pr(−2.13 145<Y≤ 2.13 145) = 0.95 and: Pr(Y≤ −2.13 145) = Pr(Y ≥ 2.13 145) = 0.025.

• We use equation (6. 3.1 2) fo r calcula t i nga CI but we recog n ize that, for sample sizes that are gen erally large enoug h(e.g.,
n ≥ 50) to be useful, the sim ilarity of theN(0,1) andtn−1 dist rib u tio ns means that the differenc ein widt h of the two CIs is
not enoug hto have a practically impor tant effect on the Answe rin mos tinve s tig a t ion s. This is illu s trated (when n=100)
in Table 6.3.5 at the rig ht, for six
confid e n ce lev els , of N(0,1) andt99

CIs forµ repre senting−M base don
the NB1 0 data in Table 6.3.1 on
page 6.1 5; alt hou gh thet99 CIs are
wide r, the ratios of the two widt hs
in the last colum nof the table dif-
fe r fr om 1 by only a few percent.
[Thes eratios are calcula ted from the
nume rical coefficie n t sin Table 6.3.5, not fr om the tab ula ted widt hs whi c hco m efr om the CIs rou nde dto 2 decim al places.]

Ta ble 6.3.5: Compari son ofG(0,1) an d tν CIs for the NB10 Dat a
. . . . . . . . . .G(0, 1) . . . . . . . . .  . . . . . . . . . . . .t99 . . . . . . . . . . . Width

1−α Leve l Coeff. CI W idth Coeff. CI W idth rat io

0.90 90% 1.6449 (403.53, 405.65) 2.12 1.66039 (403.52, 405.66) 2.14 1.009
0.95 95 1.9600 (403.32, 405.86) 2. 54 1.98422 (403.31, 405.87) 2. 56 1.01 2
0.99 99 2. 5758 (402.92, 406.26) 3. 34 2.62641 (402.89, 406.29) 3.40 1.020

0.999 99.9 3.2905 (402.46, 406.72) 4. 26 3.391 53 (402.40, 406.7 8) 4. 38 1.031
0.999 9 99.99 3.8906 (402.07, 407.11) 5.04 4.0550 4 (401.97, 407.21) 5. 24 1.0 42
0.999 99 99.999 4.4172 (401.73, 407.45) 5.72 4.65675 (401. 58, 407.60) 6.02 1.054

6. Mo delling assumpt ions under lying the CI der ivat ion. No w we hav eequation (6. 3.1 2) on the facing pag e6. 20 for finding
a CI forµ repre senting a popula t ion ave r age, equ ation s(6. 3.7) and(6. 3.8) on pag e6.17 are mainly of theoretical int e rest to us;
th eir assump tion s fo r re asonable approxi mat e no rma lity are those for the Cent r alLi mit Theorem give n in Section 1of
Figure 5.1 6near the middle of pag e5. 39 in the STAT 220 Course Mat e ria ls.

• The respons emodel whi c his the basis of equation (6. 3.1 2) fo r the CI is the model of equ ation (6. 3.2) modifie dto:
Yj = µ +Rj, j =1, 2, ....,n, Rj ∼ N(0,σ), independent, EPS; -----(6. 3.1 3)

thus, for atn−1 dist rib u tio n CI for µ repre senting the popula t ion ave r ageY−−, the re are three model ling assump tion s.
−− Assumpt ion 1: The respons evariat eY−i, i =1, 2, ....., −N, in the (study or respondent) popula t ion has anormal dist ri-

butio n – recall the model shown super impos ed on the his t ogr amof the popula t ion respons evariat evalue sin the dia-
gr amat the bottom rig ht of the first sid e(page 6.3) of Fig ure 6.1.
Un d er repetit ion ove r and ove r of the EPS of Assump tion 2 bel ow, the model respons evariat eYj then has a nor mal
dist rib u tio n ; we den ote its mean byµ and its (probabilis ti c) standard dev iation by σ. Thes etwo model parameters
repre sent the respectiv e (s tudy or respondent) popula t ion attributesY−− andS−.

The (assume d) exact no rma lity unde r lyi ng equ ation (6. 3.1 2) [a n din the model (6. 3.1 3)] is to be con trast e dwith the
appr oximateno rma lity res ulting from the Cent r alLi mit Theorem approxi mation unde r lyi ng equ ation (6. 3.7).

Un d er the probabilis ti c in d ependenc eof Assump tion 3 dis cus s ed ove r leaf on pag e6. 22, the nor mality of Yj yi elds
no rma lity of Y−, the random variable repre senting the sample ave r age.
To assess the nor mality assump tion for the popula t ion Y−i, i =1, 2, ....., −N, we cou ld use anormal quant i le plo t of the
sample respons evariat e value syj, j =1, 2, ....., n; in practic e, to allow for when the re is a more ge ner al st ructural
co mponent thanµ in the model ,we use a normal quantile plo t of theestimate d re siduals rĵ = yj −µ̂ fr om the respons e
model, whe re µ̂ = y− is thees tim ateof the model parameter µ – see als oAppendix 2 on pag e6. 27.

Y−i and, henc e,Yj are not exactly nor mal in practic e, of cou rse, so the CI from equ ation (6. 3.1 2) ha sa confid e n ce lev el
that wil l di ffer fr om its stat e d(o r nomi nal) leve l (e.g., 95%). How the size of this differenc eis rela ted to the degree
of dep arture from nor mality of the dist rib u tio n ofYj is called the ro bustne ss of the CI estim ating process.
++ Su ch a process is said to be rob ust if its outco m e– here, the differenc ebetween the actual and stat e dconfid e n ce

leve ls of the CI – is rela t ive ly in sen sitiveto departure sfr om the model ling assump tion – here, the nor mality of Yj.
++ The process becomeslessrobust as the outco m ebeco m e smore sensit ive to dep arture sfr om the assump tion.
Un d er a dep arture from nor mality that leave s the dis tributio n of Yj ‘m oun d-shaped,’ the CI estim ating process is
robust; that is, for a CI calcula ted from equ ation (6. 3.1 2), the differenc ebetween the actual and stat e dconfid e n ce
leve ls shoul d have no practically impor tant effect on an Answe r if the dist rib u tio n of theYj is ‘moun d-shaped.’
Howeve r, unde ra dep arture from nor mality charact e rized by outl iers or strong skewne ss, la ck of rob ustness is
li kely – the differenc ebetween the actual and stat e dconfid e n ce lev els of the CI may hav ea practically impor tant
ef fect on an Answe r– the actual lev el wil l be (ap pre ciably) lo wer than the stat e dleve l .
Qu ant ita tive treatment of lack of rob ustness – a sou rce of model er ror – is bey ond the sco pe of thes eMa ter ials.

Discus sio n of the nex tassump tion differs depending on whether the con tex t is sampling or mea s uring.
−− Assumpt ion 2 – sampl ing: The sample of n units yielding the respons evariat evalue syj, j =1, 2, ....., n, whi c h are

take nas value sof the random variableYj in the model (6. 3.1 3), is selected by EPS (o r, more gen erally, by a pr obabi lity
sele cting process) from the (study or respondent) popula t ion.
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We recall from Fig ure 6.1 that Assump tion 2, in conjun ction wit h As s umption 1, est ablis hes the nor malit ty of the
dist rib u tio n of Y−; in addit ion, the mean of this dis tributio n is Y−− [e quation (6.1.8)] and its standard dev iation is S−
[e quation (6.1.11)]. The secon dter mun d er the squ are root reflects la ck of probabilis ti c in d ependenc earising from
sele cting wit hou t replacement; this ter mis absent for selecting with replacement, a process alm o st never us ed in practic e.

1
n − 1

−N√

In the model, the popula t ion attributesY−− andS− are replaced by the respectiv e parametersµ andσ which repre sent
them; als o, the 1/−N un d er the squ are root is sel d o min clu ded .
The deg ree to whi c hAs s umption 2 is met in an inv estig a t ion can be assesse dby exa m ining the sampling protocol,
with the cav eat sthat the inv estig a tor(s) provi de an adequ ate des criptio n of the protocol and that they adhered to it.

−− Assumpt ion 2 – measuri ng: The sample of n mea s urements yielding the respons evariat evalue syj, j=1, 2, ....., n,
which are tre ated as value sof the random variableYj in the model (6. 3.1 3), is selected by EPS fr om the (hy pot heti c a l)
popula t ion of all such mea s ure dvalue s.

The deg ree to whi c hAs s umption 2 is met when inv estig a t i ng a mea s uring process is di fficult to assess becau se:
++ the hypot heti c a lnature of the popula t ion makes it uncle ar whi c hpossib le mea s ure dvalue sit inclu des,
++ there is no explicit sampling protocol whi c hdeter min es whi c hvalue sfr om this ‘popula t ion’ for mthe sample.
It is wrong to think that thehaphazard nature of the process that typically lea ds to the sample of mea s ure dvalue s
ma kes this processeq uiva len tto EPS from the popula t ion of value sthatmigh thave been obtaine d.
. Haphazard selecting is uncont rol led whe rea sEPS is (tightly) controlled; thinking thes eare equ ivalent processes

is rem iniscent of anotherwrong id e aabou t probabilit ies, that la ck of knowle dgeof a probability dis tributio n can
be model led by auniform dist rib u tio n (s ee dis cus sio n of the Ali Baba ‘paradox’ in Statis ti c a lHighlig ht #46).

