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Figure5.14. PROBABILITY MODELLING: Linear Combinations of Random Variables

The mattes presened h this Fgure extend gpredably the types d probability calcubtionswe @n undetake.
Supposethe random vaiable Tis gven by: T=adJ+bvV+AWV whee: U,V W are random vaales,
and: ab, c ae gven congants
We all T alinea conbination of U, V andW, we @nfineour attertion b three pecial cases of linear mnbinaions:
- aam eg, whena=b=c=1); - adffeene® g, whena=1,b=-1c=0; = anaerage €g, when a=b=c=%y
To descibe he gobabilistic behaiour of T, we reedto knowthreeof its chaacteistics:
e itsmean e its standad deviation; e its distibution.

We want to elatethesechaacteistcs d T to the orreponding haracteistics d U, V andW, in gened, the meand the
eaed to dedwith, the dstibution thehardest We dete the following resuts without prod; they are justfiedin STAT 221

1. A Sum or Difference
® Mean: E@J+0bV+oW) =aEU) + bE(V) +cEW). e (5141
Exanples E(U +V+W) = EU) +EV) +E(W)
and #milarly for sums d mae than hiree andom vaales
EU +V) = EU) +EV)
EU -V) = EU) -EV).
Thus, the meanfa um a differene is he samewsn a differene of the ndividual mears;
this is he anlbgueof the @rregponding familiar behaiour of averages.

e Sd. (and variance): sd (@ +bv+aw) = Ja[sld U)*+ sl (V) + sl (W)? | — (5142)
Exanples sd(U+V+W) = JsdU)’ +sd (V) +sd (W)

va (U +V+W) = var (U) +var (V) +var (W) providedU, \} W are

and smilarly for sums d mae than tiree andom vaiades { probabiistically indepedent
sd(U+V) = Jsd(U)’ +sd(V)’ random vaiades
va (U +V) = var (U) +var (V)
sdU-V) = JsdU)’ +sd(V)’
var U -V) = var(U) +var (V). J

Thus, provided the individual random vaiallesare probabilistically independent the sandad deviation of asumis
the guae roa of the aim of he ndividual dandard deviationssquaed and the sindad deviation of adifference
is this samesum. This latterresult reminds us ha the vduesarising from a meawring pocess br a difference
genedly showv mae variation than the vimeswhich yield the dfferenes this behaiour has mportant implica-
tionsfor the predsion of the kRboraory procedure of weighing liquids, for example, bydifference

NOTES 1 As the epresions dove indicde, gandad deviationscan ke mmbined only by sjuaing, adding, and eking
the @vaal) squae oa; amemoty ad is b say standrd devations add ke Pythayaras

2. If the hdividual random vaales are not probabilistically indgpendent the sd. (and vaiancé expresians
above need adlitionalterm(§ invdving a qantty called covarian® (see Appendk overkaf); deding with
standad deviationsfor probabilistically dependentrandom vaiabesis beyand air presat conern

3. Random vaaldes are (mutudly) probabilistically indgoendent if their joint probability dengty fundion @n
be witten & the productof the pobability dendgty fundionsof the ndividual random vaales

o Didribution: if U, V andW arenormally distibutedand ndependent T dso has a rormal dstributon. - (5143

[We imit consderation © cases nvdving indgoendentnormal random vaialdesbecause for mary othe
distiibutions, there is no smple relationslip between the dtibutions d U, V andW and ha of T]

2. An Average

We ae famiiar with the average ) of a datase conssting of the vdues(y) for sme n
repansevariate of n dements,as gven in egudion (5144) at he ight. If the n é&ements y= leyi _____ (5144)
have keen seleded equprobably from the aidy popuation, 0 eadh y can ke regaded @y, m '

the value of eEndom vaale Y, the random vaade repreening the samle averaey is:

(cortinued araled)
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n
Y= w = ,Z%YJ = %(Y1+Y2+Y3+ _____ +Y). (5145)

