Figure 5.11. PROBABILITY MODELLING: Continuous Uniform Distributions

The continuous uniform distribution can be used (as the word uniform implies) to model the shape of a data set which has (approximately) the same frequency at all values; i.e.., a 'flat' or 'rectangular' distribution. Unlike the normal distribution, the continuous uniform distribution is not often useful in practice as a probability model for the shape of a data distribution, although its discrete analogue is widely used as the basis for introductory probability calculations.

1. Shape: The p.d.f. of the continuous uniform distribution is rectangular in shape; its equation and graph (for the random variable Y) are:

$$
f(y)=\left\{\begin{array}{lll}
\frac{1}{v-\lambda} & ; & \lambda<y \leq v \tag{5.11.1}\\
0 & ; & \text { otherwise }
\end{array}\right.
$$

NOTES: 1. The notation is λ (lower case Greek lambda) for the lower value of the random variable at which the p.d.f. becomes non-zero, and v (lower case Greek upsilon) for the corresponding upper value; elsewhere, you may see other symbols (e.g., a and b) instead of λ and v.

- If the random variable Y has a continuous uniform distribution on $(\lambda, v$], we write: $Y \sim U(\lambda, v]$.
- The p.d.f. graph above is shown with λ negative and v positive, but both could be negative or both positive, provided only that $v>\lambda$.

2. Like the normal distribution, the continuous uniform distribution has two parameters but, unlike μ and σ, λ and v are not the mean and standard deviation of the distribution; these two characteristics of the continuous uniform distribution are discussed below.
3. We see (from geometrical considerations) from either equation (5.11.1) or the graph given above for the p.d.f. that, as required for any p.d.f., the area under the continuous uniform distribution is 1 (the normalization requirement).
4. The p.d.f. of the continuous uniform distribution also reminds us of some properties (summarised in Table 5.9.1 at the bottom of the fourth side of Figure 5.9) of all p..d.f.s; e.g., its domain is $(-\infty, \infty)$, its range is $f(y) \geq 0$ [here, specifically: $0 \leq f(y) \leq 1 /(v-\lambda)]$, and $f(-\infty)=0, f(\infty)=0$.
5. C.d.f.: The equation and graph of the (cumulative) distribution function for the continuous uniform distribution on $(\lambda, v$] (for the random variable Y) are:

$$
F(y)=\left\{\begin{array}{lll}
0 & ; & y \leq \lambda \tag{5.11.2}\\
\frac{y-\lambda}{v-\lambda} & ; & \lambda<y \leq v \\
1 & ; & y>v
\end{array}\right.
$$

NOTE: 5. The c.d.f. of the continuous uniform distribution, like its p.d.f., reminds us of properties common to all continuous random variables; e.g., the domain of the c.d.f. is $(-\infty, \infty)$, its range is $0 \leq F(y) \leq 1$, and $F(-\infty)=0, F(\infty)=1$. Also remember that $F(y)=\operatorname{Pr}(Y \leq y)$.

- Also recall [from the fourth side (page 5.24) of Figure 5.9] that the c.d.f. is the integral of the p.d.f. and the p.d.f. is the derivative of the c.d.f.

3. Mean: The mean of the continuous uniform distribution on $(\lambda, v$] (for the random variable Y) is given by:

$$
\begin{equation*}
\mu \equiv \mu_{Y} \equiv E(Y)=\int_{-\infty}^{\infty} y \cdot f(y) d y=\int_{\lambda}^{v} y \cdot \frac{1}{v-\lambda} d y=\frac{1}{2}\left(v^{2}-\lambda^{2}\right) \cdot \frac{1}{v-\lambda}=\frac{1}{2}(v+\lambda) . \tag{5.11.3}
\end{equation*}
$$

NOTE: 6. This result, derived by integration from the definition of the mean, could also be obtained using the symmetry of the continuous uniform p.d.f. and the fact that its centre is at $1 / 2(v+\lambda)$, half way along the interval where the p.d.f. is non-zero.

- By symmetry, $1 / 2(v+\lambda)$ is also the median of the continuous uniform distribution.

4. S.d.: To find the standard deviation of the continuous uniform distribution, we must first find $E\left(Y^{2}\right)$ as follows:
5. S.d.:
(cont.)

$$
\begin{equation*}
E\left(Y^{2}\right)=\int_{-\infty}^{\infty} y^{2} \cdot f(y) d y=\int_{\lambda}^{v} y^{2} \cdot \frac{1}{v-\lambda} d y=\frac{1}{3}\left(v^{3}-\lambda^{3}\right) \cdot \frac{1}{v-\lambda}=\frac{1}{3}\left(v^{2}+v \lambda+\lambda^{2}\right) ; \tag{5.11.5}
\end{equation*}
$$