Inve s tig a t i ng a mea s uring process by repeated mea s uring – like the NB10 inv estig a t ion –may yi eld a usef ul Answe r
fr om a CI calcula ted from equ ation (6. 3.1 2) but its basis in statis ti c a ltheory lacks justific ation for Assump tion 2.

−− Assumpt ion 3: The residu alsRj arepr obabi lis tically indep enden trandom variable s.
This assump tion is met if the sample is selected equ iprobably with replacement; unde rthe EPS (withou t replace -
ment) us ed in practic e, Assump tion 3 becomes clo ser to bei ng met as the sample size becomes a progres siv ely
sm aller pro por tio n of the popula t ion size. Thu s ,viola t ion of Assump tion 3 unde rEPS shoul d have no practically
im por tant effect on an Answe r fr om a CI calcula ted from equ ation (6. 3.1 2) on pag e6. 20 provi ded n<<−N.
A graphical check, if needed, of Assump tion 3 is to make a scatt e rdiag ram of thees tim ated res idu als rĵ = yj −µ̂ in
theor der in whi c hthe dat awe re col lect e d;
++ a pa ttern in the diag ram (e.g., one or more groups in whi c hthe poi nts are clo se to each other) sugge s t sAs s ump-

tion 3 maynotbe met ;
++ la ck of a patt e rn (e.g., the diag ram shows a haphazard scatt e rof poi nts) sugge s t sAs s umption 3is met.
In a mea s uring process inv estig a t ion (li ke the NB1 0
inve s tig a t ion), meeting Assump tion 3 can be
helped by a Pla nwhich tries to rem ove from a
mea s ure d value any in fluence of a previously
mea s ure dvalue – recall the discus sio n on pag e
5.60 in Appendix 5 of STAT 231 Fig ure 5.7.
++ An illust r ation of such influe n ce, when

ma king mea s urements in dup licate, is if the
operato r re co r dsthesa m evalue for the sec-
on dmea s urement as for the first,regar dless
of the secon dvalue obtaine d.

A summary of the discus sio n of the three assump -
tion sis giv en in the schema at the rig ht; the idea sst art
with the popula t ion respons e, Y−i, i =1, .....,−N, at the up-
per left and flow dow nand to the rig ht across the schema .

Su mmary of Modelling Assumpt ions
• Normal ity • EPS • Prob abilist ic ndependence

Re al Wor ld Mo del
Popula t ion Re spons e

model

Set of all
possib le
samples

of size n

Sa mple
av erage

or mal Y−i, i =1, .....,−N no rma l Yj

no rma ly−s no rma lY−

EPS

EPS EPS
Independenc e

Me a nY−− S.d.S− Me a nµ S.d.σ

Me a nY−− S.d.S− Me a nµ S.d.σ

Fundament alTheorem of Statis ti cs

Y−− is repre sent e dbyµ

S− is repre sent e dbyσ

Y−− is repre sent e dbyµ

S− is repre sent e dbyσ

Y−i, i =1, ....., 10, ha sa unifo rm (nota nor mal) dist rib u tio n in
the illust r ative diagr ams on pag es 6.8 and 6.9 of Fig ure 6.1.

1
n − 1

−N
1
n√ √

NO TES: 4. The re are differenc esof empha sis among int roducto ry statis ti cs cou rses in pre senting a CI for a model mean(li ke
µ) repre senting a popula t ion ave r age(li keY−−).

• In th eseSTAT 220 Course Mat e ria lswith a more det ailed Fig ure 6.4 of the t dist rib u tio n up to 5,000 deg rees
of fre e dom ,equation (6. 3.1 2) on pag e6. 20 is theon ly CI expre ssi on to be use dfo rµ repre sentingY−−.

• Elsewhere, a dis tin ction is sometimes made bet ween two cases:
−− S− ‘known’and the use of equ ation (6. 3.8) on pag e6.17 inv olv ing thenormal dist rib u tio n, AND:

−− S− ‘unknow n’but estim ated by sand the use of equ ation (6. 3.1 2) on pag e6. 20 and thetn−1 dist rib u tio n.
Our assig nments inv olveon ly the latt e rand Exa mple 6.3.1 on pag e6. 23 is inclu dedso l ely to illust r ate the for mer.
Some pre sent ation sof the distin ction conf use a model parameter with a popula t ion attribute and refer to ‘σ know n.’

• An othe runne c essar ysour ce of conf usi on is to change from thetn−1 dist rib u tio n [e quation (6. 3.1 2)] to theN(0,1)
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NO TES: 4. •(c o nt.)
dist rib u tio n [e quation (6. 3.8)] fo r calcula t i nga (re a lized) CI when the sample size exc e e ds some number like 30.
−− It is true, howeve r, that, for rea son able sample sizes, it sel d o mha sa practically impor tant effect on an Answe r

abou tY−− whet her the CI num erical coeffic ent is taken from thetn−1 or theN(0,1) dist rib u tio n.
−− The useful rule of thu mb is that a 95% CI for a model mean repre senting a popula t ion ave r age isroughl y

the sample ave r age plus and minus aroun dtw ic ethe sample standard dev iation div ide dby the squ are root of
the sample size.

Elsewhere, {σ/√n may be called thesta n dar d er ror and s/√n thees tim atedst andard erro r, alt hou gh the ad-
je ctive ‘estim ated’ (which distinguis hes the model quantity from its estim ate) is, unfor tun ately, often omitt e d.

5. The his t ogr amon the first sid e (page 6.1 5) of this Fig ure 6.3 shows the re are sev eral pos sib le ou tli ers among the
100 mea s urements of the mass of NB1 0; the mos tobvious are the value sof 375 (#94) and 437 (#86) µg bel ow10
gr ams, but up to fou r ot he rmea s urementsmay also be outli ers. As sum marized in Table 6.3.2 on pag e6.16 , if
thes esi x devi ant obs ervation sare progres siv ely omitt e d in pairs from the data set, the ave r age is rela t ive ly un-
affe cted but the (data) standard dev iation steadily decre ases – for the 94 obs ervation s, it is 3.88µg, about 60% of
it s value of 6.47µg for all 100 mea s urements.
Outlie rs in dat asets are common and, as des cribed in Not e2 on the upper half of pag e6.16 , dealing wit h them
poses a dilem ma for inv estig a tors; for exa mple, inv estig a tors may :

* us etheen tiredata set to calcula te awider CI, lea ding to amore im pre cis eAnswe r;

* document the outli ers but omit them when calcula t i ngthe CI, lea ding to a lessim pre cis eAnswe r;

* suppre ss the outli ers wit hou t documenting them and aga incalcula te the CI lea ding to a lessim pre cis eAnswe r.
The last of thes epossib i lit ies is unethical but temp ting for the rea son sgive non pag e6.16 at the end of Not e2.
As indicated in the quotation from NBS giv en at the bottom of pag e6.15 in Not e1, omitting outli ers may under -
estim ate the real variation in a mea s uring process and so the actual confid e n ce lev el of the CI base don a
tr uncated dat aset may be far enoug hbelow its stat e dleve l to have a practically impor tant effect on an Answe r.
Tr eat ment of outli ers is an impor tant are aof statis ti c a lmethods but there can be dis agreement about which of the
av a ila ble strategie ssh oul d be use din the con tex tof a par ticular inv estig a t ion.

• An illust r ation, from the NB1 0 data set
on pag e6.15, of the effect on CI widt h
of omitting outli ers is giv en in Table
6. 3.6 at the rig ht; the decrea s ein widt h
of the 95% CI calcula ted from equ ation
(6. 3.1 2), as pos sib le outli ers are omitt e d,
coul d be large enoug hto have a practi-
cally impor tant effect on an Answe r.
−− This illu s tration als o reminds us of the li mit ations on the Answe rabou t −M , the (tr ue) mass of NB1 0, im-

pose dby model er ror from two sou rces, whi c hmay compromise poi nt 6 Assump tion 1 and Assump tion 2:
the lack of normaii ty and the effect of the outli ers on therobustnes sof the CI;
thehaphazard nature of the sample selecting process for repeated mea s urements.

Ta ble 6.3.6
Observat ions Sample s Coeff. 95% CI W idth Rat io

omitte d (#) size (n) (µµg) t*n −1, 0.95 (µµg below 10 g) (µµg)

No ne 100 6.47 1.98422 (403.31, 405.87) 2. 56 1
375(94), 437 (86) 98 4.78 1.98472 (403.60, 405.52) 1.92 0.75
393(85), 423 (36) 96 4.28 1.98525 (403.62, 405.36) 1.74 0.68
392(63), 418 (87) 94 3.88 1.98580 (403.69, 405.27) 1. 58 0.62

Example 6.3.1: An egg farme rknow sfr om long exper ienc ethat her hens produ c eeggs whose weights vary wit h a standard
devi a t io nof 3.0 grams. She is requi red by an Egg Marke ting Board inspect or to produ c est atis ti c a lev idenc e
of the ave r age weight of the egg ssh esells. If a sample of 100 egg ssele cted equ iprobably from those pro -
du c e dby her hens ove ra suitable per iod of tim esh ows an ave r age weight of 56. 2gr ams, find a 90%, a 95%,
and a 99% confid e n ce int e rval for the ave r age weight of all egg sfr om the farm.

