1/30-5 / 2/1-0

Corollary: Let ϕ be simple and $\phi = \sum_{l=1}^{m} b_{l} \chi_{F_{l}}$, may not be in standard form, but each $b_l \geq 0$. Then, $\int \phi d\mu = \sum_{l=1}^{m} b_l \mu(F_l)$.

By Proposition 2.14-(b) and induction, $\int \phi d\mu = \sum_{i=1}^{m} [\int b_i \chi_{F_i} d\mu]$ Proof: $=\sum_{l=1}^{m}\int (b_{l}\chi_{F_{l}}+0\cdot\chi_{F_{l}^{c}})d\mu$ (notice that this is in standard form) $=\sum_{l=1}^{m}b_{l}\mu(F_{l})+0\cdot\mu(F_{l}^{c})=\sum_{l=1}^{m}b_{l}\mu(F_{l}).$

Definition: Let (X, \mathcal{M}, μ) be a measure space. For, $f \in L^+$, we define $\int f d\mu = \sup \{ \int \phi d\mu : 0 \le \phi \le f \text{ and } \phi \text{ is simple.} \}$

Note (1): Let ψ be simple. Then, $\int \psi d\mu = \sup \{ \int \phi d\mu : 0 \le \phi \le \psi \text{ and } \phi \}$ is simple. We have no trouble here, sup gives the same value for a simple function ψ .

Note (2): If $f \in L^+$ and c > 0, then $\int cf d\mu = \sup \{ \int \phi d\mu : 0 \le \phi \le cf \}$ and ϕ is simple.} Let $\psi = c^{-1}\phi$, that is $c\psi = \phi$, where ψ is simple. Then, $\phi < cf$ and ϕ is simple $\Leftrightarrow c\psi \le cf$ and ψ is simple $\Leftrightarrow \psi \le f$ and ψ is simple. So, $\int cf d\mu = \sup \{ \int \phi d\mu : 0 \le \phi \le cf \text{ and } \phi \text{ is simple.} \} =$ $\sup \{ \int \phi d\mu : 0 \le \psi \le f, \psi \text{ is simple and } \psi = c^{-1}\phi. \} =$ $\sup \{ \int c\psi d\mu : 0 \le \psi \le f, \text{ and } \psi \text{ is simple.} \} =$ $csup\{ \int \psi d\mu : 0 < \psi < f, \text{ and } \psi \text{ is simple.} \} =$ $c \int f d\mu$.

Now: If $f, g \in L^+$ and $f \leq g$, then $\int f d\mu \leq \int g d\mu$ because there are more ϕ 's in the definition of \sup for $\int g d\mu$. more ϕ 's in the ENDED HERE

Theorem (The Monotone Convergence Theorem): Suppose that $\{f_n\}\subseteq L^+$ and $f_j\le f_{j+1}$ for all j. Let $f(x)=\sup_i f_j(x)=\lim_i f(x)$.

Then, $\int f d\mu = \lim_{i} \int f_{i} d\mu = \sup_{i} \int f_{j} d\mu$.

[Show that $\sup_{i} \int f_{i} d\mu \leq \int f d\mu$.] Proof: Since each $f_j \leq f, \int f_j d\mu \leq \int f d\mu \Rightarrow \sup_i p \int f_j d\mu \leq \int f d\mu.$

[Show that $\int f d\mu \leq \sup_{i} \int f_{i} d\mu$.]