hence: $\quad \sigma \equiv \sigma_{Y} \equiv$ s.d. $(Y)=\sqrt{E[Y-E(Y)]^{2}} \equiv \sqrt{E\left(Y^{2}\right)-[E(Y)]^{2}}=\frac{1}{2 \sqrt{3}}(v-\lambda)$.
NOTES: 7. We see from equations (5.11.3) overleaf and (5.11.5) above for $E(Y)$ and $s . d .(Y)$ that the parameters, v and λ, of the continuous uniform distribution determine both its mean and standard devation; however, it is only our choice of parameterization for the continuous uniform distribution that makes its mean and standard deviation appear to be dependent. Like the normal distribution, its values for centre and spread are unrelated.
8. The variance of the continuous uniform distribution is $\frac{1}{12}(v-\lambda)^{2}$.
5. Probability: If the random variable $Y \sim U(\lambda, v]$, then:
$\operatorname{Pr}(\mathrm{a}<Y \leq \mathrm{b})=\int_{\mathrm{a}}^{\mathrm{b}} f(y) d y=\int_{\mathrm{a}}^{\mathrm{b}} \frac{1}{v-\lambda} d y=\frac{\mathrm{b}-\mathrm{a}}{v-\lambda}=\frac{\text { length of interval }(\mathrm{a}, \mathrm{b}]}{\text { length of interval }(\lambda, v \mathrm{]}} ;$
$e . g$., if $(\lambda, v]$ is $(-1,9]$, the probability Y lies in any interval of length 3 within $(\lambda, v]$ is $\frac{3}{10}=0.3$.
If (a, b] lies partly outside $(\lambda, v], \operatorname{Pr}(\mathrm{a}<Y \leq \mathrm{b})$ is the length of the interval $(\mathrm{a}, \mathrm{b}]$ which is inside $(\lambda, v]$,
divided by the length of the interval $(\lambda, v]$.
e.g., if $(\lambda, v]$ is $(-12,-6]$ and $(\mathrm{a}, \mathrm{b}]$ is $(-9,0]$,
$\operatorname{Pr}(-9<Y \leq 0) \equiv \operatorname{Pr}(-9<Y \leq-6)=\frac{1}{2} \quad[$ because $\operatorname{Pr}(-6<Y \leq 0)=0]$.

NOTES: 9. The expression (5.11.6) above for $\operatorname{Pr}(\mathrm{a}<Y \leq \mathrm{b})$ for the $U(\lambda, v]$ distribution shows its interquartile range (IQR) is $\frac{1}{2}(v-\lambda)$ [which is about 70% larger than the standard deviation].
10. The expression (5.11.6) above for $\operatorname{Pr}(\mathrm{a}<Y \leq \mathrm{b})$, together with the results (5.11.3) and (5.11.5) for the mean and standard deviation of the continuous uniform distribution on $(\lambda, v$], show that the interval $\mu \pm \sigma$ contains $1 / \sqrt{3} \simeq 0.5774$ (i.e., about 58%) of the area under this p.d.f.

- This result reminds us the 68-95-99.7 rule (e.g., see Figure 5.3) is only for the normal distribution.

6. APPENDIX: The Continuous Uniform Distribution on $(0,1]$

A notable special case of the $U(\lambda, v]$ distribution is the $U(0,1]$ distribution; its p.d.f. and c.d.f., for the random variable Z, are:

$$
F(z)=\left\{\begin{array}{lll}
0 & ; & z \leq 0 \tag{5.11.8}\\
\mathrm{z} & ; & 0<z \leq 1 \\
1 & ; & z>1
\end{array}\right.
$$

The mean and the median of the $U(0,1]$ distribution are both $\frac{1}{2}$, its standard deviation is $\frac{1}{2 \sqrt{3}}$ and its IQR is $\frac{1}{2}$.

1 In Note 3 overleaf on page 5.29 , justify the statement that the area under the p.d.f. of the $U(\lambda, v]$ distribution is 1 .
2 Referring to Note 5 overleaf on page 5.29 , obtain the c.d.f. of the $U(\lambda, v]$ distribution from its p.d.f. by integration, and its p.d.f. from its c.d.f. by differentiation.

Referring to Note 6 overleaf on page 5.29 , obtain the result (5.11.4) for the median of the $U(\lambda, v]$ distribution from both its p.d.f. and its c.d.f.

4 For the result (5.11.5) given above for the standard deviation of the $U(\lambda, v]$ distribution, show the details of the algebraic manipulations for $E\left(Y^{2}\right)$ and s.d. (Y).

5 Verify the result (5.11.6) for $\operatorname{Pr}(\mathrm{a}<Y \leq \mathrm{b})$ given above for the $U(\lambda, v$] distribution.
6 In Note 9 above, verify the result (5.11.7) for the IQR of the $U(\lambda, v$] distribution.
Referring to Note 10 above, find the areas under the p.d.f. of the $U(\lambda, v]$ distribution in the intervals $\mu \pm 2 \sigma$ and $\mu \pm 3 \sigma$.

- Compare and contrast the results for all three intervals with those for the normal distribution.

8 Verify the results (5.11.8) given above in the Appendix for the mean and standard deviation of the $U(0,1]$ distribution.