Answers: We are tol d that the sample ave r age, base don n=100 egg s ,is y− = 56. 2 gr ams; als o, S− repre sent e dbyσ is
knownto be 3.0 grams in this (un u sual) situation. Then, if Y−− is the ave r age weight of all egg sfr om the farm
and using equ ation (6. 3.8) near the middle of pag e6.17, we hav e(a pprox imately):

a 90% CI for µ repre senting Y−− is: y− ±1.6449σ
√n

= 56.2 ± 1.6449× 3. 0
√100

= 56. 2± 0.493 =(55.7, 56.7) gr ams;

a 95% CI for µ repre senting Y−− is: y− ±1.9600σ
√n

= 56.2 ± 1.9600× 3. 0
√100

= 56. 2± 0. 588 = (55.6, 56.8) gr ams;

a 99% CI for µ repre sentingY−− is: y− ± 2. 5758σ
√n

= 56.2 ± 2. 5758× 3. 0
√100

= 56. 2± 0.773 =(55.4, 57.0) gr ams.

Example 6.3.2: Five thousand people regis ter to compete in a com mun ity marat hon run. A phys ical edu cation res earche r
wish e sto inv estig a te an index of vit al cap acity among thes erunners. Hesele cts by EPS 50 names from the
regi stration lis t and is able to mea s ure the vit al cap acity for all 50 of thes epeople; the ave r age is 68.0 and
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Example 6.3.2:
(c o ntinue d)

the standard dev iation is15.0 in suitable units. Fin d a100(1− α)% confid e n ce int e rval for the ave r age vit al
capacity of this popula t ion of 5,000 runne rs, for α = 0.1 0, 0.05, 0.02 and 0.01.

Answers: We are tol d that the sample ave r age, base don n= 50 runne rs, is y− = 68.0 units; als o, the popula t ion (data)
st andard dev iationS− is unknow n(a sis usual) and so we use its estim ate, the sample standard dev iations=15.0
un its, as the value of the model (probabilis ti c) standard dev iationσ. Then, if Y−− is the ave r age vit al cap acity
of all 5,000 runne rs in the marat hon and using equ ation (6. 3.1 2) on pag e6. 20, we hav e:

a 90% CI for µ repre senting Y−− is: y− ±1.67655s
√n

= 68.0± 1.67655× 15 .0
√50

= 68.0 ± 3. 556 = (64.4, 71.6) un its;

a 95% CI for µ repre senting Y−− is: y− ± 2.00958s
√n

= 68.0± 2.00958× 15 .0
√50

= 68.0 ± 4. 263 =(63.7, 72. 3) un its;

a 98% CI for µ repre senting Y−− is: y− ± 2.40 489s
√n

= 68.0± 2.40 489× 15 .0
√50

= 68.0 ± 5.102 = (62.9, 73.1) un its;

a 99% CI for µ repre sentingY−− is: y− ± 2.67995s
√n

= 68.0± 2.67995× 15 .0
√50

= 68.0 ± 5.685 = (62. 3, 73.7) un its.

4. Modelling a Measuri ng Pro cess which has Inaccu racy
The der ivation of a CI forµ in Section 3 on pag es 6.1 6and 6.1 7ex pli cit ly excluded mea s uring inaccur acy; we now ext end

the dis cus sio n to inclu de it, in par t becaus e mea s uring processes are rarel y withou t in accur acy. We lim it dis cus sio n to the
(s impler) case whe re inaccur acy is consta nt – its value does not changewith the mag n itude of the measure dvalue. Recalling
Example 6.1. 2on pag e6.7 in Fig ure 6.1, we dis tinguis h two types of inv estig a t ion.

1. Ca libr ating a measuri ng pro cess to quant ify measuri ng ina ccu racy. The dat ane e ded to calib r ate a mea s uring process
are obtaine dby mak ing m (say) independent measurements of a sta n dar d fo r the quantity unde rinve s tig a t ion – recall the
discus sio n on pag e6.15 at the star tof this Fig ure 6.3. To analyze such dat a, we write the model (6. 3.1 3) as equ ation (6. 3.1 4):

MYj =τ +δ +Rj, j =1, 2, ....,m, Rj ∼ N(0, σM), independent, EPS, -----(6. 3.1 4)
where: the suf fix M on the random variable MYj em pha sizes that its value sare as measured,

the sub scr ipt M on the parameterσM reminds us it repre sentsmeasur ingproces svariation,
τ is the value of the standard – a‘t rue’value,
δ is the (mea s uring) bi as – bia sin the model repre sents (mea s uring) in accur acy in the real world.

If we take the respons evariat easYj = MYj −τ, thedi ffere ncebetween the respons eas mea s ure dand the true value:
Yj = δ +Rj, j =1, 2, ....,m, Rj ∼ N(0, σM); independent, EPS; -----(6. 3.1 5)

this is now the model of equ ation (6. 3.1 3), exc ept that the structur al component isδ in stead of µ. Henc e, a CI for the bia sδ
repre senting the measuring inaccur acy is calcula ted from equ ation (6. 3.1 2) rewrit ten as equ ation (6. 3.1 6):

y−c ± t*m−1,1−α sM /√m [The sub scr ipt c rem inds us y−c is the sample ave r age ofca libra tion data .] -----(6. 3.1 6)

2. A CI f or the mean µµ repr esent ing the popul ation ave rage Y−− calcul ate d from ina ccu rat e me asurements. Our verbal
and symboli c models in Section s2 and 3 on pag es 6.1 5and 6.21 for a mea s uring process wit h no in accur acy are:

mea s ure dvalue = true value + haphazard mea s urement error;
Yj = µ +Rj, j =1, 2, ....,n, Rj ∼ N(0,σ), independent, EPS.

-----(6. 3.1)
-----(6. 3.1 3)

When measuring inaccur acy is in clu ded, thes emodels become:
mea s ure dvalue = true value + sys tem ati c mea s urement error + haphazard mea s urement error;
Yj = µ +δ +Rj, j =1, 2, ....,n, Rj ∼ N(0,σ), independent, EPS.

-----(6. 3.1 7)
-----(6. 3.1 8)

If the estim ating process that lea ds to the CI expre ssi on (6. 3.1 2) fr om the model (6. 3.1 3) is now appli ed to the model (6. 3.1 8),
it is only pos sib le to estim ate the co mbi nation µ +δ of the two parameters that make up the structur al component of this
model; we can estim ateµ – the parameter of int e rest –on ly if we hav ean estim ate of δ fr om calib r ating the measuring
proces s, us u ally in a sep arate inv estig a t ion (a PPDAC subcycle) as des cribed in Poi nt 1 above.

* It is sel d o mre cognized that usi nginaccur ate mea s urement data – which are the rule,not the exc eptio n – to calcula te a CI
fo rµ fr om equ ation (6. 3.1 3) in cludes the effect of mea s uring inaccur acy unlessδ is estim ated by calib r ation and rem ove d.

A cla s sic dis cus sio n of unre cognized mea s uring inaccur acy is that of You den in Enduring Values, sum marized in Statis ti c a l
Highlig ht #15 (or see Fig ure 2.1 2of thes eSTAT 220 Course Mat e ria ls.)

NO TES: 6. Different not ation is use dfo r repre senting the true value of a mea s ure d qu antity – µ in Section 2 on pag e6.15
andτ in Poi nt 1abov e– for two rea son s.

• The purpose of Section 2, starting from the respons emodel (6. 3.2), is to reach equ ation (6. 3.1 2) on pag e6. 20
fo r calcula t i nga CI for the model parameter that is usually den otedµ; this con strain t, tog ether with avo iding
changi ng not ation during Section 2, dictated choosingµ, rat her than the more evocativeτ, to repre sent−M .

• In Section 4 abov e,us eof τ in Poi nt 1, repre senting the (tr ue) value of asta n dar d, hel ps us avo id conf usi ng
thisτ with µ, whi c hrepre sents the (study or respondent) popula t ion ave r ageY−−, in the model (6. 3.1 8).
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NO TES: 7. For calcula t i nga CI forµ repre sentingY−− fr om dat age nerated by an inaccur ate mea s uring process, we dis tinguis h
two approaches:

* Leav ethe inaccur ate mea s uring processunadju s ted and use the estim ate of the bia sfr om the calib r ation inve s tig a-
tion, tog ether with equ ation (6. 3.1 9) below, to calcula te a CI forµ withou t (e s tim ated) mea s uring bia s– this bias,
repre senting mea s uring inaccur acy, is thu s(m o stly) re movedat the Analys is stage of the (ma in) PPDAC cycle.

y−− y−c ± t*ν,1−α s2

n + sM
2

m
, whe reν is the int ege rcl osest to(s2

n + sM
2

m)
2/( 1

n−1(s
2

n)
2

+ 1
m −1(

sM
2

m)
2

);

the symbols here are from equ ation s(6. 3.1 2) on pag e6. 20 and bel owand(6. 3.1 6) on the facing pag e6. 24.