Fix α where $0 < \alpha < 1$. Take $0 \le \phi \le f$ where ϕ is simple. Then, $\alpha \phi < f$. Let $E_n = \{x : f_n(x) \ge \alpha \phi(x)\}$. Then, each $E_n \in \mathcal{M}, E_1 \subseteq E_2 \subseteq \cdots$ because f_n is increasing, and $\bigcup_{i} E_{j} = X$. Now, $\int f_{n} d\mu \ge \int_{E_{n}} f_{n} d\mu = \int f_{n} \chi_{E_{n}} d\mu \ge \int_{E_{n}} \alpha \phi d\mu$ $= lpha \int_{E_n} \phi d\mu$. Thus, $\sup \int f_n d\mu \geq lpha \int_{E_n} \phi d\mu$ for all n. By Proposition 2.13-(d), $\int_{E_n}^{\mathbf{N}} \phi d\mu = \nu(E_n)$ is a measure which is continuous from below. $\Rightarrow \nu(X) = \lim_{n \to \infty} \nu(E_n) \Rightarrow \int_X^{\omega} \phi d\mu =$ all $\phi \leq f \Rightarrow \sup_{\pi} \int f_n d\mu \geq \alpha \cdot \sup \{ \int \phi d\mu : \phi \leq f \text{ and } \phi \text{ is } \}$ simple} = $\alpha \int f d\mu$ which is true for all $\alpha < 1 \Rightarrow \sup_{n} \int f_n d\mu$ $\geq \int f d\mu$. Therefore, $\int f d\mu = \sup \int f_n d\mu$.

(1)

Corollary: Let $f \in L^+$, $0 \le \phi_1 \le \phi_2 \le \cdots \le f$, each ϕ_n be simple, and $\lim_{n} \phi_{n}(x) = f(x), \text{ then } \int f d\mu = \lim_{n} \int \phi_{n} d\mu.$ $(z) f, g \in L^{+} \text{ then } \int (f + g) d\mu = \int f d\mu + \int g d\mu$ Notation: $f_1 \leq f_2 \leq \cdots \leq f$ and $\lim_{n \to \infty} f_n = f \Leftrightarrow f_n \nearrow f$

Example: Let $\mu(E) = 0$ and $f(x) = \begin{cases} +\infty & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$ Also, let $\phi_n(x) = n \cdot \chi_E$. Then, $\phi_n \nearrow f$, and $\int f d\mu = \lim \int \phi_n d\mu =$ $\lim n\mu(E) = n \cdot 0 = 0.$

Theorem 2.15: Suppose that $\{f_n\}\subseteq L^+$, and $f(x)=\sum_{n=1}^{\infty}f_n(x)$. Then, $\int f d\mu = \sum_{n=0}^{\infty} \int f_n d\mu.$

Proof: Let ψ_j / f_1 be simple, and also ϕ_i / f_2 be simple, then $(\psi_j + \phi) / (f_1 + f_2), \text{ and } f(f_1 + f_2) d\mu = \lim_n \int (\phi_n + \phi_n) d\mu$ $= \lim_n \int \psi_n d\mu + \int \phi_n d\mu = \lim_n \int \psi_n d\mu + \lim_n \int \phi_n d\mu = \int f_1 d\mu$ $+ \int f_2 d\mu \text{ Thus, } f(f_1 + f_2) d\mu = \int f_1 d\mu + \int f_2 d\mu.$ $S_N = \sum_{n=1}^{N} f_n \int f_n d\mu = \lim_n \int f_n d\mu = \lim_n \int f_n d\mu = \lim_n \int f_n d\mu$ $S_N = \sum_{n=1}^{N} f_n \int f_n d\mu = \lim_n \int f_n d\mu = \lim_n \int f_n d\mu = \lim_n \int f_n d\mu$

Page

Next, use induction to get
$$\int (f_1 + f_2 + \cdots + f_n)d\mu = \int f_1 d\mu + \int f_2 d\mu + \cdots + \int f_n d\mu$$
.

Let $S_N(x) = \sum_{n=1}^N f_n(x)$, then $S_N(x) \leq S_{n+1}(x) \leq \cdots$. So,
$$S_N = \int f_n d\mu = \lim_N \int S_N d\mu = \lim_N \int \sum_{n=1}^N f_n d\mu = \lim_N \int \int f_n d\mu = \lim_N \int \int f_n d\mu = \lim_N \int \int f_n d\mu$$

Proposition 2.16: If $f \in L^+$, then $\int f d\mu = 0 \Leftrightarrow f = 0$ a.e.

