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Figure5.16. PROBABILITY MODELLING: The Central Limit Theorem Approximation

In previousFiguresof Part5, we havedereloped o ideasn probability modelling.
* Using the rormal distiibution to model the $igpe d appropriate data dstributons;
this idea can b simmarized ly the pobebility statenent(516.J) at he ight. YON( o) - (616
* A random vaalde whichis a Inear mmbinaton (ike a sim, a dfferenceor an averae of normally distributed probabil-
isticaly indgpenden) random vaialdesalso has a wrmal distiibution and its mean andastdad ceviation @n ke epres
sedin terms of the meafy and sandad deviation§ of the random wvaales that make up he Inear mmbinaton. For
example, br n pobabilisticaly indgoendentN(y, o) random vaales,as siowvn in equaions(516.2) and(516.3) beow:

- their sum (T) hasa normal distibuton with mean i and sandad deviationvio; TON(hy, vio) ---- (516.2
- their aveage hasa normal distibuion with the same mearu as he ndividud - i
random vaiatesbut a sandad deviation tat is snalker by a fador of J1/n. Y ON(y, U\g) """ (516.3

In this Hgure, we dsaussrdaxing the requirement br normality of the dstributon of the ndividud random vaalesin a inear
conbinatbn ke a $Im a an aeragye previousresllts for mears and stindad deviationsfrom Fgure 514 carry over uncharged

1. The Central Limit Theorem (abbreviated CLT)
We gate without prod this fanousresilt of probability theory as if the random wdaldesy, Y,, Y;, ....., Y, each hae nean
pand shndad deviation g; and if the random vdalde T=Y,+Y;,+Y;+.....+Y,, then
e the gdandadized brmof T, (T—ng)/(/No), has astandrd normal p.df. in the Imit asn - oo,
e the gandadized brmof Y=T/n, (Y-1)/(c//n), has astandrd normal p.df. in the Imit asn — co.

The QLT provides arexad result when n sinfinite; we wse t as he psification of an approximate result when n & finite:
a um (T) or average (Y) of n random vaalesY hasappoximatdy a normal distibuton regardess of he dstribution of the ¥s;

thesetwo resilis are gated ymbdically at the iight as euaions(516.4) and(516.5). TEN(y, o) - (516.4)
Theaccuracyof this aproximae rormelity of a 9Im a average cepends on o fadors: _ '
~- the value of n —helarger the valug, the better the gproximation; YEN(w, o j%) ----- (516.5)

- the shgpe d the dstibution(s) of theYs — hemae symnetical they ae, the better the gpproximation
Althoudh it is beyand this Fgure b dsausshow to assess qiantitatively the ecaurecy d the rormal gpproximation from the
CLT in aparticular situgion, gened guiddines ae:
- if theYs havea yymmetical distibuton(s), an adequde gproximation or mary practical purposes g, probebilities aaurae
to a Bw percent o beter) can ke dotainedwith n & snallas D to 50;
- with hghly asynmaetric dstributon(g for the'Ys, the pproximation may be of poor acaurecy with n & large & 50,000.

Two otherrestictions on he ug of the rormal gpproximation from the AT are;
o the gandad deviation(s of theYs nust ke finite; [this is nore of theoreical inteest than bpractical mncerr
o theYs reed mt be stictly probabilisticaly indgpendent but they nust not le too strongly asdated

We wse he AT approximation © esimae probabilities, usdly in the oniext of questnsof staistical interest but the
ideathat a eponsevariateis cbseved b haveapgoximatdy a normal distibuion is of nore gererd interest; br exanple,
the fad tha human haghts for instance are quite dosely modelled ty a normal distiibuion hasbeen tken & evidencethat
many, hot just a éw explandory variates detemine a grsan's alut height.

NOTE: 1 Hgure 514deab with threelinea combinatbns(suns differencesand &erage$ of random vaiales,but anly two
of these(sums and arergge$ are dsausse above. The easn isdifferencesusualy only invdve two random vaii-
akdesand ® the valie of n is do snall for the CLT to provide easnalle goproximate normality of the mndom
varialle repreening a dfference except when he indvidual random vaialdes ate rormally distributed as hey

are in Hgure 514

Example5.16.1: (8 An insuanceconpany clcdates pemiums o mary dedmd places and then ourds ten to the reaest
dollar By modelling the factional pars of 30,000 pemums by a ontinwus uniform distribution on
(-¥2,%4, find the @proximate probabity the ourding dters te totd amourt of thesepremims by
morethan $0; by more than $00. [0.3174E10.32; 00456E10046

(b Supposethe premiums in @) ae first roundel to the rearestcent andthen roundel to the rearestdollar,
with 50¢ béng rourdeduEwards. Fnd appoximatevaluesfor the ssme pobabilities & in @).
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Solution: (@ Let he random vadale Y represent the araurt (in dollarg by whichthe jth premium charges;
for exanple, T the first pemium is @lcuated & $06.876and purdedto $207,Y, = +01824 dbllars.