Thus, the random viable Y is asum of n random vaiabes, multiplied by @ cngant) 2/n.
We row dace bur redrictionson the random vaallesY, Y,, Y, ..., Ya:

* they dl have the samenean(n); * they ae nutudly probabilistically independent,

* they dl have the samestandird devation (o); * they ae eachnormally distibuted

[Theserestictionsmay be net in practice, at keast to a essmable cegee in the cae d:

o repeded ndgpendent meaurements d the same untity; o variatevduesfor elerrentssdeded ejuiprobably]
Then applying D the expression (5145) for Y the resuts (5141), (514 2) and(514.3) givenovaleaf

® Mean: EY)=Lu+u+.+ =)=, (5146)

® Sd.: sd(Y) = %Jaz+02+ ..... +0? = %\lna2 = a\/%; ----- (5147) i.e, YON(g, UJ%); ----- (5149)
e Digribution: Y has anormal distibution; ... (5148

IN WORDS (the random vaialle repreeening) the aerage of n imdependentN(, o) random vaalesis normally dis-
tributed with tle samemean a the ndividual variablesbut with root one over n of ther standad deviation.

NOTES 4. Equaion (51409) for Y is the easm why, when we haverepeded ndgendent measurements d a quantity,
the ‘best estimae d the vdue of he qiantity is the awerage of the meauements — the eeraje tas he
same meansathe ndividual messurements hut ane oat nth of ther standad deviation (.e, the meauing
proaessfor the averageis root n timesless impredsethan the pocess br the individual measurements.

5. The dsaus$on in Note4 shows ha, to deaease he mpredsion of an areraye ly a fador of 3, say we reed
to take 9 ot 3 times & mary obsenationsfrom which to ciulatethe averaye i.e, impredsion deaeases
only as the scuare root of the number d (indgpenden) repetitionsof a neasuing process

6. The gandad deviation of Y, aj%, is mdimes cliedthe standrd error of the man and &breviatedSE.M;
if sudr a erm (with ‘standad eror’ ratrer than standad deviatiorl) is to be sed we would prefer to call t
the gandard eror of the average (SE.A) but, unfortunaely, SE.M.is well-estalished

3. Appendix: Covariance

Thecovariane of the random vaallesU andV, menfoned covU,V) = EUV) -EU)E(V) - (51410
51420 at e ight L& amemre d  SdEUD) = EHU BRI 2abEUY) (5141
of niying ther cegree d probibiiaic OV Gosiy o182
e ron S i . S EUET 10
dard deviation of a inear mmbinaton of two (dgpenden) random vai- s.dV) = JEN-EV] - (51414

adesis eqiaion (51411).
Two otherconments daut covaianceare:
e Covarianceis involved i the nore famiiar measure d (linea) relationslip called (orobabilistic) carelaion [see egquaion
(51412) at he ight abovd, which ha the orverience aver covariancethat i takes véuesin the ntewva [-1, 1.
- (Da3g) correlation is dsausse in detdl in Figure 93,
® When he random va@aldes U and V ar probabilistically independent E(UV) factars into E(U)E(V) beau® the joint
probability dengty fundion of U andV factars into the poduct of the (narginal) probability densty fundionsof U andV
— e Note 3 overkaf m page 535 hene, cov(U, V) = 0 when U andV are independent random vealdes However the
convase is nottrue — 2 covaiancedoesnot necssatily imply probabilistic indgpendence

Disaussbriefly the mplications mentoned aerkaf for weighing smdl liquid sanples by diferene in an adyticd labora-
tory; include aquantitative illustration in your disausson.

Indgoendnt measuemants d the same wagntity are mentoned n the first of the two drcled (o) points dove. Disauss
briefly the fadors which deernine whetter or rot repeded measurementscanreasmably be onsderedindgoendent.

Indgoendenceis not mantioned expilcitly in the seond cirded (o) point above. Explain briefly whether this mears tha
independenceis not recuired in this cntextor whetrer t enters in anather guise
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