Proof: (\$\Rightarrow\$) suppose that $f \in L^+$ and $\int f d\mu = 0$. Let $0 \le \phi \le f$ and ϕ be simple. Then $0 \le \int \phi d\mu \le \int f d\mu \Rightarrow \int \phi d\mu = 0$. But, if we write $\phi = \sum_{j=1}^n a_j \chi_{E_j}$, then $0 = \int \phi d\mu = \sum_{j=1}^n a_j \mu(E_j)$ and $a_j \ge 0$. Thus, $a_j \ne 0 \Rightarrow \mu(E_j) = 0 \Rightarrow \phi = 0$ a.e. Now, let $0 \le \phi_1 \le \phi_2 \le \cdots \le f$, $\phi_n \nearrow f$ and ϕ_n be simple. Then, for each n, $\int \phi_n d\mu = 0 \Rightarrow \phi_n = 0$ a.e. Now, let $N_n = \{x: \phi_n(x) \ne 0\}$ Then, $\mu(N_n) = 0$. Let $N = \bigcup_{n=1}^\infty N_n$, then $\mu(N) = 0$. For $x \notin N$, $\phi_n(x) = 0$ for all n. This implies that $f(x) = \lim_n \phi_n(x) = 0$ if $x \notin N \Rightarrow \{x: f(x) \ne 0\} \subseteq N$. Thus, $\mu(\{x: f(x) \ne 0\}) \le \mu(N) = 0$, and so f = 0 a.e. (\$\infty\$) Let f(x) = 0 a.e. Also, let $0 \le \phi_1 \le \phi_2 \le \cdots \le f$, $\phi_n \nearrow f$ and ϕ_n be simple. Then, $\phi_n = 0$ a.e. So, if $\phi_n = \sum_j a_j \chi_{E_j}$, then $\int \phi_n d\mu = \sum_j a_j \mu(E_j) = 0$ because if $a_j \ne 0$, then $\mu(E_j) = 0$. Thus, $\int f d\mu = \lim_n \int \phi_n d\mu = 0$.

Corollary 2.17: Let $\{f_n\}\subseteq L^+$, and $f_1(x)\leq f_2(x)\leq \cdots \leq f(x)$ for all $x\notin N$ where $\mu(N)=0$. If $\lim_n f_n(x)=f(x)$, then $\int f d\mu=\lim_n \int f_n d\mu$. Proof: Write $f=f\cdot \chi_N+f\cdot \chi_{N^c}$. Then, $\int f d\mu=\int f\cdot \chi_N d\mu+\int f\cdot \chi_{N^c} d\mu=\int f\cdot \chi_N d\mu$ because $\int f\cdot \chi_N d\mu=0$ coef. Thus, the Monotone Convergence Theorem, $\int f\cdot \chi_{N^c} d\mu=\lim_n \int f_n \chi_{N^c} d\mu$ since $f_n \chi_{N^c} \nearrow f\cdot \chi_{N^c}$. But, $\int f_n d\mu=\int f_n \chi_{N^c} d\mu+\int f_n \chi_N d\mu=\int f_n \chi_{N^c} d\mu$ because $\int f_n \chi_N d\mu=0$ a.e. Thus, $\int f d\mu=\lim_n \int f_n d\mu$.

1989 4

Notation: $f_n \nearrow f$ a.e. when the hypotheses of Corollary 2.17 are met [throw away where the measure is 0.]

Corollary 2.17 restated: If $f_n \nearrow f$ a.e., $\int f d\mu = \lim_n \int f_n d\mu$.

Example: Importance of the hypothesis that $\{f_n\}$ be increasing.

Let $f_n = n \cdot \chi_{(0,1/n)}$. Then, $\lim_n f_n(x) = 0$. But, $\int f_n dm = n \cdot m((0,1/n))$

 $= n \cdot (1/n - 0) = 1$. Thus, $\int f dm \neq \lim_{n} \int f_n dm$.

