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Risk Measures

A risk measure ρ : X → R = (−∞,∞]

I Risks are modelled by random losses in a specified period

• e.g. 10d in Basel III & IV market risk

I X is a convex cone of rvs in some probability space (Ω,F ,P)

Roles of risk measures

I regulatory capital calculation ← our main interpretation

I management, optimization and decision making

I performance analysis and capital allocation

I risk pricing
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General Question

Question

What is a “good” risk measure for regulatory capital calculation?

I Regulator’s and firm manager’s perspectives can be different

or even conflicting

• well-being of the society versus interest of the shareholders

• systemic risk in an economy versus risk of a single firm
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Value-at-Risk and Expected Shortfall

Value-at-Risk (VaR) at level p ∈ (0, 1)

VaRp : L0 → R,

VaRp(X ) = F−1X (p) = inf{x ∈ R : P(X ≤ x) ≥ p}.

Expected Shortfall (ES/TVaR/CVaR/AVaR) at level p ∈ (0, 1)

ESp : L0 → R,

ESp(X ) =
1

1− p

∫ 1

p
VaRq(X )dq =

(FX cont.)
E [X |X > VaRp(X )] .

FX above is the distribution function of X .
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Value-at-Risk and Expected Shortfall
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Value-at-Risk and Expected Shortfall

The ongoing co-existence of VaR and ES:

I Basel IV - both

I Solvency II - VaR

I Swiss Solvency Test - ES
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Academic Inputs

I ES is generally advocated by academia for desirable properties

in the past two decades; in particular,

• subadditivity or coherence (Artzner-Delbaen-Eber-Heath’99)

• convex optimization properties (Rockafellar-Uryasev’00)

I Some other examples of impact from academic research

• Gneiting’11: backtesting ES is unclear, whereas backtesting

VaR is straightforward

• Cont-Deguest-Scandolo’10: ES is not robust, whereas VaR is
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VaR versus ES

BCBS Consultative Document, May 2012, Page 41, Question 8:

“What are the likely constraints with moving from VaR to ES,

including any challenges in delivering robust backtesting, and how

might these be best overcome?”
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VaR versus ES

Table copied from IAIS Consultation Document Dec 2014, page 42
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Model Uncertainty

VaR and ES are law-based (thus statistical risk functionals):

ρ(X ) = ρ(Y ) if X
d
=P Y (equal in distribution under P)

I The calculation requires knowledge of the distribution of a risk

I This may never be the exact case: model uncertainty

• statistical error

• computational error

• modeling error

• conceptual error

I Models are at most “approximately correct” ⇒ robustness!

Ruodu Wang (wang@uwaterloo.ca) Robustness in the optimization of risk measures 12/52

wang@uwaterloo.ca


Risk measures Classic robustness Robustness in optimization Representative problems DRO Conclusion

Robust Statistics

Statistical robustness addresses the question of “what if the data is

compromised with small error?”

I Originally robustness is defined on estimators (estimation

procedures)

I Would the estimation be ruined if the underlying model is

compromised?

• e.g. an outlier is added to the sample

Ruodu Wang (wang@uwaterloo.ca) Robustness in the optimization of risk measures 13/52

wang@uwaterloo.ca


Risk measures Classic robustness Robustness in optimization Representative problems DRO Conclusion

VaR and ES Robustness
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VaR and ES Robustness

I Non-robustness of VaRp only happens if the quantile has a

gap at p

I Is this situation relevant for risk management practice?

• one must be very unlucky to hit precisely where it has a gap ...
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Robust Statistics

Classic qualitative robustness:

I Hampel’71: the robustness of a consistent estimator of T is

equivalent to the continuity of T with respect to underlying

distributions (both with respect to the same metric)

I When we talk about the robustness of a statistical functional,

(Huber-Hampel’s) robustness typically refers to continuity

with respect to some metric.

I (Pseudo-)metrics: πq = Lq (q ≥ 1), π∞ = L∞, πW = Lévy,

...

General reference: Huber-Ronchetti’07
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Robustness of Risk Measures

Consider the continuity of ρ : X → R.

I A strong sense of continuity is w.r.t. weak convergence.

• Xn → X in distribution ⇒ ρ(Xn)→ ρ(X ).

I Quite restrictive

I Practitioners like weak convergence (e.g. estimation,

simulation)
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Robustness of Risk Measures

I With respect to weak convergence p ∈ (0, 1):

• VaRp is continuous at distributions whose quantile is

continuous at p. VaRp is argued as being almost robust.