-----(6. 3.1 9)
√

* Us ethe estim ate of the bia sfr om the calib r ation inve s tig a t ion to make the effect of mea s uring inaccur acy negl igi ble
in the inv estig a t ion con tex t by appro priat eadju stmen tof the measuring process. Dat afr om such aca libra ted
mea s uring process wou ld usually be use din equation (6. 3.1 2) to calcula te a CI forµ withou t mea s uring bia s–
the mea s uring inaccur acy has, in principle, been (mos tly) rem ove dby adj usting the measuring process.

y− ± t*n−1,1−α s/√n, whi c hcan also be writt en as: y− ± t*n−1,1−α s2

n
. -----(6. 3.1 2)

√
We see from equ ation (6. 3.1 9) that managi ng mea s uring inaccur acy incurs two ‘cos t s’:

• the resou rces needed for the calib r ation inve s tig a t ion, AND:

• increa s ed impre cisio n in the estim ating process – the re is an additional ter mun d er the squ are root in equ ation
(6. 3.1 9) co mpare dwith equ ation (6. 3.1 2).
−− St rictly, equ ation (6. 3.1 2), use dwith dat afr om a calib r ated mea s uring process, ign ore stheun cer tai nty in es-

timating the bia sin the calib r ation inve s tig a t ion; it the refore underestim ates the widt h of the CI forµ with -
ou tbia s. The CI from equ ation (6. 3.1 9) av oid s this diffic ulty and an inv estig a tor who uses equ ation (6. 3.1 2)
ha sa responsib i lity to che ck whether the differenc ein widt h of the two CIs wou ld be large enoug hto make
a practically impor tant differenc ein an Answe rabou tY−−.

The num erical coefficie n tt*ν,1−α in equation (6. 3.1 9) will be slig htly sm aller thant*n−1,1−α in equation (6. 3.1 2)
becaus eν > n−1; this wil l co mpens ate slig htly for the large restim ated standard erro r in equation (6. 3.1 9)
co mpare dwith equ ation (6. 3.1 2).

Equation (6. 3.1 9) il lust r ates how, often, a‘c o st’ of managi ng inaccur acy is inc rea s ed impre c isi on.

8. Units whi c hinvolvehumans– indivi d ually or in a group like a family, busin ess or ins titutio n – can int roduce diffi -
cult mea s urement issues; an illust r ation is mea s uring a respons evariat eli ke self-est e em, for which a que s tionnaire
li ke the one at the rig ht bel owmight be use d. Mea s uring diffic ulties wit h hu man units inclu de:

• there may no sta n dar d fo r calib r ating a mea s uring process, so inaccurac yis diffic ult to quantify;

• repeated mea s uring of thesa m eun it is equ ivocal – a lat e rmea s urement may be influe n ced by an unit re mem-
beringa previous respons e– so, like inaccur acy, impre c isi on can be diffic ult to quantify;

• different measuring processes
– for ins tanc e, different que s-
tionnaires for mea s uring self-
est e em – are diffic ult to com -
pare becau se of unc e rtain ties
in quantifyi ng inaccur acy
and impre cisio n ;

• a unit’s reactio n to components
of the measuring process
may influe n ce the (value of
the) respons e; such compo -
nents inclu de:
−− the person adm inist e ring

the que s tionnaire,
−− the que s tionnaire – a unit’s

backg rou nd may affect how
(s)he int e rpret sa que s tion;

• differenc esin env ironm e n tal
condition s may hav e greater
influe n ce on the (value sof)
re spons es from a person than
fr om an inanimate unit;

• it may be uncle ar to what de-
gree the mea s uring processis

The Ros enber gSelf-Esteem Scale is base don 10 que s tion s. Re spondents are
aske dto strongly agree, agree, disag reeor strongly disag reewith thes eit ems.

1. On the whole, I am satisfie dwith mys elf.
2. At tim e sI think I am no good at all.
3. I fe el that I hav ea number of good quali tie s.
4. I am able to do things as wel l as mos tot he rpeople.
5. I fe el I do not have much to be proud of.
6. I cer tainly feel usele ss at tim e s.
7. I fe el that I am a person of wor th, at lea stthe equ al of others.
8. I wish I coul d have more respect for mys elf.
9. All in all, I am incli ned to feel that I am a failu r e.

10 . I take a posit ive attitude toward mys elf.

Half the que s tion sare phrase dposit ive ly and half negative ly.
Fo r theposit ive ly phrase dqu estio ns – numbers1, 3, 4, 7  and 10 – sco reas
fo llows: Strongly agree, 4 poi nts; agree, 3; dis agree, 2; strongly dis agree, 1.
Fo rne gativequ estio ns – numbers2, 5, 6, 8 and 9 – rev erse the sco ring so that
st rongly agree is wor th1 poi nt, etc. The maximum is 40 poi nts, the minimu m10 .

Mo st people in the gen eral popula t ion sco rein the 30-to -40 range. A
mu ch sma l ler number are in the 20s. A score of 10 to 20 is often associat e d
with cli nical depres sio n, according to Tim othy Owe ns of Indiana Unive rsity.
Sour ces: Conc eiv ing the Self by Mor ris Rosenberg (Basi cBooks, 1979);

Ti mothy Owen s.

Gauging Self-Esteem
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mea s uring the(in tende d) re spons evariat e– this is, in par t,what is calledconstruct val idity in the socia l scie n ces.

Our dis cus sio n only draws attentio n to such matt e rs – dealing wit h them is bey ond the sco pe of thes eMa ter ials.
[The que s tionnaire ove r leaf at the bottom rig ht of pag e6. 25 is taken from Fig ure 8.8e of the STAT 220 Course Mat e ria ls.]

5. Calcul ating a Sample Size in the Plan for an Inv est igation to Est imate Y−−
The Pla nfo r an inv estig a t ion may wis h to inclu de calcula t i nga sample size that wil l (u nde rcer tain assump tion s) achieve:

* a speci fi ed tot alcos tfo r the sampling – for
ex ample, see equ ation (6. 3.20) at the rig ht; OR:

* a speci fi ed lev el of impre c isi on fo r estim ating a
popula t ion attribute – an ave r age inthis discus sio n.

n = total budget− fixed costs
cost per unit sampled

-----(6. 3.20)

Discus sio n below of the secon d ap proach allow s fo r im pre cisio n to be speci-
fie d in one of three ways – int e rval width (w ), int e rval half-width (h) or the
sta n dar d devi ation of Y− [s.d.(Y−)] – see the diagr amat the rig ht. The int e rval in
this diagr amha sthe popula t ion ave r age, Y−−, as its cent re – it is the refore apr obabi lity (not a confid e n ce) int e rval, a PI not a CI;
the appro priat enume rical coeffic ent is thu sZ*

1−α, not t*n−1,1−α.

100(1− α)% P.I.

Y−−

w/2 = h

Z*
1−α s.d.(Y−)

Specifying imp recision by interval width: w = 2h so: h= w/2.

Specifying imp recision by interval half-width: h =Z*
1−α s.d.(Y−) so: s.d.(Y−) = h/Z*

1−α.

Specifying imp recision by the stan dard deviation of Y−: s.d.(Y−) = S− 1
n − 1

−N so: 1
n = (s.d.

S− )
2

+ 1
−N.

If n <<−N, an appr oximatesample size is: n0 = ( S−
s.d.

)
2

= (S−Z*
1−α
h )

2

= (2S−Z*
1−α

w )
2

.

Withou tap proxi mation, usi ngequation (6. 3.23): 1
n = 1

n0
+ 1

−N = 1
n0

(1+ n0

−N) so: n = n0/(1+ n0

−N).

(Y−)

(Y−)

-----(6. 3.21)

-----(6. 3.22)

-----(6. 3.23)

-----(6. 3.24)

-----(6. 3.25)

Fo rany of the three expre ssi ons on the rig ht-hand sid eof equation (6. 3.24), we need a value to use for S−, the (study or respon-
dent) popula t ion (data) standard dev iation, whi c his usually unknow nat the Pla nst age of the FDEAC cycle. Pos sib i lit ies inclu de:

* using a value obtaine din apre vious inve s tig a t ion of the same (or a sim ilar) popula t ion;

* using a value from dat aobtain ed in thepi l ot sur veyof the current inv estig a t ion;

* if the re is infor mation on thera ngeof respons evariat evalue sin the popula t ion and if approxi mat eno rma lity can be assume d,
this range cou ld be taken as kS−, whe rek can be taken as 4, 5 or 6 – recall the first sid e(page 5.9) of STAT 220 Figure 5.3.

√

A sample size calcula ted in the Pla nsh oul d be use dwith due recog n ition of its lim itation sim pos ed by:
. whet her it is n0 or n that has been calcula ted,
. un cer tain ty in the value use dfo r S−,
. the likely resp onse rate – for exa mple, a 25% respons erate (which is cur rently opti mis tic fo r a poli tical pol l, for ins tanc e)

woul d ent ail an actual sample size fou r times large rthan the calcula ted value,
and, when impre cisio n is specifie d by w or h:
. us eof Z*

1−α in the sample size calcula t ion compare dwith the (slig htly large r) t*ν,1−α or t*n−1,1−α in the CI calcula t ion.

NO TES: 9. The approxi mat esample size n0 is the squ are of the ratio of the popula t ion (data) standard dev iationS− to the stan -
dard dev iation ofY− – see the first expre ssi on on the rig ht-hand sid eof equation (6. 3.24) abov e.

