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Figure 5.1. MOD ELL ING THE SHAPE OF DAT A DISTRIBUTIONS

Figure s4.1 and 4.8 of thes eCourse Mat e ria lsdealt wit h nume rical measure sof the lo cation and thevariation of a dat aset;
we now tur n to a model (or idealiz ation) for oneshapeof a dat adist rib u tio n.

1. Normal Distri butions
Althou gh a large number of shapes is possib le fo r the

dist rib u tio n of a dat aset, in practic e it is obs erved(by ex-
amining suitable his t ogr ams, for exa mple) that many dis tri-
butio ns fall into one of a  lim ited number of cat egor ies. A co mmon shape has a cen -
tral peak wit h a rou ghly sym met rical falling away on eit her sid e – for ins tanc e, see
Figure s 2.8b (paper thi cknes s re sul ts) and 2.9b (coin weights). A math ematical
model (o r idea lization) of this shape is the normal (pr obabi lity) dis tribution, whose
pr obabi lity den sity function (o r p.d.f.) is equ ation (5.1.1) at the rig ht above. The graph
of this fun ction is shaped like the cross -se ction of an inv erted bel l – in many tex ts, it
is des cribed as asymmetrica l bell -shaped cur ve. The equ ation has two para m eters,
µ andσ, whi c h(in d ependently) det e rmine the posit ion of its cent re (µ) and the widt h
of its peak (σ – the larger σ, thewider the peak). The parameter µ is called the meanof the dist rib u tio n andσ is its (proba-
bilis ti c) sta n dar d devi ation. The value ofµ is the cent re of the graph – they-value of its hig hest poi nt; the value ofσ can be
roug hly assesse dby eye becau se it is the dist anc efr om the mean to eit her poi nt of inflection. As the diag ram indicates, the
part of the nor mal p.d.f. we typically se ecove rs an int e rval of about 3σ eit her sid eof µ or about 6σ in tot al.

Probabilit ies are es tim ated in practic e by pr oportions; becau se pro por tio ns are repre sent e dby bar area sin histogr ams,
and becau se we model dat ahis t ogr ams by probability dis tributio ns, it is areaun d er a p.d.f. that repre sents probability.
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2. Var iat es and Ran dom Var iable s
A variate is a charact e ris ti c associat e dwith each ele ment of a popula t ion – variat es may be ca tegorica l (li ke col our or sex

or marit al status) but our conc e rn here is wit h variat es (li ke lengt h or weight) that take numer ica l value s. In dat a-base d
inve s tig a t i ng, variat evalue sare usually mea s ure d fo r a sa m p leof ele ments selected from an appro priat estudy popula t ion; if
the sample con tains n ele ments, we den ote thes e(r espon se) variat e value sby sub scr ipt e dlowe r-case Roman letters y1, y2, y3,
....., yn (o r, more compactly, yj, j =1, 2, ..... n).

When we use a probability dis tributio n to model the shape of the dist rib u tio n of a variat e, the variable in the equ ation of
the model is called ara n dom variable; for exa mple, y in the nor mal p.d.f. (5.1.1) abov e is (the value of) a nor mal random
variable. We are famili ar wit h the ter m‘v ariable’ f rom alg ebra and calculu s; the addit ion of the adj ectiv e ra n dom fo r a
variable in a probability dis tributio n can ser ve to rem ind us that, by the act of model ling, we hav easse rted there is a proba -
bility associat e dwith each value the variable takes on; thes eprobabilit ies come, in par t, fr om the meth od of sel e cting the
elem e n t swhich compris ethe sample and whi c hyi eld the data . It is the task of thePl an fo r an inv estig a t ion (proper selecting
andproper mea s uring, etc.) to provi de a rea son able basis for regarding variat evalue sas value sof a random variable.

As sum marized in Ttable 5.1.1 at the rig ht, the usual not ation con -
ve n tio n is to use a (subs cript e d) lo wer-caseit ali c le tter y (o r yj) for
the value(s) of a random variable and anupper-caseit ali c le tter Y
(o r Yj ) for the random variable(s). When the random variable Y ha s
anormal dist rib u tio n with parameters µ andσ, we write symboli c a l ly
Y∼ N(µ,σ), shown as equ ation (5.1. 2) abov e. Lett e rs for random variable sare usually chosen from near theen dof the alphabet,
subj ect to the cave at, to assis t proble msolv ing, of usi ngle tters whose identity is easy to rem ember – for ins tanc e, W fo r weight,
L fo r le ngt h, T fo r time; letters near thebegi nni ng of the alphabet are usually kep tfo r even t s(s ee Par t7 of the Cou rse Mat e ria ls).

