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Figure 5.16. PRO BABILITY MOD ELLING: The Centr al Limit Theor e m Ap p roximat ion

In previou sFigure sof Par t5, we hav edeve loped two idea sin probability model ling.

* Us ing the nor mal dist rib u tio n to model the shape of appro priat edata dis tributio ns;
this idea can be sum marized by the probability statement(5.16.1) at the rig ht.

* A random variable whi c his a lin ear combin ation (li ke a sum ,a differenc eor an ave r age) of nor mally dis tributed (probabil-
is ti c a l ly independent) random variable salso has a nor mal dist rib u tio n and its mean and standard dev iation can be expre s-
se din ter ms of the mean(s) and standard dev iation(s) of the random variable s that make up the lin ear combin ation. For
ex ample, for n probabilis ti c a l ly independentN(µ,σ) random variable s ,as shown in equ ation s(5.16.2) and(5.16.3) below:
−− thei r sum (T) ha sanormal dist rib u tio n with mean nµ and standard dev iation√nσ ;
−− thei r average ha sa normal dist rib u tio n with the same meanµ as the individu al

random variable sbut a standard dev iation that is sma l ler by a facto r of 1/n.

Y∼ N(µ,σ)

T∼ N(nµ, √nσ)

Y−∼N(µ,σ 1
n)

-----(5.16.1)

-----(5.16.2)

-----(5.16.3)√ √
In this Fig ure, we dis cus srelaxi ng the requi rement for normality of the dist rib u tio n of the individu al random variable sin a lin ear
co mbin ation like a sum or an ave r age; previou sre sul ts for means and standard dev iation sfr om Fig ure 5.1 4carry ove runchange d.

1. The Centr al Limit Theor e m (ab breviated CLT)
We state withou tproof this famou sre sul t of probability theor y as: if the random variable sY1, Y2, Y3, .....,Yn each have mean

µ and standard dev iationσ, and if the random variable T=Y1 +Y2 +Y3 +.....+Yn, then:

• the standardized for mof T, (T− nµ)/(√nσ), has asta n dar d normal p.d .f. in the limit as n→ ∞,

• the standardized for mof Y−≡ T/n, (Y−−µ)/(σ/√n), has asta n dar d normal p.d .f. in the limit as n→ ∞.

The CLT provides anexact re sul t when n is in finite; we use it as the justific ation of an appr oximate re sul t when n is finit e:
a sum(T) or ave r age(Y−) of n random variable sYj ha sap proxi mat ely a nor mal dist rib u tio n regar dle ss of the dis tribution of the Yjs;
thes etwo res ult s are stated symboli c a l ly at the rig ht as equ ation s(5.16.4) and(5.16.5).
Theaccurac yof this approx imate nor mality of a sum or ave r age depends on two facto rs:

−− the value of n – the larger the value, thebetter the approxi mation;
−− the shape of the dist rib u tio n(s) of theYjs – themore symmetrica l they are, thebetter the approxi mation.

T∼.. N(nµ, √nσ)

Y−∼.. N(µ,σ 1
n)

-----(5.16.4)

-----(5.16.5)
√

Althou gh it is bey ond this Fig ure to dis cus show to assess quantit ative ly the accur acy of the nor mal approxi mation from the
CLT in aparticular situation, gen eral guideli nes are:

−− if theYjs hav ea sym met rical dist rib u tio n(s), an adequ ate approxi mation for many practical purposes (e.g., probabilit ies accur ate
to a few percent or better) can be obtaine dwith n as sma l l as 20 to 50;

−− with hig hly asy mmetr ic dis tributio n(s) for theYjs, the approxi mation may be of poor accur acy with n as large as 50,000.

Tw o ot he rre s trictio ns on the use of the nor mal approxi mation from the CLT are:
the standard dev iation(s) of theYjs must be finite; [this is more of theoretical int e rest than of practical con cer n]
theYjs need not bestrictly probabilis ti c a l ly independent, but they must not be to ost rongly associat e d.

We use the CLT approxi mation to estim ate probabilit ies, usually in the con tex t of que s tion sof sta tis tical in terest, but the
id e athat a respons evariat eis obs erved to hav eap proxi mat ely a nor mal dist rib u tio n is of more ge ner al in terest; for exa mple,
the fact that hum an heig hts, for ins tanc e, are quite clo sely model led by a nor mal dist rib u tio n ha sbeen taken as evidenc ethat
many, not just a few, exp lanato ry variat es det e rmine a person’s adult height.

NO TE: 1. Fig ure 5.1 4deals wit h th reeli near combin ation s(s ums, differenc esand ave r age s) of random variable s ,but only two
of thes e(s ums and ave r age s) are dis cus s ed above. The rea son isdi ffere nce sus u ally only inv olve two random vari-
able sand so the value of n is too sma l l fo r the CLT to provide rea son able approxi mat enormality of the random
variable repre senting a differenc e, exc ept when the in dividua l random variable sare nor mally dis tributed, as they
are in Fig ure 5.1 4.