10 . No n-respons e– the usual ter min ology when the ele ments inv olve hum ans – or, more gen erally, mis sing dat aare the
sour ce of non-res pon se error which impos es lim itation son an Answe r. This cat egor y of error is more easily ove r-
looke dwhen, as in the discus sio n of Section 5 abov e,conv entio nal ter min ology of sa m p lesizeis use d. The dis-
cus sio n woul d be bett e r fr ame d using the ter min ology of equ ation (6. 3.26) below, whi c h is sp eci fic to thes e
Ma ter ials and distinguis hes the ele ments (or units) se lec tedfr om the ele ments (or units) whi c hresp ond:

sele ction =sample +non-re spondents AND: selection size (ns) = sample size (n) +non-re spons e(nnr). -----(6. 3.26)
Us ing from the star t this ter min ology, whi c his evocative of a per vasiv e sour ce of error, wou ld be better than first
using conve n tio nal ter min ology and then mak ing good its deficie n cy by int roducing non -re spons ela ter in the dis-
cus sio n – see als oSe ction 5 on pag es 5.24 to 5.26 in Fig ure 5.7 of the STAT 231 Cou rse Mat e ria ls.

6. Appendix 1: tν Distribution History
The t dist rib u tio n wa sdeve loped early this centur y by Wil lia m Sealy Gos s et(1876 -1937), who was bor n in Cant e r b ury,

Engla n d, and edu cat e dat Winchest e rand New Col lege, Oxford, whe re he obtaine dfirst-cla s sdegrees in mat hem ati cs and na-
tural scie n ce. On leavi ng Oxford in the fall of 1899, he joi ned the famou sbrew ing firm of Guinnes sin Dub lin; he rem ain ed
with Guinnes sall his life, becoming in 1935 chief brewe r at Park Roy al, the firm’s newly-est ablis hed brewer y in Lon d on.
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In the early1900s, scie n tific met hods and laborato ry det e rmination swe re beginning to be ser iou sly appli ed to brewing, and
this led Gos s etto recog n ize the need for adequate met hods to deal wit h sm all samples when exa m ining rela t ion s hips among
the quali ty of raw mat e ria ls fo r beer such as barle y and hops, the con d ition sof produ ction, and the finish ed produ ct. The
im por tanc eof con trolling the quali ty of barle y also led Gos s etto study the desig n of agr icultur al fiel d tr ials.

Gosset was onc e des cribed by Sir Ron a l dFish er (consid ere dby many to be the fat her of moder nst atis ti c a lmethods) as th e
Fa r aday of sta tis tics, becau se he was not a profo und mat hem ati cia nbut had a superb intuitive facul ty that enabled him to grasp
ge neral principles and see thei r relevanc eto practical ends.

In his wor k at the brewe ry, Gos s etha dbeen struck by the impor tanc eof assessing the pre cisio n of the estim ato r repre sen -
ted by the ave r age of a sma l l sample. The usual procedure at the tim ewa sto calcula te the sample ave r age (y−) and sample stan-
dard dev iation (s) and to proceed as thoug h the cor responding random variableY− ha da nor mal dist rib u tio n with the same
av erage as the popula t ion from whi c hthe sample was sele cted and wit h st andard dev iation s/√n. The diffic ulty is that s  is only
anes tim ate of S−, the popula t ion (data) standard dev iation, and Gos s et’s intuition tol d him that, for sma l l samples, this procedure
over estim ates the pre cisio n of Y− as an estim ato r of the popula t ion ave r ageY−−. This finally led him to dev elo p the t dist rib u tio n
fo r us ein place of the nor mal dist rib u tio n whenS−, repre sent e din the model by σ, is estim ated by s.

Gosset is known mainly by the pseudonym studen t, unde rwhich he pub lis hed mos t of his statis ti c a l wo rk becau se his
em p l oye r regarded his finding sas pro priet ary infor mation and did not wis h to bring it to their competito rs’ att entio n by the use
of Gos s et’s real name and his affiliation wit h Guinness.

Mo re infor mation abou tGosset’s con tributio ns to scie n ce and to statis ti cs can be obtaine dfr om pag es 409 -41 3of theIn ter-
national Enc ycl opedia of Sta tis tics, Volum e1, edited by W. H. Krusk al and J.M. Tanur (The Fre ePres s,Ne wYo rk, 1978) [DC
Li brary call number HA1 7.I63 1978]; mos tof the descr iptio n abov eis taken from this sou rce.

7. Appendix 2: Least Squ are sEstimating
Our dis cus sio n of CIs in Section 2 on pag es 6.1 6and 6.1 7us esthe sample ave r age y− as an estim ate of the model meanµ rep -

re senting the popula t ion ave r ageY−− and, on pag e6. 20, the sample (data) standard dev iation s as an estim ate of the model (prob -
abilis ti c) standard dev iationσ, repre senting the popula t ion (data) standard dev iationS−. In this Appendix, we dis cus sa pr ocess–
the meth od of lea st squ ares – for obtaining expre ssi ons for estim ates and estim ato rs of parameters in the structur al component
of the model; for the respons emodel (6. 3.1 3) on pag e6. 21, the structur al component takes the (si mplest) fo rmµ. As sum ma-
rized in Table 6.3.7 at the rig ht bel ow, we int roduce addition a lnotation for a mea s ure of location and of variation:

* a hat on a model parameter den otes anes tim ate (he re, µ̂ or
σ̂) – ava lue, likey− ands;

* a til d e on a model parameter den otes anes tim ator (he re, µ̃ or
σ̃) – ara n dom variable, likeY−andS.

We set out the estim ating process in numbere d st eps for two
eq uiva len tde riv ation susing calculu sand lin ear alg ebra . The name
le ast squ ares is meant to evo k ethe met hod’s cent r alid e a: mi nimizing the sum of the squ are dresi dua ls (s teps 4 and 5 bel ow).

Ta ble 6.3.7 Location Var iat ion

Popula t ion attribute Ave r ageY−− (Data) S.d.S−
Model parameter Meanµ (Probabilis ti c) S.d.σ
Estimate – a value y− or µ̂ s or σ̂
Estimato r – a random variable Y− or µ̃ Sor σ̃

Yj = µ +Rj, j =1, 2, ....,n; Rj ∼ N(0, σ); independent, EPS.

St ep1: Yj = µ +Rj, j =1, 2, ....,n.

St ep2: yj = µ +rj, j =1, 2, ....,n.

St ep3: rj =yj − µ, j =1, 2, ....,n.

St ep4: g(µ) = Σ
j =1

n
rj 2 = Σ

j =1

n
[yj −µ]2.

St ep5: dg
dµ = −2Σ

j =1

n
[yj −µ],

which is zero when: Σ
j =1

n
[yj − µ̂] = 0;

i.e., Σ
j =1

n
yj − nµ̂ = 0,

or: µ̂ = 1
nΣ

j =1

n
yj = y−, theestimateof µ.

St ep6: d2g
dµ2 = −2Σ

j =1

n
[−1] = 2n,

which is posit ive, as
requ ire dfo r aminimum.

Also: σ̂ =
Σ
j =1

n
rĵ 2

n− q =
Σ
j =1

n
[yj − µ̂]2

n−1 =
Σ
j =1

n
[yj −y]2

n−1 .√ √ √
√ √ √

.....
.....

.....

y∼

1∼ 1∼µ̂
1∼µ

r∼̂

r∼

r∼̂
Tr∼̂ (y∼ −1∼µ̂)T(y∼ −1∼µ̂)

St ep1: Yj = µ +Rj, j =1, 2, ....,n.

St ep2: yj = µ +rj, j =1, 2, ....,n.

St ep3: y∼ = 1∼µ + r∼, whe re: y∼ = y1 , 1∼ = 1 , r∼ = r1 .
y2 1 r2

yn 1 rn

St ep4: The lea stsqu are s
estim ate of µ is
deter min ed by the
ve cto r r∼̂, the vecto r r∼
of minimum le ngt h;
this occurs whenr∼ is
perpendicul ar to the
ve cto r 1∼, so we set the dot
(o r inne r) produ ct 1∼.r∼̂ to zero.

St ep5: 1∼
Tr∼̂ = 0, i.e., 1∼

T(y∼ −1∼µ̂) = 0,

i.e., 1∼
Ty∼ −1∼

T1∼µ̂ = 0,

or: µ̂ = (1∼
T1∼)−1(1∼

Ty∼) = n−1Σ
j =1

n
yj = y−, theestimateof µ.

Also: σ̂ = n− q = n−1 =
Σ
j =1

n
[yj −y]2

n−1 .
NO TES: 11 .Thes ede riv ation sinvolve random variable s
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NO TES: 11 .
(c o nt.)

(St ep 1) and their value s(St ep 2 onw ards) in the con tex tof a respons emodel; value sare the refore repre sent e dby
it ali c le tters like y−. The three model ling assumptions (d iscus s ed in poi nt 6 of Section 3 on pag es 6.21 and 6.22)
prov ide justific ation for regarding themeasuredre spons evariat evalue syj, j =1, 2, ....., n, of the n sampled units as
value s ,yj, j =1, 2, ....., n, of random variable s ,Yj, j =1, 2, ....., n  –  recall also the top of pag e6.4 in Fig ure 6.1.

12. The estim ateσ̂ of the model parameterσ is not a lea stsqu are sestim ate. The estim ateσ̂ 2 is an unbia s ed estim ate
of S−2 butσ̂ is not (q uit e) unbia s ed for S− [e.g., see the top and bottom of pag e8. 53 of Section 5 and Appendix 3
on pag e8. 57 of Fig ure 8.11 of thes eSTAT 220 Course Mat e ria ls].