The charact e ris ti c of a random variable com monly of int e rest is apr obabi lity; for ins tanc e, the probability the random vari-
ableYis gre ater than 4 [i.e., symboli c a l ly, Pr(Y>4)], or the probability the random variable Z take sthe valuez [i.e., Pr(Z =z)] .

Ta ble 5.1.1
Data Ro man Mo del It ali c

Variat evalue yor yj Random variable value y or yj

Random variable Y or Yj

3. Att r ibute san d Mo del Par ameters: Est imating
The focus of Section 2 abov eis onin dividua l elem e n t sand their

variat es, whose value swe model as the value sof random variable s.
In this Section 3, we focus on threegr oups of ele ments:

* the target popu lation: the group of ele ments to whi c hthe inv estig a tor(s)
wa n tAnswe r(s) to the Que s tion(s) to apply ;

* thestudy popu lation: agr oup of ele mentsav ail able to an inv estig a t ion;

* thesa m p le: the group of ele ments selected from the study popula t ion andactually use din an inv estig a t ion.

Target
popula t ion

Study
popula t ion

Sa mple Sa mple
(t rue value s) (m e asure dvalue s)
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A schema show ing thes ethre egr oups, inclu ding the distin ction bet ween true and measure dvariat evalue s ,is giv en ove r leaf on pag e
5. 3at the lowe rright; the ver tical lin e in the middle of this schema reminds us the sample is asubset of the study popula t ion.

As sociat e dwith thes ethre egr oups of ele ments are:

* attr ibutes: quantit ies defin ed as a fun ction of the respons e(a n d, perhaps, exp lanato ry) variat es ove r thegr oupof ele ments.
Fa m ili ar (si mple) att rib u t es are ave r age s ,propor tio ns, medians and standard dev iation s. The impor tanc eof attributes is that:

Answe r(s) to Que s tion s(s) are usually phrase din ter ms of att rib u t evalue s ,as illust r ated by the newsp aper article sreprint e d
in Par t4 of the Cou rse Mat e ria ls;
fiv e of our six cat egor ies of er ror are defi ned in ter ms of att rib u t es.

A (probability) model para m eter is a con stant (us u ally den oted by a Gr e e kle tter) in a (probability) model that re prese nts a
study popula t ion attr ibute. Model-base dmethods of analys is in statis ti cs use dat afr om asample to es tim ate value sof model
parameters whi c h then repre sent rea son able value sfo r study popula t ion attributes and, henc e, for Answe r(s) to Que s tion(s) of
in terest. We dis tinguis h:

* apoin t estim ate: asi ngl evalue for an estim ate; AN D:

* an in ter val estim ate: an in ter val of value sfo r an estim ate.
Fo r a sample of (re spons e) variat evalue swhere the nor mal dist rib u-
tion is an appro priat emodel, the meanµ is estim ated by the sample
av erage y− andσ is estim ated by the sample standard dev iation s –
thes eare bot h poin t estim ates. We can think graphically of the pro -
cess of estim ating µ by y− andσ by s as approxi mating the his t ogr am
of a dat aset by the nor mal p.d.f. that has the same‘c ent re’ and the
same ‘widt h’ as the his t ogr am .

All mathem ati c a l models are idealiz ation sand all are produ cts of
the int ellect and the imagi nation. It may be hel pful to think of the model as a li nk between the sa m p leand the study popu-
la tion; api cto ria l repre sent ation of this idea is shown at the rig ht above.

The matt e rs dis cus s ed in this Section 3 (and in the Appendix on the last sid eof the Fig ure, pag e5.6) look ahea dto the use
of probability model sin statis ti cs, whi c h is pursued in Par t 6; our immedi ate conc e rn in Par t 5 is to become famili ar wit h the
proper tie sof con tin uou sprobability model s .

Re al Wor ld Imaginat ion

ST UDY
POPULATI ON

SAMPLE

MODE L

Model
parameters

repre sent study
popula t ion
att rib u t es

Model
parameters are
estim ated from

sample dat a

NO TE: 1. To maint ain the distin ction bet ween the real world (repre sent e dby the data) and the model , we use different words
– ‘av erage’ and ’mean’ –  for thei r mea s ure sof location; unfor tun ately, we do not have this optio n fo r the two
mea s ure s of variation, whi c h are bot h called ‘st andard dev iation.’ In the early stage sof learning statis ti cs, it is
help f ul to, at lea stin our min ds, add the respectiv e adje ctive s‘d ata’ and ‘probabilis ti c’ to dis tinguis h the two uses of
st andard dev iation. This ter-
minology is sum marized
in Table 5.1. 2at the rig ht.