• ESp is not continuous for any X ⊃ L∞

I ESp is continuous w.r.t. some other (stronger) metric, e.g.

πq (or the Wasserstein-Lq metric)
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Range-Value-at-Risk (RVaR)

A two-parameter family of risk measures, for α, β > 0, α + β < 1,

RVaRα,β(X ) =
1

β

∫ α+β

α
VaRγ(X )dγ, X ∈ X .

I RVaR bridges the gap between VaR and ES (limiting cases).

I RVaR is continuous w.r.t. weak convergence

I RVaR is not convex or coherent

I Practically:

RVaRα,β(X ) =
(FX cont.)

E[X |VaRα(X ) < X ≤ VaRα+β(X )].

First proposed by Cont-Deguest-Scandolo’10; name in W.-Bignozzi-Tsanakas’15
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Range-Value-at-Risk (RVaR)

6

-
10

1

γ

g(γ)

α α+ β

•

Distortion functions of VaRα (red), ESα (green) and RVaRα,β (blue)

in the form of

∫ 1

0
VaRγ(X )dg(γ)
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Classic Robustness

The general perception of robustness, from worst to best:

ES ≺ VaR ≺ RVaR

From weak to strong:

I Continuity w.r.t. π∞: all monetary risk measures

I Continuity w.r.t. πq, q ≥ 1: finite convex risk measures on Lq,

e.g. ESp

I Continuity w.r.t. weak/a.s./P convergence: e.g. RVaRα,β,

VaRp (almost); no convex risk measure satisfies this

Bäuerle-Müller’06, Cont-Deguest-Scandolo’10, Kou-Peng-Heyde’13
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Robustness of Risk Measures

Is robustness w.r.t. weak convergence necessarily a good thing?

I Toy example.

• Let Xn = n21{U≤1/n} for some U[0,1] random variable U

(e.g. a credit default risk). Clearly Xn → 0 a.s. but Xn is

getting more “dangerous” in many senses. If ρ preserves weak

convergence, then

ρ(Xn)→ ρ(0) (= 0 typically).

• VaR0.999(X10000) = 0

• ES0.999(X10000) = 107

I May be reasonable for internal management; not so much for

regulation.
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One-in-ten-thousand Event

On the other hand,

I the 1/10,000-event-type risks are very difficult to capture

statistically (accuracy is impossible)

UK House of Lords/House of Commons, June 12, 2013, Output of a

“stress test” exercise, from HBOS:

“We actually got an external advisor [to assess how frequently a particular

event might happen] and they came out with one in 100,000 years and

we said “no”, and I think we submitted one in 10,000 years. But that

was a year and a half before it happened. It doesn’t mean to say it was

wrong: it was just unfortunate that the 10,000th year was so near.”
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Motivation

I So far, VaR and ES are applied to the same financial position.

I The regulatory choice of ρ creates certain incentives, effective

before ρ is applied to assess risks.

I Once a specific ρ has been chosen, portfolios will be optimized

with respect to ρ (at least to some extend).

I In reality, VaR and ES will not be applied to the same position.

One cannot decouple the technical properties of a risk measure

from the incentives it creates.
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The Optimization Problem

General setup

I Gn = {measurable functions from Rn to R}

I X ∈ (L0)n is an economic vector, representing all random

sources

I G ⊂ Gn is a decision set

I g(X ) for g ∈ G represents a risky position of an investor

I ρ is an objective functional mapping {g(X ) : g ∈ G} to R

“The optimization problem”:

to minimize ρ(g(X )) over g ∈ G
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The Optimization Problem

Denote (possibly empty)

G∗(X , ρ) =

{
g ∈ G : ρ(g(X )) = inf

h∈G
ρ(h(X ))

}
.

We call

I g∗ ∈ G∗(X , ρ) an optimizing function

I g∗(X ) an optimized position
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Uncertainty in Optimization

I The optimization problem is subject to model uncertainty

I Let Z be a set of possible economic vectors including X

• Z: the set of alternative models

• e.g. a parametric family of models (parameter uncertainty)

I The true economic vector Z ∈ Z is likely different from the

perceived economic vector X

• X : best-of-knowledge model

• Z : true model (unknowable)

I gX ∈ G∗(X , ρ) is a best-of-knowledge decision

• true position gX (Z )

• perceived position gX (X )
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Uncertainty in Optimization

We are interested in the insolvency gap

ρ(gX (Z ))︸ ︷︷ ︸
true risk

− ρ(gX (X ))︸ ︷︷ ︸
perceived risk

not the optimality gap

ρ(gZ (Z ))︸ ︷︷ ︸
true optimum

− ρ(gX (Z ))︸ ︷︷ ︸
true risk

or the difference between optima

ρ(gZ (Z ))︸ ︷︷ ︸
true optimum

− ρ(gX (X ))︸ ︷︷ ︸
perceived optimum
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Uncertainty in Optimization

I If the modeling has good quality, Z and X are close to each

other according to some metric π

I ρ(gX (Z )) should be close to ρ(gX (X )) to make sense of the

optimizing function gX ⇒ some continuity of the mapping

Z 7→ ρ(gX (Z )) at Z = X

I We call (G,Z, π) an uncertainty triplet if G ⊂ Gn and (Z, π)

is a pseudo-metric space of n-random vectors.

