Figure 5.14. PROBABILITY MODELLING: Linear Combinations of Random Variables

The matters presented in this Figure extend appreciably the types of probability calculations we can undertake.
Suppose the random variable T is given by: $\quad T=\mathrm{a} U+\mathrm{b} V+\mathrm{c} W \quad$ where: $\quad U, V, W$ are random variables, and: a, b, c are given constants.
We call T a linear combination of U, V and W; we confine our attention to three special cases of linear combinations:

- a sum (e.g., when $\mathrm{a}=\mathrm{b}=\mathrm{c}=1$); $\quad-\mathrm{a}$ difference (e.g., when $\mathrm{a}=1, \mathrm{~b}=-1, \mathrm{c}=0$); \quad an average (e.g., when $\mathrm{a}=\mathrm{b}=\mathrm{c}=1 / 3)$.

To describe the probabilistic behaviour of T, we need to know three of its characteristics:

- its mean; - its standard deviation; - its distribution.

We want to relate these characteristics of T to the corresponding characteristics of U, V and W; in general, the mean is the easiest to deal with, the distribution the hardest. We state the following results without proof; they are justified in STAT 221.

1. A Sum or Difference

- Mean:

$$
\begin{equation*}
E(\mathrm{a} U+\mathrm{b} V+\mathrm{c} W)=\mathrm{a} E(U)+\mathrm{b} E(V)+\mathrm{c} E(W) \tag{5.14.1}
\end{equation*}
$$

Examples:

$$
E(U+V+W)=E(U)+E(V)+E(W)
$$

and similarly for sums of more than three random variables;

$$
\begin{aligned}
& E(U+V)=E(U)+E(V) \\
& E(U-V)=E(U)-E(V) .
\end{aligned}
$$

Thus, the mean of a sum or difference is the same sum or difference of the individual means; this is the analogue of the corresponding familiar behaviour of averages.

- S.d. (and variance):

$$
\begin{align*}
\text { s.d. }(\mathrm{a} U+\mathrm{b} V+\mathrm{c} W) & =\sqrt{\mathrm{a}^{2} \cdot s \cdot d \cdot(U)^{2}+\mathrm{b}^{2} \cdot s \cdot d \cdot(V)^{2}+\mathrm{c}^{2} \cdot s \cdot d \cdot(W)^{2}} \tag{5.14.2}\\
\qquad \text { s.d. }(U+V+W) & =\sqrt{s . d .(U)^{2}+s \cdot d \cdot(V)^{2}+\text { s.d. }(W)^{2}} \\
\operatorname{var}(U+V+W) & =\operatorname{var}(U)+\operatorname{var}(V)+\operatorname{var}(W)
\end{align*}
$$

Examples:
and similarly for sums of more than three random variables;

$$
\begin{aligned}
& s . d .(U+V)=\sqrt{s . d .(U)^{2}+s . d .(V)^{2}} \\
& \operatorname{var}(U+V)=\operatorname{var}(U)+\operatorname{var}(V) \\
& \text { s.d. }(U-V)=\sqrt{s . d .(U)^{2}+s . d .(V)^{2}} \\
& \operatorname{var}(U-V)=\operatorname{var}(U)+\operatorname{var}(V) .
\end{aligned}
$$

provided U, V, W are probabilistically independent random variables

Thus, provided the individual random variables are probabilistically independent, the standard deviation of a sum is the square root of the sum of the individual standard deviations squared, and the standard deviation of a difference is this same sum. This latter result reminds us that the values arising from a measuring process for a difference generally show more variation than the values which yield the differences; this behaviour has important implications for the precision of the laboratory procedure of weighing liquids, for example, by difference.

NOTES: 1. As the expressions above indicate, standard deviations can be combined only by squaring, adding, and taking the (overall) square root; a memory aid is to say standard deviations add like Pythagoras.
2. If the individual random variables are not probabilistically independent, the s.d. (and variance) expressions above need additional term(s) involving a quantity called covariance (see Appendix overleaf); dealing with standard deviations for probabilistically dependent random variables is beyond our present concern.
3. Random variables are (mutually) probabilistically independent if their joint probability density function can be written as the product of the probability density functions of the individual random variables.

- Distribution: if U, V and W are normally distributed and independent, T also has a normal distribution.
[We limit consideration to cases involving independent normal random variables because, for many other distributions, there is no simple relationship between the distributions of U, V and W and that of T.]

2. An Average

We are familiar with the average (\bar{y}) of a data set consisting of the values $\left(y_{j}\right)$ for some response variate of n elements, as given in equation (5.14.4) at the right. If the n elements have been selected equiprobably from the study population, so each y_{j} can be regarded as y_{j}, the value of random variable Y_{j}, the random variable representing the sample average \bar{y} is:

$$
\begin{equation*}
\overline{\mathrm{y}}=\frac{\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{y}_{\mathrm{j}}}{\mathrm{n}} \tag{5.14.4}
\end{equation*}
$$

(continued overleaf)

$$
\begin{equation*}
\bar{Y}=\frac{Y_{1}+Y_{2}+Y_{3}+\ldots . .+Y_{\mathrm{n}}}{\mathrm{n}} \equiv \frac{\sum_{j=1}^{\mathrm{n}} Y_{j}}{\mathrm{n}} \equiv \frac{1}{\mathrm{n}}\left(Y_{1}+Y_{2}+Y_{3}+\ldots .+Y_{\mathrm{n}}\right) \tag{5.14.5}
\end{equation*}
$$

Thus, the random variable \bar{Y} is a sum of n random variables, multiplied by (a constant) $1 / \mathrm{n}$.
We now place four restrictions on the random variables $Y_{1}, Y_{2}, Y_{3}, \ldots ., Y_{\mathrm{n}}$:

$*$ they all have the same mean $(\mu) ;$	$*$ they are mutually probabilistically independent;
$*$ they all have the same standard deviation $(\sigma) ;$	$*$ they are each normally distributed.