Ta ble 5.1.2: At tri bute Real Wor ld Model

Location Ave r age Mean
Variation (Data) standard dev iation (Probabilis ti c) standard dev iation

4. Using the Normal Distri bution
To be able to use the nor mal dist rib u tio n, we need two skills.

* First, we learn to look up ata b leof the standard nor mal dist ri-
butio n [d e not e dN(0,1), whose p.d.f. is giv en as equ ation (5.1. 3)
at the rig ht]; such a table fur nis hes us wit h area swhich we use aspr obabi lit ies
(s ee Fig ure 5.4 of the Cou rse Mat e ria ls , and also pag es T-2, T-3, the last lin e of
page T-11 and the front flyleaf of the tex t).

* Se con d, we learn about sta n dar dizingso we
can obtain probabilit ies for theN(0,1)] dist ri-
butio n ; if Y∼ N(µ,σ), the res ult (5.1.4) at the rig ht above – in whi c h we subtra ct the mean anddi vide by the sta n dar d
devi ation – hol ds; we then can write equ ation (5.1. 5), in whi c h we hav e st andardized to conve rt a probability for the
N(µ,σ) dis tributio n to the equ ivalent probability for the N(0,1) dist rib u tio n. The letter Z is com monly use dfo r a random
variable wit h the standard nor mal dist rib u tio n.

A num erical illust r ation of equation (5.1. 5) is: if Y∼ N(8, 6) andZ ∼ N(0,1), then:

Pr(Y >11) = Pr(Y− µ
σ > 11− 8

6 ) = Pr[N(0,1) > 0. 5] = Pr[Z > 0. 5];
this probability is repre sent e dby the are aun d er the standard nor mal p.d.f. to therigh t
of 0.5, shown with soli d sh ading in the diag ram at the rig ht. We learn in Fig ure 5.3
how to look up this probability from theN(0,1) table in Fig ure 5.4.

f(z)

z

N(0, 1)

0. 5

−3 −2 −1 0 1 2 3

f(z) = 1 e− 1
2
z2

√2π ; −∞ < z< ∞

Y− µ
σ ∼ N(0,1)

Pr(Y >y) = Pr(Y− µ
σ > y−µ

σ ) = Pr[N(0,1) > y−µ
σ ]

-----(5.1. 3)

-----(5.1.4)

-----(5.1. 5)
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Figure 5.1. MOD ELL ING THE SHAPE OF DAT A DISTRIBUTIONS (continue d 1)

5. Benefits of Using a Normal Model
Three ben efit s aris efr om usi ngthe nor mal dist rib u tio n.

• First, it provi des adata summar y – ins tea dof hav ing to wor k with adata set, we can conve y a number (but usually not
all) of its essentia l charact e ris ti cs by sayi ng merely that the data has anormal dis tribution wit h a speci fied mea nand a
sp eci fied standar d devi ation. This can be a sig n ific a n tconv enienc e, par ticularly in the case of large dat asets. [It is unde r-
stood, of cou rse, that the nor mality is only appr oximate; als o, the location and variation parameters of the nor mal dist ri-
butio n can take on their value sin dep enden tly – that is, the value of one does not influe n ce the value of the othe r.]

• Se con d, we can rea dily co mbi ne no rma l dist rib u tio ns; the random variable repre sent e dby any li near combi nation of nor-
ma l random variable sha sa normal dist rib u tio n, provi ded the component random variable sarepr obabi lis tically indep en-
dent.. The lin ear combin ation sof gre atest relev a n ce to statis ti c a lmethods of dat aanalys is are sums, di ffere nces andaver -
ag es. This matt e ris taken up in Fig ure 5.1 4.

• Thir d, the dist rib u tio n of a lin ear combin ation (su ch as a sum or an ave r age) of non-nor mal random variable s tends to a
no rma l dist rib u tio n. If the re is an in finite number of components, the dist rib u tio n of the combin ation isexactl y no rma l, a
theoretical res ult known as theCentra l Limit Theorem. In pr act i ce, the re are only finit e co mbin ation s, whose dis tributio ns
therefore exhibit only appr oximate no rma lity (unle ss the components are themselves nor mally dis tributed). How clo se the
ap proxi mation is to exact no rma lity depends on bot h the number of components in the lin ear combin ation and on the shape
of their dist rib u tio n(s) – the more symmetrica l it is, the sma l ler the number of components needed for rea son able
ap proxi mat eno rma lity. This thi rd matt e ris a cent r althem eof Fig ure 5.1 6(a n dso m ela ter Par ts) of the Cou rse Mat e ria ls.