We wse he nodel YOU(2,24  forwhich: f(y)=1 ; 0.5<y<0.5

from Figure 511, we know that: E(Y)=0, s.dY)= 2—% Llo.288675dollars.

The charge duea rourding in thetotd premium anaountis gven by the random vaalde: TQTZOL)\O,(
then E(T) :iz"fE(\() =0, s.dT)= /ngs.d(\q)]z = /30,0000, = 50 chllars.

Hene, wsingthe CLT approximation: T[IN(, 50,

so ha: Pr(IT| >50 El2xPr{N(©,1) >1] = 2x01587 = 0.3174L10.32.
With n @ large as 3,000 ad heYs having asymnetical distibuion, we exped goal acairecy for the

appoximatenormality of T from the A_T; the final aswershaild theiefore be tose to he tue probability.

(b To understandhe dfed of rourding in two stayes,we &a- Table5.16.1
mine paticular premium \alues,as h the tide & the iight, Premium  Rounding Y
whee the — and + gns in the £ond cdumn mean infini- @ $26550- Down -0.5
tesimally below and ‘infinitesimally above! $26550+ Up +05
We e that, in (@), the breakpantsare+0.5dollars ® we (b $265.495 Down —0.495
usea U(-%2,% modd; in (b), the breakpadnts are—0.495 $265.495 Up  +0.505

and +0.505dollars ® we nust ug aU(-0.4950.509 modd.
We row heve from Figure 511:  E(Y) = 0.005, s.d(Y) = ;- Llo.288675dollars.

Basel on he ®lution abovefor (g), the lution for (b) [and the scndprobability in (a] shauld be ©m-
pletedas gercises

NOTES: 2. A naeworthy fedure d Exanple 5161 is the sibgantial differencein the pobabilities n (@) and (b) resuting

from wha might appea to be anmoonsequentialcharge in he ourding procedire

3. The goblem satenent h (b) Ppecifes D¢ is to be ourdedupwads; explain briefly how this dfeds the slution.

Example 5.16.2. The lfeimesof certan dedronic conpanents ae indgpendent and canebnocelled ly an exponantial dis-

tribuion with a nean 61,000 hours. Use he CentralLimit Theorem b find the aproximate probability
the average lifeime of ten d the @mponents, cheen at random exeeed 1500 hours. BExplain briefly why
the CLT approximation is epeded b be of por acaurecy in this irstance [005692=1006]

Solution: Let the random vaale T represent the ifeime (in hours) d thejth component.
We se he nodel T LExp(@ =1,000);
from Figure 512, we know that: E(T) = s.d(T) =1,000haurs. &
Theaveagelifeime of 10 components & gven by the random vidabe: T= J%OJ ;
then  E(T)=E()=1000; s.d(T)=s.d(T) % =1000/% =100/ L3162 ours.
Hene, wingthe CLT approximation: T [IN(1,000, 10010),
so ha: Pr(T >1,50 EPrN(©,2 > 23 = 0.05692E0.06.

With n s smd as D and heTs having avay agymmetiic distibuion, we exped poor acarrecy for the -
proximae rormality of T from the A_T; the final aswermay theefore not be dose to he tue probability.

NOTES 4. Bxanples 5161 and 516.2 invdve continuaus distiibutions — he ontinwusuniform and eponential — for the'fs

andTs; rowever the T approximation is dso appicable whenY andT, arediscreterandom vaiatles

5. In equdions(516.2) and(516.4) oveleaf o page 539 it is naturd in this Agure © write the dandad deviation
of T asyng, but it is dso usdul to think of it as ovA, just & we wite the dandad deviation ofY asof1/n. Writing
standad deviationsthis way prepaesus br expresing the dandard deviation of an esimator in datisticalinfer
enceas he nodel gandad ceviation (Usualy derotedo) multiplied by an &pression invdving a sgare roa.
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