13. In the diag ram ove r leaf at the lowe rright of pag e6. 27 in Step 4 of the the lin ear alg ebra lea stsqu are sde riv ation,
the estim ated residu al vecto r r∼̂ li es in the sub space perpendicular to sp an<1>; that is, r∼̂ li es in the orthogo nal
co mplem e n tof a one-dimensi onal sub space, whi c h is a sub space with n−1dimensi ons – this is one exp lanation
of the n−1den ominato r in fou rex pre sssio ns for σ̂ ov erleaf at the bottom of the pag e6. 27.

14 . A ge neral fo rm for a respons emodel – a respons evariat eex pre sse das astructur al compone nt plus astochas-
tic compone nt (o r‘noise’) – is shown in two versi ons in equ ation (6. 3.27):

Yj = µ j +Rj, j =1, 2, ....,n, Rj ∼ N(0,σ), independent, EPS,
Y∼ = XΘ∼ +R∼ µ j = θ1xj1 +... +θ kxjk + ... +θqxjq [e xplanato ry variat es X1, ..., Xk, ..., Xq];

-----(6. 3.27)

• in the upper versi on, the structur al component µ j is a lin ear combin ation of q (unknow n) parameters θ k and
(know n) exp lanato ry variat evalue sxjk;

• in the lowe rve rsi on, the exp lanato ry variat evalue sfo rm the n× q mat rix X and the parameters are the q×1
colu mn vecto r Θ∼.
−− Y∼ andR∼ are n×1 colu mn vecto rs wit h n>>q; i.e., the re are many mo reobs ervation sthan the re are para-

meters to be estim ated .
−− Thetra n sposeof X, XT, in the derivation bel owis a q× n mat rix.

The respons emodel (6. 3.1 3) on pag e6. 21 is the sim p lest case of the gen eral model (6. 3.27) abov e.
The met hod of lea stsqu are sinvolves minimizi ng||R∼ ||, whi c hmeans that R∼̂ mu s tbe perpendicular to eve ry colum n
of X, so we set the dot produ ct X.R∼̂ to zero; that is, we set :XTR∼̂ = 0∼.

Thus: XT(Y∼ −XΘ∼̂) = 0∼ or: XTY∼ − XTXΘ∼̂ = 0∼ or: XTXΘ∼̂ = XTY∼ so: Θ∼̂ = (XTX)−1XTY∼.
In equ ation (6. 3.28), we replaceY∼ by XΘ∼ +R∼ fr om the model (6. 3.27) to obtain:

Θ∼̂ = (XTX)−1XT(XΘ∼ +R∼) = (XTX)−1XTXΘ + (XTX)−1XTR∼ = Θ +(XTX)−1XTR∼,
which shows that Θ∼̂ isΘ plus a lin ear combin ation of residu als.

In the diag ram for RRn at the rig ht, R∼̂ mu s tli e in the ortho -
go nal complem e n tof the span of the colum ns of X, a q-
dimensi onal sub space repre sent e dby the ellipse; its ortho -
go nal complem e n t(the sub space in whi c hR∼̂ li es) has dim e n-
si on n−q, whi c his the divi sor in the leftmos ttwo expre ssi ons
fo r σ̂ ov erleaf at the bottom of pag e6. 27.

-----(6. 3.28)

-----(6. 3.29)

Y∼ R∼̂ R∼XΘ∼̂

XΘ∼

8. Appendix 3: tν Distribution Theory
Our der ivation of thetν dist rib u tio n in this Appendix 3 on pag es 6.27 to 6.30 inv olves three other dis tributio ns:

* thenormal dist rib u tio n which we are alrea dy famili ar wit h, AND:

* two dist rib u tio ns we hav enot yet encou ntered: −− theχ 2 dist rib u tio n,
−− theK dist rib u tio n ;

as wel l as lea ding here to thetν dist rib u tio n, thes etwo dist rib u tio ns wil l have other uses in the STAT 221 Cou rse Mat e ria ls.
The χχχν

2 distri bution: If Z1, Z2, ....., Zν are probabilis ti c a l ly independentN(0,1) random variable s ,the sum of their squares, the
random variable X of equation (6. 3.30), has aχ 2 dist rib u tio n withν degrees of
fre e dom; symboli c a l ly, wewr iteequation (6. 3.31) and wesa yX is ‘chi squ are d
withν degrees of fre e dom’ (‘c hi’ r hy mes wit h‘hi’ – it is pronoun ced ‘ki’).

X = Z1
2+Z2

2 +..... +Zν
2

X∼ χν
2

-----(6. 3.30)
-----(6. 3.31)

Be cau se it inv olvessquares of N(0,1) random variable s ,theχ 2 dist rib u tio n take sonly non -negative value s; it s p.d.f. , fo r 5, 10,
25 and 50 deg rees of fre e dom ,is shown at the upper rig ht of the facing pag e6. 29. In thes ediag rams:

• the fou rve rti c a laxis scales have thesa m eun it size, as do the fou rho rizon tal axi s scales;

• we see that theχ 2 dist rib u tio n in unsy mmetr ical about its hig hest poi nt (unli ke the sym met rical nor mal andtν dist rib u tio ns)
but it becomes more sym met rical asν in cre ases.

Tw o ot he rproper tie sof theχ 2 dist rib u tio n are:

• it s meanis ν; if Z ∼ N(0,1), [sd.(Z)]2
=E(Z2) − E[(Z)]2

and so: E(Z2) =1;
henc e, usi ngequation (6. 3.30): E(X) = E(Z1

2) +E(Z2
2) +..... +E(Zν

2) = ν. -----(6. 3.32)
We see in the fou rdiag rams that the mean(in d i c ated by ) li es a lit tle to therigh tof the hig hest poi nt (  ) of each p.d.f.
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• it s sta n dar d devi ation (a n d, cor respondingly, its sp r ead) increa s esasν in cre ases;

• two probabilis ti c a l ly independent random variable sX∼ χν
2 andW∼ χτ

2 have sum: X+W∼ χ 2
ν +τ ; -----(6. 3.33)

i.e., the sum of two probabilis ti c a l ly independentχ 2 randon variable sis als oχ 2 and the degrees of fre e dom add – we
est ablis hequation (6. 3.33) by writing X andWas their sums of squ are sof N(0,1) random variable s.

Theχ 2 dist rib u tio n is use d(e.g., in STAT 221) in two statis ti c a lproces s es:

* a test of fit of a probability model (e.g., in Fig ure 12. 24), AND:

* a con tinge n cy table test for probabilis ti c in d ependenc e(e.g., in Fig ure 12. 26).
Theχ 2 dist rib u tio n is ta b ula ted in STAT 221 Fig ure 12. 25.
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50
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0
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The Kν distri bution: If the random variable X is χ 2 with
ν degrees of fre e dom ,and if the random variable U is the
squ are root of X divi ded byν, thenU is K withν degrees of fre e dom – see equ ation (6. 3.34).

If X∼ χ 2
ν and U = X

ν , then: U ∼Kν. -----(6. 3.34)

i.e., aKν random variable is the squ are root of aχν
2 random variable div ide dby its degrees of fre e dom .

√

Li ke theχ 2 dist rib u tio n, theK dist rib u tio n take sonly non -negative value s; it s p.d.f. , fo r 5, 10, 25 and 50 deg rees of fre e dom , is
sh own bel ow. In thes ediag rams:

• the fou rve rti c a laxis scales have thesa m eun it size, as do the fou rho rizon tal axi s scales;

• we see that theasymmetry, par ticularly forν = 5 and 10, is les sap parent than for theχ 2 p.d.f.;

• we als ose ethat themeanis aroun d1 – it is actually a li t tle bel ow1;

• in con trast to theχ 2 dist rib u tio n, thesta n dar d devi ation (a n d,
co rre spondingly, thesp r ead) decrea s esasν in cre ases;

TheK dist rib u tio n is ta b ula ted in STAT 220 Figure 6.6.
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0
0 1

The distr ibu tion ofσσ̃ : the random variable σ̃ (w hich can also be den oted S) is the es tim ator of the model parameterσ, the
(probabilis ti c) standard dev iation of the nor mal model for the residu als in equation (6. 3.1 3) on pag e6. 21. It is giv en as two
ex pre ssi ons in equ ation (6. 3.35); the first is base don the thi rd expre ssi on for σ̂ at the lowe r le ft of pag e6. 27, exc ept that the
lowe r-caseys repre senting va lues have been replaced by upper-case
le tters repre senting the cor responding ra n dom variables. The secon d
ex pre ssi on in equ ation (6. 3.35) fo llows from the first becau seYj = µ +Rj

andY−= µ +R−– recall equ ation s(6. 3.1 3) and(6. 3.3).
σ̃ =

Σ
j =1

n
[Yj −Y]2

n−1 =
Σ
j =1

n
[Rj −R]2

n−1
-----(6. 3.35)√ √

Be cau seΣ
j =1

n
Rj = nR, the nume r ato rof the secon dex pre ssi on in equ ation

(6. 3.35) ex pands as in equ ation (6. 3.36).

