Figure 5.6. PROBABILITY MODELLING: Normal Distribution Examples

The following problems illustrate the use of the normal distribution as a probability model. A selection of the problems will be discussed in class; you should try to solve the others, remembering that the clarity of the presentation of your solution may be as, or more, important than the final answer. Also remember to give any final numerical answer(s) to an appropriate number of significant figures in light of the approximate nature of all mathematical models of real phenomena.

Example 5.6.1: If the random variables $Y \sim N(6,4)$, find: $\quad \operatorname{Pr}(Y \geq 8) ; \quad \operatorname{Pr}(Y \leq 4) ; \quad \operatorname{Pr}(3<Y \leq 7)$.
Example 5.6.2: If the random variable $V \sim N(10, \sqrt{2})$, find the value of the constant c such that $\operatorname{Pr}(V>\mathrm{c})=0.02$.
Example 5.6.3: If W and Y are random variables with $W \sim N(3,2)$ and $Y \sim N(6,3)$:
(a) evaluate: $\operatorname{Pr}(W \leq 2)$; $\quad \operatorname{Pr}(1<W \leq 2) ; \quad \operatorname{Pr}(W>0) ; \quad \operatorname{Pr}(|W-3|>2) ; \quad \operatorname{Pr}(|W-2|>2)$;
(b) find values for b, c, d such that: $\quad \operatorname{Pr}(Y \leq \mathrm{b})=0.05 ; \quad \operatorname{Pr}(Y>\mathrm{c})=0.4 ; \quad \operatorname{Pr}(|Y-6| \leq \mathrm{d})=0.95$.

Example 5.6.4: The examination scores obtained by a large group of students can be modelled by a normal distribution with a mean of 65% and a standard deviation of 10%. Using this model, find the percentage of students who obtain each of the following letter grades:

$$
A(\geq 80 \%) ; \quad B(70-80 \%) ; \quad C(60-70 \%) ; \quad D(50-60 \%) ; \quad F(<50 \%) .
$$

Example 5.6.5: The light bulbs used in a large building have lifetimes that can be modelled by a normal distribution with a mean of 500 hours and a standard deviation of 50 hours. To minimize the number of bulbs failing during working hours, all bulbs are replaced after t hours of operation. What value of t should be used so that no more than 1% of bulbs fail before replacement?

Example 5.6.6: The mesh size s of a gill net is the minimum diameter of the fish which can be caught in the net. Fish diameters can be modelled by a $N(6,2)$ distribution for one-year-old fish, by a $N(8,2)$ distribution for two-year-old fish, and by a $N(10,2)$ distribution for three-year-old fish.
(a) What should be the value of s to catch 80% of three-year-old fish?
(b) What proportion of two-year-old fish will be caught with the mesh size found in (a)?

What proportion of one-year-old fish?
Example 5.6.7: A creamery produces a large number of packages of butter; it is known from experience that the weights in grams of the packages can be modelled by a normal distribution with a standard deviation of 5 grams. At what value should the average package weight be set so that at least 90% of the packages weigh at least 450 grams?

Example 5.6.8: Suppose that the diameters in millimetres of the eggs laid by a large flock of hens can be modelled by a normal distribution with a mean of 40 mm and a standard deviation of 2 mm . The selling price per dozen is $\$ 1.84$ for eggs less than 37 mm in diameter, $\$ 2.16$ for those with diameters greater than 42 mm , and $\$ 2.02$ for the remainder. What is the average selling price per egg produced by the flock?

Example 5.6.9: A diagnostic test for a certain disease is based on a continuous measurement represented by random variable Y. Y can be modelled by a $N(100,4)$ distribution for people with the disease and by a $N(80,3)$ distribution for people without it. An individual is classified as diseased if $Y>\mathrm{c}$ and as healthy if $\mathrm{Y} \leq \mathrm{c}$; thus, a person is misclassified if the test indicates $\mathrm{Y} \leq \mathrm{c}$ for a diseased individual or $Y>\mathrm{c}$ for someone without the disease. If 20% of those tested have the disease, express the probability of misclassification as a function of c. By plotting this function, or otherwise, find the value of c which minimizes the probability of misclassification.
HINT: $\operatorname{Pr}($ misclassification $)=\operatorname{Pr}($ misclassification when diseased $) \times \operatorname{Pr}($ diseased $)+$
Pr (misclassification when not diseased) $\times \operatorname{Pr}$ (not diseased).

The answers to the problems overleaf are as follows:
Example 5.6.1: $0.3085 ; 0.3085 ; 0.3721$.
Example 5.6.2: $\mathrm{c}=12.9044 \simeq 12.90$.
Example 5.6.3: (a) $0.3085 ; 0.1498 ; 0.9332 ; 0.3174 ; 0.3753$;
(b) $\mathrm{b}=1.0653 \quad ; \mathrm{c}=6.7599 \quad ; \mathrm{d}=5.8800$.

Example 5.6.4: $A, F: 6.68 \simeq 7 \% \quad ; \quad B, D: 24.17 \simeq 24 \% \quad ; \quad C: 38.30 \simeq 38 \%$.
Example 5.6.5: $\mathrm{t}=383.685 \simeq 384$ hours.
Example 5.6.6: (a) $\mathrm{s}=8.3168 \simeq 8.32$;
(b) two-year-old: $43.707 \simeq 43.7 \% \quad ; \quad$ one-year-old: $12.3348 \simeq 12.3 \%$.

Example 5.6.7: $456.408 \simeq 456.4$ grams.
Example 5.6.8: $16.9182 \simeq 16.92 \not \subset$ per egg.
Example 5.6.9: We can tabulate the probability of misclassification for different values of c as follows:

c	Pr (misclass.)
87	0.0080354
88	0.0033044
89	0.001676
90	0.0015893
91	0.002537

c	Pr (misclass.)
89.4	0.001496386
89.5	0.001483356
89.55	0.001481306
89.565	0.001481204
89.6	0.0014818
89.65	0.001485706
89.7	0.001491994

Thus, $\mathrm{c} \simeq 89.565$ approximately minimizes the probability of misclassification at around 0.0014812