It is int e resting to specula te on the rea son(s) beh i nd the mat hem ati c a l and practical ben efit s that accrue from nor mal
modelling. It may be only coi nci denc ethat the mat hem ati cs of nor mal theor y wo rks so conve n iently in many ins tanc es(a n d
not only in statis ti cs) . Alter native ly, e= 2.7 1 828 18284 ....is a quantity that, in a sense, nature br ing sto our att entio n as, for
ex ample, the lim it as n→ ∞, of (1+1/n)n. It is the refore pos sib le that the wid e ap plicability of nor mal dist rib u tio n theory is a
refle ction of the harmony that res ult s when the mat hem ati cs we emplo y co rre sponds pro perly wit h so m easpect(s) of the
un d erlyi ng str ucture of the phy sical world. The matt e ris highlig hted in a quotation from Gab riel Lip pma nn, the Fre n c h1908
No bel Lau r eat e in phy sics: Everybody bel ieves in the [normal appr oximation] , th e experimenter s beca use they thin k it is a
math ematical theorem, the mathematicia n sbeca use they thin k it is an exper imenta l fa ct. Paradox ically, both beli efs are cor-
re ct, whi c h reminds us of other seemingly con tradicto ry aspects of exper ienc e, like the wav e-par ticle duali ty of ele ctromag -
neti c radiation such as lig ht.

6. Using Ran dom Var iable sin Pro bab ility
We use random variable sto descr ibe (or model) qu antit ies that take on different value saccording to chanc e; one crit e rio n

we use to decid ewhich probability model is appro priat ein a par ticular situation is the degree of agreement bet ween theshape
of the p.d.f. of the model and the shape of the dist rib u tio n of the data (as assesse dfr om a his t ogr am ,fo r ex ample) . The
stochast i cbehaviour of respons evariat es in our models arises becau se of eq uiprobable (o r ra n dom) se lec ting of ele ments from
the relev a n tpopula t ion. Someinfo rma ldes criptio ns of what is meant by the ter m‘r andom variable’ (or its value) are:

* a quantity whi c htake son different real value saccording to chanc e;

* a num erical outco m eof a stocha stic phen omen on;

* a charact e ris ti c which change sfr om ele ment to ele ment in a sample obtaine dby equ iprobable selecting.

In addit ion to our conc e rn wit h dist rib u tio n shape in choosing an appro priat eprobability model , we usually als o ne e dto take
accou nt of:
−− themeanof the dist rib u tio n (o r of the random variable, Y say) , den otedµY or E(Y);
−− thesta n dar d devi ation of the dist rib u tio n, den otedσY or s. d.(Y).

Fo rma l ly, a ra n dom variable is a fun ction whi c hassig ns a real number to each poi nt of the sample space (S); i.e., a random
variable is a fun ction wit h domain S and range RR – it is a map ping from the sample space to the real numbers.

7. Distr ibu tions Other Than the Normal Distri bution
Althou gh the nor mal dist rib u tio n is wid ely use das a model for dat adist rib u tio ns, othe rus eful model sare:

• the uniform dis tribution (w hich repre sents the case of equ iprobable value s ,as in equ iprobable selecting, and thu sha sa
p.d.f. whi c his re cta ngu lar) – see Fig ure 5.11;

• theexponent ial dis tribution (w hos ep.d.f. is like an expon entia l de cay, and is use dto model failure tim e s) – see Fig ure 5.1 2;

• the log normal dis tribution (w here the logar ithm of the random variable has a normal dist rib u tio n ; it is use dto model
biol ogical charact e ris ti cs whi c hhave a lowe rcu t-off at zero but which are not, at lea stin theor y, lim ited in thehigh value s
they can take on) .
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In particular met hods of dat aanalys is, as wel l as thenormal dist rib u tio n, we lat e rus eof thet,K andχ2 dist rib u tio ns (cf. Fig ure s
6.4, 6.6 and 12. 25of the Cou rse Mat e ria lsand the tex tpage T-11).