I ρ is compatible if its domain contains G(Z) and

ρ(g(Y )) = ρ(g(Z )) for all g ∈ G and Y ,Z ∈ Z with

π(Y ,Z ) = 0.
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Robustness in Optimization

Definition 1

A compatible objective functional ρ is robust at X ∈ Z relative to

the uncertainty triplet (G,Z, π) if there exists g ∈ G∗(X , ρ) such

that the function Z 7→ ρ(g(Z )) is π-continuous at Z = X .

I Robustness is a joint property of the tuple (ρ,X ,G,Z, π)

I Only a π-neighbourhood of X in Z matters
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Robustness in Optimization

Remarks.

I If ρ is robust at X relative to (G,Z, π), then it also holds

• relative to (G,Z ′, π) if X ∈ Z ′ ⊂ Z;

• relative to (G,Z, π′) if π′ is stronger than π

I If G∗(X , ρ) = ∅, then ρ is not robust at X

I • One can use topologies instead of metrics

• One can consider uncertainty on the set of probability

measures instead of on the set of random vectors

• One can require the continuity for all g ∈ G∗(X , ρ) instead of

that for some g .
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Representative Optimization Problems

Representative optimization problems.

I n = 1 and X ≥ 0 is a random loss

I The pricing density γ = γ(X ) is a measurable function of X

• γ > 0, E[γ] = 1 and E[γX ] <∞

I The budget constraint is E[γg(X )] ≥ x0

I Problems: to minimize ρ(g(X )) over g ∈ G for some G ⊂ G1
in three settings G = Gcm,Gns,Gbd
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Representative Optimization Problems

(a) Complete market:

Gcm = {g ∈ G1 : E[γg(X )] ≥ x0}.

(b) No short-selling or over-hedging constraint:

Gns = {g ∈ G1 : E[γg(X )] ≥ x0, 0 ≤ g(X ) ≤ X}.

Assume 0 ≤ x0 < E[γX ] to avoid triviality.

(c) Bounded constraint: for some m > 0,

Gbd = {g ∈ G1 : E[γg(X )] ≥ x0, 0 ≤ g(X ) ≤ m}.

Assume 0 ≤ x0 < m to avoid triviality.
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Representative Optimization Problems

Remark.

I Problem (c) is not a special case of Problem (b) as X in (b) is

both the constraint and the source of randomness

For (a)-(c), assume

I The distribution function of X is continuous and strictly

increasing on (ess-infX , ess-supX ).

I (Z, π) is one of the classic choices (Lq, πq) for q ∈ [1,∞] and

(L0, πW ), and X ∈ Z.

We focus on VaRp and ESp for p ∈ (0, 1).

Problem (c) for distortion risk measures: He-Zhou’11
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Robustness in the Optimization of VaR

Let

q = inf
{
VaRp(g(X )) : g ∈ Gns

}
,

q′ = inf
{
VaRp(g(X )) : g ∈ Gbd

}
.

Assumption 1

q > 0 and P((X − q)γ ≤ VaRp((X − q)γ)) = p.

Assumption 2

q′ > 0 and P(γ ≤ VaRp(γ)) = p.

I q, q′ > 0 means the optimization does not result in zero risk

I Assumptions 1-2 are very weak
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Solutions to the Representative Problems for VaRp

Proposition 1 (VaRp, Problem (c))

Let U be a uniform transform of γ on the probability space

(Ω, σ(X ),P).

(i) q′ = 0 if and only if mESp(γ) ≥ x0
1−p .

(ii) If q′ = 0, a solution of Problem (c) is given by

g∗(X ) = m1{U>p}.

(iii) If q′ > 0, any solution to Problem (c) has the form

g∗(X ) = m1{U>p} + q′1{U≤p}, a.s.
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Robustness in the Optimization of VaR

Theorem 1

For p ∈ (0, 1) and X ∈ Z,

(i) VaRp is not robust relative to (Gcm,Z, π);

(ii) under Assumption 1, VaRp is not robust at X relative to

(Gns,Z, π);

(iii) under Assumption 2, VaRp is not robust at X relative to

(Gbd,Z, π).

