Assignment 3

- A3 1. Text Exercise 1.69 (page 85): *Many software packages have "random number generators" that produce* [*We* use the terminology "equiprobable digit generator."]
- A3-2. (a) If the random variable $Y \sim U(\lambda, v)$, find the probability that *Y* lies within 1, within 2 and within 3 s.d.s of its mean. (b) If the random variable $T \sim Exp(\theta)$, find the probability that *T* lies within 1, within 2 and within 3 s.d.s of its mean.
 - (c) Compare and contrast the values you obtain in (a) and (b) with those for the normal distribution in Figure 5.3 of the Course Materials.
- A3-3. If the random variable $T \sim Exp(\theta)$, predict whether the *median* will be less than, equal to, or greater than the mean; explain your reasoning briefly. Then find the median in terms of θ .
- A3-4. Suppose that the time from treatment to recurrence of a certain type of cancer can be modelled by an exponential distribution with mean θ . Find the value of θ such that there is a probability of 40% of a recurrence of the cancer within 504 days.

A3 – 5.	Suppose that the lifetime, <i>T</i> , of a particular type of light bulb can be modelled	23	261	87	7	120	14
	by an exponential distribution with mean θ days. The lifetimes (in days) obser-	62	47	225	71	247	21
	ved for 30 bulbs selected equiprobably ("at random") are shown at the right.	42	20	5	12	120	11
	The average of these 30 lifetimes, $\overline{t} = 59.63$ days, can be taken as an estimate of	3	14	71	11	14	11
	the parameter θ .	16	90	1	16	52	95

(a) On the basis of the exponential model, evaluate:

 $\Pr(0 \le T \le 40); \qquad \Pr(40 < T \le 100); \qquad \Pr(100 < T \le 200); \qquad \Pr(T > 200).$

Compare the expected frequencies with the observed frequencies in these four intervals; comment briefly on their agreement.

- (b) Find values for *a*, *b*, *c* such that *each* of the intervals (0, *a*), (*a*, *b*), (*b*, *c*), (*c*, ∞) has expected frequency 7.5, and find the corresponding observed frequencies. Does the exponential model fit the data satisfactorily? Explain briefly.
- A3-6. An investigation of working couples measures the income *H* of the husband and the income *W* of the wife in a large number of couples in which both partners are employed. Suppose that you knew the means μ_H and μ_W and the standard deviations σ_H and σ_W of the distributions used to model the two income variables in the population. If it is desired to model couple *total* income in the population, explain whether it is reasonable to take:
 - (a) the mean of the distribution used to model H+W to be $\mu_H+\mu_W$;
 - (b) the standard deviation of the distribution used to model H+W to be $\sqrt{\sigma_{H}^{2}+\sigma_{W}^{2}}$.
- A3-7. The weights of the eggs produced by a certain breed of hen can be modelled by a normal distribution with a mean of 65 grams and a standard deviation of 5 grams.
 - (a) Explain briefly whether a carton containing a dozen eggs can reasonably be considered to be equivalent to a sample of size n = 12 eggs selected equiprobably from the population of all eggs produced by this breed of hen.
 - (b) Assuming that the assumption of equiprobable selecting (EPS) *is* justified, find the probability that the total weight of the eggs in a carton selected equiprobably is between 750 and 825 grams.
 - (c) In light of your answer to (a), outline whether your probability in (b) is likely to be clearly below, close to, or clearly above the *true* probability.
- A3-8. Text Exercise 5.71 (pages 429-430): A machine fastens plastic screw-on caps on to containers of motor oil.
- A3-9. Text Exercise 5.38 (pages 411-412): The design of an electronic circuit calls for a 100-ohm resistor

A3-11. Text Exercise 5.27 (page 409): A laboratory weighs filters from a coal mine to measure the amount of dust

A3-10. Text Exercise 5.30 (page 409): Judy's doctor is concerned that she may suffer from hypokalemia

A3-12. A sugar distributor filling 2 kg bags of sugar claims that her filling machine delivers 2.02 kg, on average, with a standard deviation of 0.01 kg. A weights-and-measures inspector selects equiprobably four 2-kg bags of the sugar, pools their contents, and finds 7.99 kg. The distributor says: Oh well, only about one bag in forty will be underweight. The inspector says: I understand that, but my observation does not agree with your filling description. Explain briefly the statistical issues involved in these two statements; your answers should include relevant probability calculations.

A3-13. Text Exercise 5.32 (page 410): A company that owns and services a fleet of cars for its sales force [but use $\mu = 85,000$ km, $\sigma = 7,250$ km in (a) and $\overline{y} = 79,800$ km in (b)].

A3-14. Text Exercise 5.35 (page 411): The level of nitrogen oxides (NOX) in the exhaust of a particular car model

- A3-15. The number of traffic accidents per week at a busy intersection varies with average 2.2 and standard deviation 1.4; the data here are *discrete* so that an appropriate probability model would *not* be a normal distribution.
 - (a) Let the random variable \overline{Y} represent the *average* number of accidents per week at the intersection during a year (52 weeks). What is the approximate distribution of \overline{Y} ?
 - (b) Find the approximate probability that \overline{Y} is fewer than 2.
 - (c) Find the approximate probability that the *total* number of accidents at the intersection in a year is fewer than 100.

A3 – 16. Text Exercise 5.74 (page 430): In an experiment on learning foreign languages, researchers studied

1995-04-20