[These restrictions may be met in practice, at least to a reasonable degree, in the case of:
O repeated independent measurements of the same quantity; \quad o variate values for elements selected equiprobably.]
Then, applying to the expression (5.14.5) for \bar{Y} the results (5.14.1), (5.14.2) and (5.14.3) given overleaf:

- Mean: $E(\bar{Y})=\frac{1}{\mathrm{n}}(\mu+\mu+\ldots . .+\mu)=\frac{1}{\mathrm{n}}(\mathrm{n} \mu)=\mu$;
- S.d.: \quad s.d. $(\bar{Y})=\frac{1}{\mathrm{n}} \sqrt{\sigma^{2}+\sigma^{2}+\ldots . .+\sigma^{2}}=\frac{1}{\mathrm{n}} \sqrt{\mathrm{n} \sigma^{2}}=\sigma \sqrt{\frac{1}{\mathrm{n}}}$;
- Distribution: \bar{Y} has a normal distribution;
$\left.\begin{array}{c}----(5.14 .6) \\ ----(5.14 .7) \\ ----(5.14 .8)\end{array}\right\}$ i.e., $\bar{Y} \sim N\left(\mu, \sigma \sqrt{\frac{1}{\mathrm{n}}}\right)$;

IN WORDS: (the random variable representing) the average of n independent $N(\mu, \sigma)$ random variables is normally distributed with the same mean as the individual variables but with root one over n of their standard deviation.

NOTES: 4. Equation (5.14.9) for \bar{Y} is the reason why, when we have repeated independent measurements of a quantity, the 'best' estimate of the value of the quantity is the average of the measurements - the average has the same mean as the individual measurements but one root n th of their standard deviation (i.e., the measuring process for the average is root n times less imprecise than the process for the individual measurements).
5. The discussion in Note 4 shows that, to decrease the imprecision of an average by a factor of 3 , say, we need to take 9 (not 3) times as many observations from which to calculate the average; i.e., imprecision decreases only as the square root of the number of (independent) repetitions of a measuring process.
6. The standard deviation of $\bar{Y}, \sigma \sqrt{\frac{1}{n}}$, is sometimes called the standard error of the mean and abbreviated S.E.M.; if such a term (with 'standard error' rather than 'standard deviation') is to be used, we would prefer to call it the standard error of the average (S.E.A.) but, unfortunately, S.E.M. is well-established.

3. Appendix: Covariance

The covariance of the random variables U and V, mentioned $\quad \operatorname{cov}(U, V)=E(U V)-E(U) E(V)$ overleaf in Note 2 , is defined in equation (5.14.10) at the right; it is a measure of

$$
\begin{equation*}
\text { s.d. }(\mathrm{a} U+\mathrm{b} V)=\sqrt{\mathrm{a}^{2} \cdot s \cdot d .(U)^{2}+\mathrm{b}^{2} \cdot s \cdot d \cdot(V)^{2}+2 \mathrm{ab} \cdot \operatorname{cov}(U, V)} \tag{5.14.10}
\end{equation*}
$$ of quantifying their degree of probabilistic

$$
\operatorname{cor}(U, V)=\frac{\operatorname{cov}(U, V)}{s . d .(U) \cdot s . d .(V)}
$$ dependence. Covariance takes on values in the interval $(-\infty, \infty)$.

The more general expression than equation (5.14.2) overleaf for the standard deviation of a linear combination of two (dependent) random variables is equation (5.14.11).
Two other comments about covariance are:

- Covariance is involved in the more familiar measure of (linear) relationship called (probabilistic) correlation [see equation (5.14.12) at the right above], which has the convenience over covariance that it takes values in the interval $[-1,1]$.
- (Data) correlation is discussed in detail in Figure 9.3.
- When the random variables U and V are probabilistically independent, $E(U V)$ factors into $E(U) E(V)$ because the joint probability density function of U and V factors into the product of the (marginal) probability density functions of U and V - see Note 3 overleaf on page 5.3 ; hence, $\operatorname{cov}(U, V)=0$ when U and V are independent random variables. However, the converse is not true - zero covariance does not necessarily imply probabilistic independence.

T Discuss briefly the implications, mentioned overleaf, for weighing small liquid samples by difference in an analytical laboratory; include a quantitative illustration in your discussion.
[2 Independent measurements of the same quantity are mentioned in the first of the two circled (o) points above. Discuss briefly the factors which determine whether or not repeated measurements can reasonably be considered independent.

3 Independence is not mentioned explicitly in the second circled (o) point above. Explain briefly whether this means that independence is not required in this context or whether it enters in another guise.