Example 5.16.1: (a) An ins uranc eco mpany calcula tes premiums to many decim al places and then rou nds them to the neare s t
dollar. By model ling the fractio nal par ts of 30,000 prem iums by a con tin uou sun ifor m dist rib u tio n on
(−½, ½], find the approxi mat e probability the rou nding alt e rs the to t al amou nt of thes eprem iums by
mo rethan $50; by more than $100. [0.31 7 4−−∼ 0.32; 0.0456−−∼ 0.046]

(b) Sup pos ethe premiums in (a) are fir st roun d ed to the neare s tcent andth en roun d ed to the neare s tdollar,
with 50¢ being rou nde dupwards. Fin d ap proxi mat evalue sfo r the same probabilit ies as in (a) .
[0.97728−−∼ 0.98; 0.8413 −−∼ 0.84]
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Solution: (a) Let the random variableYj repre sent the amou nt (in dol lars) by whi c hthe j th premium change s;
fo r ex ample, if the first premium is calcula ted as $206.817 6and rou nde dto $207,Y1 = +0.1824 dol lars.
We use the model: Yj ∼ U(−½, ½] fo r which: f(yj) =1 ; 0. 5< yj ≤ 0. 5;

fr om Fig ure 5.11, we know that: E(Yj) = 0, s. d.(Yj) = 1
2√3 −−∼ 0. 288675dollars.

The change due to rou nding in theto t al prem ium amoun t is giv en by the random variable: T=Σ
j =1

30, 000

Yj;

then: E(T) =Σ
j =1

30, 000

E(Yj) = 0, s. d.(T) = Σ
j =1

30, 000

[s. d.(Yj)]
2
= 30,000( 1

2√3
)2

= 50 dol lars.

He n ce, usi ngthe CLT approxi mation: T∼.. N(0, 50),

so that: Pr(|T| >50) −−∼ 2× Pr[N(0,1) >1] = 2× 0.15 87 =  0.3174−−∼ 0. 32.

With n as largeas 30,000 and theYj s hav ing asymmetrica l dist rib u tio n, we expect go od accur acy for the
ap proxi mat enormality of T fr om the CLT; the final answe rsh oul d therefore be clo se to the true probability.

√ √

(b) To unde rst andthe effect of rou nding in two st age s ,we exa -
mine particular premium value s ,as in the table at the rig ht,
where the − and + sig ns in the secon dcolu mn mean ‘infin i-
tesi mally bel ow’and ‘infin itesi mally above.’
We see that, in (a) , the bre a kpoin t s are±0. 5 dollars so we
us eaU(−½, ½] model; in (b) , the bre a kpoin t sare−0.495
and +0. 505dollars so we must use aU(−0.495,0. 505] model.

Ta ble 5.16.1
Premium Rounding Yj

(a) $265.50− Down −0. 5
$265.50+ Up +0. 5

(b) $265.495− Down −0.495
$265.495+ Up +0. 505

We now hav e, from Fig ure 5.11: E(Yj) = 0.005, s. d.(Yj) = 1
2√3 −−∼ 0. 288675dollars.

Ba s ed on the solutio n abov efo r (a), the solutio n fo r (b) [and the secon dprobability in (a)] shoul d be com -
plet e das exe rci ses.

NO TES: 2. A notewo rthy feature of Exa mple 5.1 6.1 is the sub stantia l differenc ein the probabilit ies in (a) and (b) res ulting
fr om what mig ht appear to be an incon seque n tia lchange in the rou nding procedure.

3. The problem statement in (b) speci fes 50¢ is to be rou nde dupwards; exp lain brief ly how this affects the solutio n.

Example 5.16.2: The lifetim e sof cer tain ele ctron i cco mponents are independent and can be model led by an expon entia l dis-
tr ibutio n with a mean of 1,000 hou rs. Use the Cent r alLi mit Theorem to find the approxi mat eprobability
the average li fetim e of ten of the components, chosen at random ,ex ceeds 1,500 hou rs. Explain brief ly why
the CLT approxi mation is expected to be of poor accur acy in this inst anc e. [0.05692−−∼ 0.06]

Solution: Let the random variableTj repre sent the lifetim e(in hou rs) of the j th component .
We use the model: Tj ∼ Exp(θ =1,000);
fr om Fig ure 5.1 2, we know that: E(Tj) = s. d.(Tj) =1,000hours.

Theaverage li fetim eof 10 components is giv en by the random variable: T−=
Σ
j =1

10

Tj

10
;

then: E(T−) = E(Tj) =1,000; s. d.(T−) = s. d.(Tj)
1
10 =1,000 1

10 =100√10 −−∼ 31 6.2 hou rs.

He n ce, usi ngthe CLT approxi mation: T−∼.. N(1,000,100√10),

so that: Pr(T− >1, 500) −−∼ Pr[N(0,1) > √2. 5] = 0.05692−−∼ 0.06.

With n as sm all as 10 and theTjs hav ing avery asym met ric dist rib u tio n, we expect poor accur acy for the ap-
prox imate nor mality of T− fr om the CLT; the final answe rmay the reforenotbe clo se to the true probability.

√ √

NO TES: 4. Examples 5.1 6.1 and 5.1 6.2 inv olve cont inuousdist rib u tio ns – the con tin uou sun ifor mand expon entia l – for theYjs
andTjs; howeve r, the CLT approxi mation is als oap plicable whenYj andTj arediscret erandom variable s.

5. In equ ation s(5.16.2) and(5.16.4) ov erleaf on page 5.39, it is natur al in this Fig ure to write the standard dev iation
of T as√nσ, but it is als ous eful to think of it as σ √n, just as we write the standard dev iation ofY−asσ 1/n. Writing
st andard dev iation sthis way prep are sus for expre ssi ngthe standard dev iation of an estim ato r in statis ti c a l infer-
enc eas the model standard dev iation (us u ally denot e dσ) mul t i p lie dby an expre ssi on inv olv ing a square root.

√
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