8. Appendix: Re sponse Models
Equation (5.1. 2) sh ows the usual not ation inpr obabi lity fo r st ating the

dist rib u tio n of a random variable, Y in this inst anc e. In sta tis tics, the
eq uiva len tex pre ssi on (5.1.6) at the rig ht, called aresp onse model, is more
conv enient. Its for msugg ests we think of twoco mponents mak ing up the
random variable Y which , un d er an appro priat ePlan for an inv estig a t ion [in cludi ng equiprobable selecting (as ‘EPS’ at the end
of the model statement(5.1.6) reminds us)], is use dto model the value sof a respons evariat eof an ele ment:

Y∼ N(µ,σ)

Y= µ +R, R∼ N(0,σ), EPS

-----(5.1. 2)

-----(5.1.6)

* astructura l co mponentwhich (in gene r al) models the effect on the respons evariat eof specific exp lanato ry variat e(s);
−− in the case of equ ation (5.1.6), whi c h is thesi m p lest re spons emodel, the structur al component is merely a con stant (µ)

and con tains no exp licit exp lanato ry variat es;

* astochast i cco mponentwhich model svariation abou t the str uctural component;
−− in equation (5.1.6), the variation of Y abou t the str uctural component of the model (µ in this inst anc e) is model led by a

normal dist rib u tio n with mean 0 and standard dev iationσ.
Us ing the respons emodel (5.1.6) to find anin ter val estim ate for each of the model parameters µ andσ, repre senting the study
popula t ionaver age re spons eY−− and respons e(d ata) sta n dar d devi ation S−, is pursued in Par t6 of the Cou rse Mat e ria ls.

NO TES: 2. The foregoi ng dis cus sio n us esthe word ‘model’ i n two senses:

• the div isi on of Y in t oa str uctural component and a stocha stic component;

• the nor mal model for the stocha stic component.
Only these con dof thes emodels involves probability.

3. The use of a pr obabi lity dist rib u tio n (he re, the normal dist rib u tio n) to model the stocha stic component of a
re spons emodel illust r ates one rea son why probability is useful in statis ti cs.

4. Equ ation (5.1.6) can be ex-
tende d, as shown in equ ation
(5.1.7) at the rig ht, to model respons evariat evalue sfr om a sample of n ele ments selected equ iprobably from a
study popula t ion; like the requi rement for equ iprobable selecting, the model ling assump tion of pr obabi lis tic
in dep enden ceof theYj ’s has implication sfo r Plan components whi c haddres show the data are to be col lect e d.

Yj = µ +Rj, j =1, 2, ....,n, Rj ∼ N(0,σ), independent, EPS -----(5.1.7)

5. Thefo rmal defin ition sof the symbols in equation (5.1.7) are:
Yj is a random variable whose dis tributio n repre sents the pos sib le value sof the measure dre spons evariat e

fo r the jth ele ment in the sample of n ele ments selected from the study popula t ion,
if the selecting and measuring processes were to be repeated ove rand ove r.

µ is a model parameter (called themean) whi c hrepre sents theaver ageof the measure dre spons evariat e
of the ele ments of the study popula t ion.

Rj is a random variable (called the resi dua l) whos edist rib u tio n repre sents the pos sib ledi ffere nces,
fr om the structur al component of the model , of the measure dvalue of the respons evariat e
fo r the jth ele ment in the sample of n ele ments selected from the study popula t ion,
if the selecting and measuring processes were to be repeated ove rand ove r.

σ the (probabilis ti c) sta n dar d devi ation of the nor mal model for the dis tributio n of the residu al, is a
model parameter which repre sents the (data) sta n dar d devi ation of the measure dre spons evariat eof
the ele ments of the study popula t ion; this standard dev iation (and, henc e, σ) qu ant ifiesthevariation
of the measure dre spons evariat eof the ele ments of the study popula t ion – as this variation increa s es,
so does the study popula t ion (data) standard dev iation (and, henc e, so doesσ).

6. Another way of writing the respons emodel (5.1.6) is equa -
tion (5.1.8), whe re the model for R is now sta n dar d no rma l. Y= µ +σR, R∼ N(0,1), EPS -----(5.1.8)

SOURCE: The Gab rielle Lip pma nn quotation in Section 5 on the thi rd sid eof the Fig ure is taken from Fre e dma n, D., Pis a n i,
R. and R. Pur ves: St atist i cs. First Edition, W. W. Nor ton & Company, New Yor k, 1980, pag e275.

George E.P. Box , a wel l-know n st atis ti cia n, is quoted as sayi ng: "All model sare wrong, som eare use ful". Giv e an exp lana -
tion, whi c hcoul d be unde rstood by an int ellig ent but non -technical audie n ce, of what Dr. Box meant.
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