Figure 5.16. PROBABILITY MODELLING: The Central Limit Theorem Approximation

In previous Figures of Part 5, we have developed two ideas in probability modelling.

* Using the normal distribution to model the shape of appropriate data distributions;
this idea can be summarized by the probability statement (5.16.1) at the right.

$$
\begin{equation*}
Y \sim N(\mu, \sigma) \tag{5.16.1}
\end{equation*}
$$

* A random variable which is a linear combination (like a sum, a difference or an average) of normally distributed (probabilistically independent) random variables also has a normal distribution and its mean and standard deviation can be expressed in terms of the mean(s) and standard deviation(s) of the random variables that make up the linear combination. For example, for n probabilistically independent $N(\mu, \sigma)$ random variables, as shown in equations (5.16.2) and (5.16.3) below:
- their sum (T) has a normal distribution with mean $\mathrm{n} \mu$ and standard deviation $\sqrt{\mathrm{n}} \sigma$;
- their average has a normal distribution with the same mean μ as the individual random variables but a standard deviation that is smaller by a factor of $\sqrt{1 / n}$.

$$
\begin{array}{cc}
T \sim N(n \mu, \sqrt{n} \sigma) & ----(5.16 .2) \\
\bar{Y} \sim N\left(\mu, \sigma \sqrt{\frac{1}{n}}\right) & ----(5.16 .3) \tag{5.16.3}
\end{array}
$$

In this Figure, we discuss relaxing the requirement for normality of the distribution of the individual random variables in a linear combination like a sum or an average; previous results for means and standard deviations from Figure 5.14 carry over unchanged.

1. The Central Limit Theorem (abbreviated CLT)

We state without proof this famous result of probability theory as: if the random variables $Y_{1}, Y_{2}, Y_{3}, \ldots . ., Y_{\mathrm{n}}$ each have mean μ and standard deviation σ, and if the random variable $T=Y_{1}+Y_{2}+Y_{3}+\ldots . .+Y_{n}$, then:

- the standardized form of $T,(T-\mathrm{n} \mu)((\overline{\mathrm{n}} \sigma)$, has a standard normal p.d.f. in the limit as $\mathrm{n} \rightarrow \infty$,
- the standardized form of $\bar{Y} \equiv T / \mathrm{n},(\bar{Y}-\mu) /(\sigma / \sqrt{\mathrm{n}})$, has a standard normal p.d.f. in the limit as $\mathrm{n} \rightarrow \infty$.

The CLT provides an exact result when n is infinite; we use it as the justification of an approximate result when n is finite: a sum (T) or average (\bar{Y}) of n random variables Y_{j} has approximately a normal distribution regardless of the distribution of the Y_{j}; these two results are stated symbolically at the right as equations (5.16.4) and (5.16.5).
The accuracy of this approximate normality of a sum or average depends on two factors:
$T \div N(\mathrm{n} \mu, \sqrt{\mathrm{n}} \sigma) \quad$-----(5.16.4)

- the value of n - the larger the value, the better the approximation;
$\bar{Y} \div N\left(\mu, \sigma \sqrt{\frac{1}{n}}\right)$
- the shape of the distribution(s) of the $Y_{j} \mathrm{~S}$ - the more symmetrical they are, the better the approximation.

Although it is beyond this Figure to discuss how to assess quantitatively the accuracy of the normal approximation from the CLT in a particular situation, general guidelines are:

- if the $Y_{j} \mathrm{~S}$ have a symmetrical distribution(s), an adequate approximation for many practical purposes (e.g., probabilities accurate to a few percent or better) can be obtained with n as small as 20 to 50 ;
- with highly asymmetric distribution(s) for the $Y_{j} \mathrm{~s}$, the approximation may be of poor accuracy with n as large as 50,000 .

Two other restrictions on the use of the normal approximation from the CLT are:

- the standard deviation(s) of the Y_{j} must be finite; [this is more of theoretical interest than of practical concern]
- the Y_{j} need not be strictly probabilistically independent, but they must not be too strongly associated.

We use the CLT approximation to estimate probabilities, usually in the context of questions of statistical interest, but the idea that a response variate is observed to have approximately a normal distribution is of more general interest; for example, the fact that human heights, for instance, are quite closely modelled by a normal distribution has been taken as evidence that many, not just a few, explanatory variates determine a person's adult height.

NOTE: 1. Figure 5.14 deals with three linear combinations (sums, differences and averages) of random variables, but only two of these (sums and averages) are discussed above. The reason is differences usually only involve two random variables and so the value of n is too small for the CLT to provide reasonable approximate normality of the random variable representing a difference, except when the individual random variables are normally distributed, as they are in Figure 5.14.