I Robustness of VaR in optimization is very bad
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Robustness in the Optimization of ES

Assumption 3

ess-supγ ≤ 1
1−p .

I Assumption 3 may be interpreted as a no-arbitrage condition

for a market with ES participants

Assumption 4

Either γ is a constant, or γ is a continuous function and γ(X ) is

continuously distributed.

I Assumption 4 is commonly satisfied
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Robustness in the Optimization of ES

Theorem 2

For p ∈ (0, 1) and X ∈ Z,

(i) under Assumption 3, ESp is robust at X relative to

(Gcm,Z, π);

(ii) under Assumption 4, ESp is robust at X relative to

(Gns,Z, π) for (Z, π) = (Lq, πq), q ∈ [1,∞];

(iii) under Assumption 4, ESp is robust at X relative to

(Gbd,Z, π).

I Robustness of ES in optimization is quite good

Ruodu Wang (wang@uwaterloo.ca) Robustness in the optimization of risk measures 41/52

wang@uwaterloo.ca


Risk measures Classic robustness Robustness in optimization Representative problems DRO Conclusion

Robustness in Optimization for VaR and ES

On robustness in optimization:

VaR ≺≺ ES (RVaR/ES not easy to compare)

Observations.

I The discontinuity in Z 7→ g∗(Z ) comes from the fact that

optimizing VaR is “too greedy”: always ignores tail risk, and

hoping the probability of the tail risk is correctly modelled.

I None of the two values

VaRp(g∗(X )) and VaRp(g∗(Z ))

is a rational measure of the “optimized” risk.
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Robustness in Optimization for VaR and ES

Is risk positions of type g∗ realistic?

“Starting in 2006, the CDO group at UBS noticed that their

risk-management systems treated AAA securities as essentially

riskless even though they yielded a premium (the proverbial free

lunch). So they decided to hold onto them rather than sell them. ”

I From Feb 06 to Sep 07, UBS increased investment in AAA-rated

CDOs by more than 10 times; many large banks did the same.

• Take a risk of big loss with small probability

• Treat it as free money - profit

• Model uncertainty?

quoted from Acharya-Cooley-Richardson-Walter’10
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Is Distributionally Robust Optimization Robust?

Distributionally robust optimization, for ε > 0:

to minimize: sup
π(Y ,X )≤ε

ρ(g(Y )) subject to g ∈ G.

I G∗(X , ρ, ε): the set of functions g ∈ G solving this problem

I ε = 0 leads to G∗(X , ρ, 0) = G∗(X , ρ), the original setting

I ρ is robust for the ε-problem if there exists g ∈ G∗(X , ρ, ε)
such that Z 7→ ρ(g(Z )) is π-continuous at Z = X

I This type of problems is hard to solve and we focus on VaRp

for Problem (c): (G,Z, π) = (Gbd, L∞, π∞).

e.g. Natarajan-Pachamanova-Sim’08, Zhu-Fukushima’09,
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Is Distributionally Robust Optimization Robust?

The problem: to minimize

sup
π∞(Y ,X )≤ε

VaRp(g(Y )) subject to g ∈ Gbd,

where Gbd = {g ∈ G1 : E[γg(X )] ≥ x0, 0 ≤ g(X ) ≤ m}. Let

qε = inf

{
sup

π∞(Y ,X )≤ε
VaRp(g(Y )) : g ∈ Gbd

}
.

Assumption 5

qε > 0, 1/2 ≤ p < 1, X has a decreasing density on

(ess-infX , ess-supX ) and γ is an increasing function of X .
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Is Distributionally Robust Optimization Robust?

Proposition 2

Under Assumption 5, the above problem admits a solution of the

form

g∗(x) = m1{x>c+ε} + qε1{x≤c+ε}, x ∈ R, where c = VaRp(X ).