Divi ding equ ation (6. 3.36) throug hbyσ 2, we obtain equ ation (6. 3.37).
Be cau seRj ∼ N(0,σ), the random variable swhich are the two ter ms
on the RHS of equ ation (6. 3.37) have, respectiv ely, χ 2

n andχ
1
2 dist rib u tio ns, so that from equ ation (6. 3.33) abov e, the random

variable on its LHS has aχ 2
n −1 dist rib u tio n, assuming (as is actually the case) that the two RHS random variable sare probabi-

li sti c a l ly independent. Div iding the LHS by n−1 (the
degrees of fre e dom of itsχ 2 dist rib u tio n) and tak ing the
squ are root, we hav efr om equ ation (6. 3.34) abov e:

Σ
j =1

n
[Rj −R]2 = Σ

j =1

n
Rj

2 − nR
2

Σ
j =1

n
[Rj −R]2

σ 2 = Σ
j =1

n

(Rj

σ)
2

− ( )
2

Σ
j =1

n
[Rj −R]2

(n−1)σ 2 = σ∼
σ ∼Kn −1 or: σ̃ ∼σKn −1.

R
σ/√n

-----(6. 3.36)

-----(6. 3.37)

-----(6. 3.38)
√

The tν distri bution: If the random variable Z is
N(0,1) and the random variable U is K withν degrees
of fre e dom ,and if the random variable T is the quotient of Z andU, thenT is t withν degrees of fre e dom – see equ ation (6. 3.39).

If Z∼ N(0,1), U ∼Kν and T= Z
U , then: T∼ tν. -----(6. 3.39)

i.e., atν random variable is the quotient of probabilis ti c a l ly independentN(0,1) andKν random variable s.

The distr ibu tion of µµ̃ : the random variable µ̃ (w hich can also be den otedY−) is the es tim ator of the model parameterµ, the
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st ructural component of the respons emodel (6. 3.1 3) on pag e6. 21; µ is als o the mean of the nor mal model for the dis tributio n
of theYjs. From equ a-
tion (6. 3.1 3), we hav e:
Also, equ ation (6. 3.38) is: σ̃/σ ∼Kn −1.
Divi ding the two random variable son the LHSs of equ ation s
(6. 3.40) and(6. 3.38) and using equ ation (6. 3.39), we obtain:
Equation (6. 3.41) is the basis for the expre ssi on (6. 3.1 2) on pag e6. 20 for a (re a lized) CI forµ repre sentingY−−.

Rj ∼ N(0,σ), Yj ∼ N(µ,σ), µ̃ ≡ Y−∼ N(µ,σ/√n) so:
µ∼− µ ≡ Y−− µ ∼ N(0,1).σ /√n σ/√n

µ∼− µ ≡ Y−− µ ∼ tn −1.σ∼/√n S/√n

-----(6. 3.40)

-----(6. 3.38)

-----(6. 3.41)

NO TES: 15. Table 6.3.8 at the rig ht giv es the mean
and standard dev iation of theχ 2, K and
t dist rib u tio ns, bot has a gen eral expre s-
si on in ter ms of ν and for ν = 5, 10,
25 and 50. Thes evalue s(r oun d ed to
2 decim al places in fou rof the set s) are
of interest in rela t ion to the three set sof fou rp.d.f. diagr ams at the bottom of pag e6. 20 and ove r leaf on pag e6. 29.

Ta ble 6.3.8: Me an Standard dev iat ion
Df ν 5 10 25 50 ν 5 10 25 50

χ 2 ν 5 10 25 50 2ν 3.16 4.47 7.07 10
K 0.95 0.98 0.99 1.00 0.31 0.22 0.1 4 0.10
t 0 0 0 0 0 ν/(ν −2) 1. 29 1.1 2 1.04 1.02

2
ν

Γ[(ν +1)/2]
Γ[ν/2] 1− mean2√

√

√

√

9. Appendix 4: A Con fide nce Int erval for σσ repr esent ing S− (a nd for σσ 2 repr esent ing S−2)
We obtain the CI expre ssi on for the (probabilis ti c) standard dev iation of the model (6. 3.1 3) on pag e6. 21 from the theor y in

Appendix 3, usi ngthesa m ere asoning as in equ ation s(6. 3.5) to (6. 3.9) on pag e6.17 in the derivation of a CI forµ repre sentingY−−.
Fo ra random variable U with aKn −1 dist rib u tio n, we can write
equation (6. 3.42), whe re the value sof lk*n−1,1−α andrk*n−1,1−α are
looke dup from the table of theK dist rib u tio n in Fig ure 6.6 and their suf fi ces l and r refer to the left and rig ht tails of the
dist rib u tio n – if α = 0.05, the RHS probability is 0.95. and thek*s are the 2.5 and 97. 5perc entiles of theKn −1 dist rib u tio n.
Us ing equ ation (6. 3.38) in equation (6. 3.42), we hav e:
Re arrangi ng the ter ms of equ ation (6. 3.43) and changi ng the wording to that appro priat efo r a CI, we obtain equ ation (6. 3.44):

a (re alized) 100(1−α)% CI for σ re prese ntingS− is (σ̂/rk*n−1,1−α, σ̂/lk*n−1,1−α) ≡ (s/rk*n−1,1−α, s/lk*n−1,1−α).
Thesm aller lower li mit of this CI inv olves the larger rk* in its denominato r, the larger upper li mit inv olves thesm aller lk*.
As n increa s es,the widt h of the CI of equ ation (6. 3.44) decrea s eswith the decre asi ngst andard dev iation of theKn −1 dist rib u-
tion, reflecting [as wit h the CI for µ of equation (6. 3.1 2)] de cre asi ngestim ating impre cisio n with inc rea sing sample size.

St atis ti cs’ unfor tun ate tradit ion a lem pha sis on varia n ce (rather than standard dev iation) means that, els ewhe re, the CI for σ
of equation (6. 3.44) abov emay ins tea dbe giv en as a CI for σ 2 repre senting S−2. The theor y ov erleaf in Appendix 3 lea ds to the
ex pre ssi on (6. 3.45) by the
same rea son ing as above
but, ins tea dof theKn −1 dist rib u tio n of equation (6. 3.38), it is base don the χn −1

2 dist rib u tio n of the LHS of equ ation (6. 3.37)
writ ten in ter ms of Ynot Rusing equ ation (6. 3.35); the value sof l x*n−1,1−α andrx*n−1,1−α are looke dup (e.g., in the table on pag es
12.59 and 12.60 in STAT 221 Fig ure 12. 25) as the relev a n tperc entiles from the left and rig ht tails of theχn −1

2 dist rib u tio n.

Pr( lk*n−1,1−α <U ≤ rk*n−1,1−α) =1−α

Pr( lk*n−1,1−α < σ̃/σ ≤ rk*n−1,1−α) =1−α.

-----(6. 3.42)

-----(6. 3.43)

-----(6.4.44)

(Σ
j =1

n
[yj −y]2/rx*n−1,1−α, Σ

j =1

n
[yj −y]2/l x*n−1,1−α) ≡ ([n−1]s2/rx*n−1,1−α, [n−1]s2/l x*n−1,1−α) -----(6. 3.45)

Example 6.3.3: In an automobile assemb ly process, win d ows whi c hdo not open inv olve a she et
of gla s s, wit h a flex ible sealing ring aroun dit, bei ngpres s ed into the cor respond -
ing opening in the metal veh icle body. For an efficie n tproces s,the fit in the body
opening of the gla s splus ring is criti c a l:
an oversi ze gla s smay be diffic ult to fit,
an undersi ze gla s s may leak when the
fin ishe dve hicle is expos ed to rain. Many
dimensi ons of the gla s s, ring and opening
are criti c a l fo r a pro per fit; the data (and their stem p l ot) at the rig ht are for on esu ch dim e n-
si on for a rear win d ow of a pickup truck – the dist anc efr om the bottom of the cab rear opening
to the hig hest poi nt in the middle of its top sid e. The 30 cab sin the sample were obtaine dov er a 5-day
we ek (when about 7,200 veh icle swe re produ c e d) by selecting 6 per day –on eabou tev ery hou rov er one shift.
Fo r thes edata: sum = 451.1 44, ave r age = y− ≡ µ̂ =15.038 13

.
in.,

sum of squ are s= 6,7 84. 373 488, (data) standard dev iation = s≡ σ̂ = 0.018 442 333in.
Calcula t i ng (r ealized)
CIs for µ andσ fr om
thes edata is shown in
Ta ble 6.3.9 at the rig ht.
Us ing rx*29,0.95 = 45.7223
andl x*29,0.95 =16.0471fr om theχ 2 dist rib u tio n in STAT 221 Fig ure 12. 25, equ ation (6. 3.45) give sa 95% CI forσ 2

as(0.000 2157, 0.0006 1466) in., whose squ are root is the 95% CI forσ in Table 6.3.9 (ap art from rou nding error).

Specific ation:
15.04± 0.04 inches

Day Cab rear opening height (inche s)
1 15.058 15.066 15.046 15.044 15.066 15.026
2 15.038 15.028 15.042 15.048 15.040 15.070
3 15.028 15.046 15.068 14.998 15.024 15.006
4 15.034 15.040 15.064 15.050 15.032 15.016
5 15.024 15.026 15.032 15.046 15.020 15.018

14 .99 8
15.00 6
15.01 68
15.02 04466 88
15.03 2248
15.04 00246 668
15.05 08
15.06 4668
15.07 0

[Σ
j =1

n
[yj − y]2 = 0.009 863 47]

. .CI for µµ [e quation (6.3.12)] . .  . . . . . .CI for σσ [e quation (6.3.44)] . . . . .
1−α Leve l t29,1−α CI Width rk*29,1−α l k*29,1−α CI Width

0.90 90% 1.69 913 (15.032, 15.044) 0.01 2 1. 211 40 0.7 81430 (0.01 52, 0.0236) 0.0084
0.95 95 2.0 4523 (15.031, 15.045) 0.01 4 1. 255 64 0.743 873 (0.01 47, 0.0248) 0.0101
0.99 99 2.75 639 (15.029, 15.047) 0.018 1.343 38 0.672 647 (0.01 37, 0.0274) 0.01 37

Ta ble 6.3.9:
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Figure 6.3. QUA NTIFYIN G UNCERTA I NTY: Con fide nce Int ervals (continue d 8)

DATA SOURCE: R.J. MacKay and R.W. Oldfo r d. 200 4Course Not esfo r St atis ti cs 231, Chapt e r13, pag e2.
The mean and standard dev iation of theK dist rib u tio n in Table 6.3.8 on the facing pag e6. 30 were kin dly
prov ide dby Prof. MacKay, who also calcula ted the more ext ensiv e value sin Table 6.3.1 0below.

