Figure 5.13. PROBABILITY MODELLING: Exponential Distribution Examples

The following problems illustrate the use of the exponential distribution as a probability model. A selection of the problems will be discussed in class; you should try to solve the others, remembering that the clarity of the presentation of your solution may be as, or more, important than the final answer. Also remember to give any final numerical answer(s) to an appropriate number of significant figures in light of the approximate nature of all mathematical models of real phenomena.

Example 5.13.1: If the random variable $T \sim \operatorname{Exp}(\theta=2.5)$, find: $\quad \operatorname{Pr}(-6<T \leq 4) \quad ; \quad \operatorname{Pr}(T \leq 4) \quad ; \quad \operatorname{Pr}(T>1)$.
Example 5.13.2: n electronic components in a satellite are wired in such a way that all start operating at the same time but all must fail for the satellite to fail. If each component has a time to failure that can be modelled by an exponential distribution with mean 20 years, how many of the components must be used so the satellite operates for d years with probability π ?

Example 5.13.3: My neighbour and I have identical floodlamps with lifetimes that can be modelled by an exponential distribution with mean $\theta=300$ hours. If we both burn our lamps for 6 hours each night, find the probability:
(a) my floodlamp lasts longer than 60 nights;
(b) both floodlamps last longer than 60 nights;
(c) both floodlamps burn out on the same night.

HINT: For (c), express the probability as an infinite sum, in which each term is obtained by reasoning as in (b); this sum can be evaluated as an infinite geometric series.

Example 5.13.4: The p.d.f. of the double exponential distribution is $f(y)=\mathrm{k} e^{-|y|} \quad ; \quad-\infty<y<\infty$. Evaluate the constant k and neatly sketch the p.d.f.

Example 5.13.5: The time from treatment to recurrence of a certain type of cancer can be modelled by an exponential distribution with mean θ. Fifty percent of patients are observed to have a recurrence of the cancer within 693 days of the completion of treatment. Estimate the parameter θ and find the probability a patient who has had no recurrence in the first year after treatment will have a recurrence during the following year.
HINT: The conditional probability of A given B is: $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A \cap B) / \operatorname{Pr}(B)$.
Example 5.13.6: For a certain type of electronic component, the lifetime, L, in thousands of hours can be modelled by an exponential distribution with mean $\theta=2$
(a) Find the probability a randomly-selected component will last longer than 1,000 hours.
(b) If a component has already lasted 1,000 hours, find the probability it will last at least another 1,000 hours.
(c) Find the expected total lifetime of a component which has already lasted for 1,000 hours.

Example 5.13.7: A manufacturer must choose between two processes for producing components. The random variable L, the length of a component in centimetres, has the p.d.f. shown at the

Process 1: $f(l)=3 / l^{4} \quad ; \quad 1<l<\infty$
Process 2: $f(l)=4 / l^{5} \quad ; \quad 1<l<\infty$ right. Only components with lengths between 1.1 and 2.0 cm are acceptable.
(a) Which process produces the greater proportion of acceptable components?
(b) What is the average length of the components from Process 1?
(c) What is the average length of all acceptable components from Process 1 ?
(continued overleaf)

The answers to the problems overleaf are as follows:
Example 5.13.1: $1-e^{-1.6} \simeq 0.7981 ; \quad 1-e^{-1.6} \simeq 0.7981 \quad ; \quad e^{-0.4} \simeq 0.6703$.
Example 5.13.2: $\mathrm{n}=\frac{\ln (1-\pi)}{\ln \left(1-e^{-\mathrm{d} / 20}\right)}$;
substituting selected values of π and d into this expression, we obtain the following values for n :

π	$\mathrm{d}=5$	$\mathrm{~d}=10$	$\mathrm{~d}=15$	$\mathrm{~d}=20$	$\mathrm{~d}=25$
0.90	1.53	2.47	3.60	5.02	6.82
0.95	1.99	3.21	4.69	6.53	8.87
0.99	3.05	4.94	7.20	10.04	13.64
0.999	4.58	7.41	10.80	15.06	20.46.

Example 5.13.3: (a) $e^{-6 / 5} \simeq 0.3012$;
(b) $\left[e^{-6 / 5}\right]^{2} \simeq 0.0907 \quad$ (assuming independence);
(c) $\frac{1-e^{-1 / 50}}{1+e^{-1 / 50}} \simeq 0.009999667 \simeq 0.010$.

Example 5.13.4: $\mathrm{k}=1 / 2$ so the p.d.f. is: $\quad f(y)=\left\{\begin{array}{lll}1 / 2 e^{-y} & ; & y \geq 0 \\ 1 / 2 e^{y} & ; & y<0\end{array}\right.$
Example 5.13.5: $\theta=\frac{693}{\ln 2} \simeq 999.79 \simeq 1,000$ days;
$\operatorname{Pr}($ recurrence in 2 nd year, given no recurrence in 1 st year $)=1-e^{-365 / \theta} \simeq 0.3059$.
Example 5.13.6: (a) $e^{-1 / 2} \simeq 0.6065$;
(b) $e^{-1 / 2} \simeq 0.6065$;
(c) 3 (thousand hours).

Example 5.13.7: (a) Process 1 is slightly higher ($0.626315 \simeq 62.6 \%$ vs. $0.620513 \simeq 62.1 \%$ acceptable);
(b) 1.5 cm ;
(c) 1.3806 cm .