I Z 7→ VaRp(g∗(Z )) is π∞-continuous at Z = X

I VaRp is robust for the ε-problem

I The ε-modification improves the robustness of VaR

I We still get the big-loss-small-probability type of optimizer

Ruodu Wang (wang@uwaterloo.ca) Robustness in the optimization of risk measures 47/52

wang@uwaterloo.ca


Risk measures Classic robustness Robustness in optimization Representative problems DRO Conclusion

Progress

1 Risk measures

2 Classic statistical robustness

3 Robustness in optimization

4 VaR and ES in representative optimization problems

5 Is distributionally robust optimization robust?

6 Conclusion
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Conclusion

Some conclusions on robustness

I Classic notion

• ES ≺ VaR ≺ RVaR

• However this robustness may not be desirable

I If we take optimization into account

• VaR ≺≺ ES in optimization

• The rationality of optimizing VaR under model uncertainty is

questionable

I Some other perspectives

• VaR ≺ ES ≺ RVaR in risk aggregation

• VaR ≺≺ ES ≺ RVaR in risk sharing

Embrechts-Wang-W.’15, Krätschmer-Schied-Zähle’17, Embrechts-Liu-W.’18
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Other Questions

Many other questions ...

I other risk measures

I other optimization problems

I utility maximization problems

I risk measures as constraints instead of objectives
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AIG

CEO of AIG Financial Products, August 2007:

“It is hard for us, without being flippant, to even see a scenario within any kind of

realm of reason that would see us losing one dollar in any of those transactions.”

I AIGFP sold protection on super-senior tranches of CDOs

I $180 billion bailout from the federal government in September 2008
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Thank You

↑ ↑
VaR Real danger

This paper is available on SSRN (3254587) and arXiv (1809.09268)
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More

Solutions to the Representative Problems

Proposition 3 (VaRp, Problem (a))

inf{VaRp(g(X )) : g ∈ Gcm)} = −∞. Hence, Problem (a) admits

no solution.
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More

Solutions to the Representative Problems for VaRp

Proposition 4 (VaRp, Problem (b))

Let U be a uniform transform of (X − q)γ on the probability space

(Ω, σ(X ),P).

(i) q = 0 if and only if ESp(γX ) ≥ x0
1−p .

(ii) If q = 0, a solution of Problem (b) is given by

g∗(X ) = X1{U>p}.

(iii) If q > 0, any solution to Problem (b) has the form

g∗(X ) = X1{U>p} + (X ∧ q)1{U≤p}, a.s.
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More

Solutions to the Representative Problems for VaRp

Proposition 5 (VaRp, Problem (c))

Let U be a uniform transform of γ on the probability space

(Ω, σ(X ),P).

(i) q′ = 0 if and only if mESp(γ) ≥ x0
1−p .

(ii) If q′ = 0, a solution of Problem (c) is given by

g∗(X ) = m1{U>p}.

(iii) If q′ > 0, any solution to Problem (c) has the form

g∗(X ) = m1{U>p} + q′1{U≤p}, a.s.
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More

Solutions to the Representative Problems for ESp

Proposition 6 (ESp, Problem (a))

Problem (a) admits a solution if and only if Assumption 3 holds,

and if Assumption 3 holds, a solution is given by g∗(·) = x0.
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More

Solutions to the Representative Problems for ESp

Proposition 7 (ESp, Problem (b))

There exist constants c > 0, r ≥ 0, and λ ∈ [0, 1] such that the

function g∗, for x ∈ R,

g∗(x) = x1{γ(x)>c}+(x∧r)1{γ(x)<c}+((1−λ)x+λ(x∧r))1{γ(x)=c},

solves Problem (b). Moreover, r is a p-quantile of g∗(X ).
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More

Solutions to the Representative Problems for ESp

Proposition 8 (ESp, Problem (c))

There exist constants c > 0, r ∈ [0,m], and λ ∈ [r ,m] such that

the function g∗, for x ∈ R,

g∗(x) = m1{γ(x)>c} + r1{γ(x)<c} + λ1{γ(x)=c},

solves Problem (c). Moreover, r is a p-quantile of g∗(X ).
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More

Industry Perspectives

From the International Association of Insurance Supervisors:

I Document (version June 2015)

Compiled Responses to ICS Consultation 17 Dec 2014 - 16

Feb 2015

In summary

I Responses from insurance organizations and companies in the

world.

I 49 responses are public

I 34 commented on Q42: VaR versus ES (TVaR)
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More

Industry Perspectives

I 5 responses are supportive about ES:

• Canadian Institute of Actuaries, CA

• Liberty Mutual Insurance Group, US

• National Association of Insurance Commissioners, US

• Nematrian Limited, UK

• Swiss Reinsurance Company, CH

I Some are indecisive; most favour VaR.

Regulator and firms may have different views
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More

Discussion

Major reasons to favour VaR from the insurance industry (IAIS

report June 2015)

I Implementation of ES is expensive (staff, software, capital)

I ES does not exist for certain heavy-tailed risks

I ES is more costly on distributional information, data and

simulation

I ES has trouble with a change of currency
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