Ta ble
6.3.10 :
K dis-
tr ibu -
tion

Df Mean Df Mean Df Mean Df Mean Df Mean

1 0.797 885 11 0.977 559 21 0.988 170 31 0.991 969 41 0.993 922
2 0.886 227 12 0.979 406 22 0.988 705 32 0.992 219 42 0.994 066
3 0.921318 13 0.980 971 23 0.989 193 33 0.992 454 43 0.994 203
4 0.939 986 14 0.982 316 24 0.989 640 34 0.992 675 44 0.994 335
5 0.951533 15 0.983 484 25 0.990 052 35 0.992 884 45 0.994 460

6 0.959 369 16 0.984 506 26 0.990 433 36 0.993 080 46 0.994 580
7 0.965 030 17 0.985 410 27 0.990 786 37 0.993 267 47 0.994 695
8 0.969 311 18 0.986 214 28 0.991113 38 0.993 443 48 0.994 806
9 0.972 659 19 0.986 934 29 0.991418 39 0.993 611 49 0.994 911

10 0.975 350 20 0.987 583 30 0.991703 40 0.993 770 50 0.995 013

Df S.d. Df S.d. Df S.d. Df S.d. Df S.d.

1 0.602 810 11 0.210 660 21 0.1 53 361 31 0.1 26 479 41 0.110 090
2 0.463 251 12 0.201 903 22 0.149 878 32 0.1 24 503 42 0.108 780
3 0.388 811 13 0.1 94152 23 0.146 621 33 0.1 22 617 43 0.1 07 515
4 0.341 214 14 0.1 87 230 24 0.143 569 34 0.120 815 44 0.1 06 294
5 0.307 547 15 0.1 80 998 25 0.140 699 35 0.11 9089 45 0.1 05 113

6 0.282 155 16 0.1 75 349 26 0.137 994 36 0.11 7436 46 0.103 970
7 0.262 138 17 0.1 70197 27 0.135 440 37 0.11 5849 47 0.1 02 865
8 0.245 839 18 0.1 65 474 28 0.1 33022 38 0.11 4325 48 0.101 793
9 0.232 237 19 0.1 6 1123 29 0.1 30730 39 0.11 2860 49 0.100 755

10 0.220 663 20 0.1 57 099 30 0.128552 40 0.111 449 50 0.099 747

1

0
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10. Appendix 5: The Int ernat ion al Refer e nce Kilog ram
The article EM0303 reprint e dbelow provi des backg rou nd infor mation for the int roducto ry dis cus sio n on pag e6.15.

EM0303: The Globe and Mail, May 27, 2003, page sA1, A14

Sh rinking kilog ram sows mass con fusion in labs________________________________________________
Quest for exact kilogr aminvolves cou nting atoms

BY OTTO POHL
BRAUNSCHWEIG, GERMANY

The kilogr am is getting lig hter, scie n-
tis t s say, sow ing pot entia l conf usi on
ov er a range of scie n tific endeavou rs.

The kilogr amis defi ned by a pla t i num -ir i-
dium cylin d er, cast in Engla n din 1889. No
on eknow swhy it is she dding weight, at lea st
in comparison wit h ot he rrefe renc eweights,
but the change has spurred an int e rnation a l
search for a more stable defi nit ion.

"I t’s cer tainly not help f ul to have a stan-
dard that keeps changi ng", said Pet e rBe cke r,
a scie n tis t at the Federal Standards Labora -
to ry in Braun schweig, an ins titutio n of 1,500
scie n tis t sde dicated entirely to improvi ng the
ability to mea s ure things pre cis ely.

The kilogr am’s app are n tlo ss of 50 mic r o-
gr ams (le ss than the weight of a grain of salt)
is enoug hto disto rt scie n tific calcula t ion s.

Mr. Becke r is lea ding a team of int e r-
nation a l re searche rs seeking to redefi ne the
kilogr amas a number of atoms of a selec-
ted ele ment. Other scie n tis t sare dev elo ping
a competing technique to defi ne the weight
using a complex mechanism known as the
wa t tbala n ce.

The final recom mendation wil l be made

by the Int e rnation a lCommit tee on Weights
and Mea s ure s ,created by int e rnation a ltreaty
in 1875. The age n cy keeps the int e rnation a l
refe renc ekilogr amin a heavi ly guarded safe
in a château outsid eParis.

It is visit e don ce a year, unde r st rict secu-
rity, by the only three people to hav ekeys to
the safe. The weight change has been not e d
on the occasio ns it has been rem ove d fo r
mea s urement.

The race is wel l un d er way to det e rmine a
new standard, alt hou gh at a mea s ure dpace,
si nce cre ating reliable mea s urements is such
pain staking wor k.

The kilogr amis the only one of the sev en
base units of mea s urement that stil l ret ain s
it s19th -centur y defin ition. Ove r the years,
scie n tis t s have redefi ned units such as the
metre (first base don the earth’s circumfer-
enc e) and the secon d (c onc eiv ed as a frac-
tion of a day). The metre is now the dis-
tanc e lig ht trave ls in 1/299,792,458th of a
se con d, and a secon dis the tim e it takes for
a cesium atom to vib r ate 9,1 92,631, 770
times. Each can be mea s ure dwith rem ark-
able pre cisio n, and, equ ally impor tant, can
be reprodu c e danyw here. The kilogr amwa s
conc eiv ed as the mass of a lit re of wat e r, but
mea s uring that accur ately prove d ve ry dif-
fic ult. Ins tea d, an Englis h goldsm ith was
hi red to make a pla t i num -ir idium cylin d er
that wou ld be use dto defin ethe kilogr am .

A tot al of 80 copie sof the referenc ekilo -
gr am have been cre ated and dist rib u t e dto
signato rie s of the metr ic tre aty. The some -
time col our ful his t ory of thes esm all metal
cyli nde rs unde rscores how long the world
ha s us ed the same defin ition of the kilogr am .

Some of the metal plu gs were issued to
coun tries that lat e r vanish ed, such as Ser-
bia and the Dutch East Indies. The Jap an-
es eha dto sur rende rthei rs after the Secon d
Wo r ld War. Ger many has acqui red sev eral,

It i s visit ed onc ea year,
under str i ct secur i ty, by
the only three people to

have keys to the safe.

..... cre ating rel iable
me asurements is such

painst aking wor k.
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in clu ding the one issued to Bav aria in 1889
and the one that bel o ng ed to East Ger many.

To updat ethe kilogr am ,Germany is wor k-
ing wit h scie n tis t s fr om cou ntr ies inclu ding
Au s trali a, Italy and Jap an to produ c ea per-
fe ctly rou nd one -kilogr am si licon cryst al.
The idea is that by knowing exactly what
at o ms are in the cryst al, how far apart they
are and the size of the ball, the number of
at o ms in the ball can be calcula ted . That
number then becomes the defin ition of a
kilogr am .

To sep arate the three iso t opes of silicon,
Mr. Becke r and his team are tur ning to old
nu cle ar-we apons facto rie s fr om the for mer
Sovie t Un ion, whe re cent rif uges onc e us ed
to make hig hly enriche dur anium are able to

produce the requi red pur ity of silicon.
"We need so many nin es," Mr. Becke r

said, and the Sovie t ur anium processors are
on eof the only places to get them. "Wit h
the Rus sia ns, we’re getting about fou r of
them" – 99.99 per cent pure silicon 28.

A test cryst alha sbeen produ c e d, and Dr.
Ar nol d Nicol a us, anot he r scie n tis t at the
German standards laborato ry, is responsib le
fo r mea s uring whether it is per fectly rou nd.
He has mea s ure d the cryst al in a half-
millio n places to deter min e it s sh ape.

It’s probably the rou ndest item eve r ma de
by hand. "If the earth were this rou nd,
Mou nt Eve rest woul d be fou r metres tall,"
Dr. Nicol a us said.

An int rig uing charact e ris ti c of this smoot h

ball is that the re is no way to tel l whet her it
is spinning or at rest. Only if a grain of dust
la n ds on the sur face is the re something for
the eye to track.

Bu t scie n tis t s fr om the United States,
Engla n d, Franc e and Switzerland say the
challenge of calcula t i ngthe exact number of
at o ms in a silicon cryst al is too impre cis e
with today’s technol ogy, so they are refin ing
a technique to calcula te the kilogr amusing
volt age.

"Mea s uring ene rgy is easie r than cou nting
at o ms," said Dr. Richard Stein er, a scie n tis t at
the Nation a lInstitute of Standards and Tech-
nology in Gaithersb urg, Md.
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