Example 5.16.1: (a) An insurance company calculates premiums to many decimal places and then rounds them to the nearest dollar. By modelling the fractional parts of 30,000 premiums by a continuous uniform distribution on $(-1 / 2,1 / 2]$, find the approximate probability the rounding alters the total amount of these premiums by more than $\$ 50$; by more than $\$ 100$. [0.3174 $\simeq 0.32 ; \quad 0.0456 \simeq 0.046]$
(b) Suppose the premiums in (a) are first rounded to the nearest cent and then rounded to the nearest dollar, with $50 \notin$ being rounded upwards. Find approximate values for the same probabilities as in (a).
$[0.97728 \simeq 0.98 ; \quad 0.8413 \simeq 0.84]$

Solution: (a) Let the random variable Y_{j} represent the amount (in dollars) by which the j th premium changes; for example, if the first premium is calculated as $\$ 206.8176$ and rounded to $\$ 207, Y_{1}=+0.1824$ dollars.
We use the model: $\quad Y_{j} \sim U(-1 / 2,1 / 2] \quad$ for which: $f\left(y_{j}\right)=1 ; 0.5<y_{j} \leq 0.5$;
from Figure 5.11, we know that: $\quad E\left(Y_{j}\right)=0, \quad$ s.d. $\left(Y_{j}\right)=\frac{1}{2 \sqrt{3}} \simeq 0.288675$ dollars.
The change due to rounding in the total premium amount is given by the random variable: $\quad T=\sum_{j=1}^{30.000} Y_{j}$;
then: $\quad E(T)=\sum_{j=1}^{30.000} E\left(Y_{j}\right)=0, \quad$ s.d. $(T)=\sqrt{\sum_{j=1}^{30000}\left[s . d .\left(Y_{j}\right)\right]^{2}}=\sqrt{30,000\left(\frac{1}{2 \sqrt{3}}\right)^{2}}=50$ dollars.
Hence, using the CLT approximation: $T \dot{\leftarrow} N(0,50)$,
so that: $\quad \operatorname{Pr}(|T|>50) \simeq 2 \times \operatorname{Pr}[N(0,1)>1]=2 \times 0.1587=0.3174 \simeq 0.32$.
With n as large as 30,000 and the Y_{j} s having a symmetrical distribution, we expect good accuracy for the approximate normality of T from the CLT; the final answer should therefore be close to the true probability.
(b) To understand the effect of rounding in two stages, we examine particular premium values, as in the table at the right, where the - and + signs in the second column mean 'infinitesimally below' and 'infinitesimally above'.

We see that, in (a), the break points are ± 0.5 dollars so we use a $U(-1 / 2,1 / 2]$ model; in (b), the break points are -0.495

Table 5.16.1

	Premium		
	Rounding	Y_{j}	
(a)	$\$ 265.50-$	Down	-0.5
	$\$ 265.50+$	Up	+0.5
(b)	$\$ 265.495-$	Down	-0.495
	$\$ 265.495+$	Up	+0.505

We now have, from Figure 5.11: $\quad E\left(Y_{j}\right)=0.005, \quad$ s.d. $\left(Y_{j}\right)=\frac{1}{2 \sqrt{3}} \simeq 0.288675$ dollars.
Based on the solution above for (a), the solution for (b) [and the second probability in (a)] should be completed as exercises.

NOTES: 2. A noteworthy feature of Example 5.16 .1 is the substantial difference in the probabilities in (a) and (b) resulting from what might appear to be an inconsequential change in the rounding procedure.
3. The problem statement in (b) specifes $50 \notin$ is to be rounded upwards; explain briefly how this affects the solution.

Example 5.16.2: The lifetimes of certain electronic components are independent and can be modelled by an exponential distribution with a mean of 1,000 hours. Use the Central Limit Theorem to find the approximate probability the average lifetime of ten of the components, chosen at random, exceeds 1,500 hours. Explain briefly why the CLT approximation is expected to be of poor accuracy in this instance. [0.05692 $\simeq 0.06$]

Solution: Let the random variable T_{j} represent the lifetime (in hours) of the j th component.
We use the model: $\quad T_{j} \sim \operatorname{Exp}(\theta=1,000)$;
from Figure 5.12, we know that: $\quad E\left(T_{j}\right)=s . d .\left(T_{j}\right)=1,000$ hours.
The average lifetime of 10 components is given by the random variable: $\quad \bar{T}=\frac{\sum_{j=1}^{10} T_{j}}{10}$;
then: $\quad E(\bar{T})=E\left(T_{j}\right)=1,000 ; \quad$ s.d. $(\bar{T})=s . d .\left(T_{j}\right) \sqrt{\frac{1}{10}}=1,000 \sqrt{\frac{1}{10}}=100 \sqrt{10} \simeq 316.2$ hours.
Hence, using the CLT approximation: $\bar{T} \div N(1,000,100 \sqrt{10})$,
so that: $\quad \operatorname{Pr}(\bar{T}>1,500) \simeq \operatorname{Pr}[N(0,1)>\sqrt{2.5}]=0.05692 \simeq 0.06$.
With n as small as 10 and the T_{j} s having a very asymmetric distribution, we expect poor accuracy for the approximate normality of \bar{T} from the CLT; the final answer may therefore not be close to the true probability.

NOTES: 4. Examples 5.16.1 and 5.16.2 involve continuous distributions - the continuous uniform and exponential - for the $Y_{j} \mathrm{~S}$ and $T_{j} \mathrm{~s}$; however, the CLT approximation is also applicable when Y_{j} and T_{j} are discrete random variables.
5. In equations (5.16.2) and (5.16.4) overleaf on page 5.39, it is natural in this Figure to write the standard deviation of T as $\sqrt{n} \sigma$, but it is also useful to think of it as $\sigma \sqrt{n}$, just as we write the standard deviation of \bar{Y} as $\sigma \sqrt{1 / \mathrm{n}}$. Writing standard deviations this way prepares us for expressing the standard deviation of an estimator in statistical inference as the model standard deviation (usually denoted σ) multiplied by an expression involving a square root.