Notice that if $x \in (1/(n+1), 1/n)$, then $n = f_n(x) \ge f_{n+1}(x) = 0$. So, f_n is not increasing.

Fatou's Lemma 2.18: Let $\{f_n\} \subseteq L^+$. Let $f(x) = \lim_n \inf f_n(x)$ which is measurable (by Proposition 2.7.) Then, $\int f d\mu \leq \lim_n \inf \int f_n d\mu$.

[Note that $\lim_n \inf a_n = \lim_k b_k = \sup b_k$ where $b_k = \inf_{n \geq k} a_n$, $b_1 \leq b_2 \leq \cdots$]

Proof: Define $g_k(x) = \inf_{n \ge k} f_n(x)$. Then, g_k is measurable, $g_1 \le g_2 \le \cdots$, and $\lim_{n \ge k} g_n(x) = \lim_{n \ge k} \inf_{n \ge k} f_n(x)$. This implies that $g_k \nearrow f_n(x)$

 \cdots , and $\lim_k g_k(x) = \lim_n \inf f_n(x)$. This implies that $g_k \nearrow f$. Note that $g_k \le f_k$. Thus, $\int f d\mu = \lim_k \int g_k d\mu = \lim_k \inf \int g_k d\mu$ $\le \lim_k \inf \int f_k d\mu$.

 $\text{OMIT} \quad \left(\begin{array}{c} \textbf{Corollary 2.19:} \ \text{Let} \ \{f_n\} \subseteq L^+ \ \text{and} \ f \in L^+, \ \text{and} \ f_n(x) \to f(x) \ a.e. \ \text{Then,} \\ \int f d\mu \leq \lim_n \inf \int f_n d\mu. \end{array} \right.$

Proposition 2.20: Let $f \in L^+$ and $\int f d\mu < +\infty$. Then, $\mu(\{x : f(x) = +\infty\}) = 0$ and $\{x : f(x) > 0\}$ is a σ -finite set.

Proof: Let $A = \{x: f(x) = +\infty\}$, and let $\phi_n = n\chi_A$. Then, $\phi_n \leq f$. This implies that $n\mu(A) = \int \phi_n d\mu \leq \int f d\mu < +\infty$ for all $n \Rightarrow \mu(A) = 0$ since the L.H.S. becomes unbounded when $\mu(A) \neq 0$. Let $E_n = \{x: f(x) \geq 1/n\}$. Then, $[x: f(x) \neq 0\} = \{x: f(x) > 0\} = \bigcup_{n=1}^{\infty} E_n$. Let $\phi_n = 1/n \cdot \chi_{E_n} \leq f$. Then, $1/n \cdot \mu(E_n) = \int \phi_n d\mu \leq \int f d\mu < +\infty \Rightarrow \mu(E_n) < +\infty$ for all $n \Rightarrow \{x: f(x) > 0\}$ is a σ -finite set.

2.3 Integration of Real and Complex Functions

Real Case: Let (X,\mathcal{M},μ) be a measure space, $f:X\to\overline{\mathbb{R}}$ be measurable and write $f=f^+-f^-$. Then, $|f|=f^++f^-$. So, $\int |f|d\mu=\int f^+d\mu+\int f^-d\mu$, and $\int |f|d\mu<+\infty \Leftrightarrow \int f^+d\mu<+\infty$ and $\int f^-d\mu<+\infty$. If one of $\int f^+d\mu$ and $\int f^-d\mu$ is finite, then we define $\int fd\mu=\int f^+d\mu-\int f^-d\mu$.

Definition: If $f: X \to \overline{\mathbb{R}}$ is measurable and $\int |f| d\mu < +\infty$, then we say that f is **integrable**, and we let $\mathcal{L}^1(\mu) = \{f: X \to \overline{\mathbb{R}} : f \text{ is measurable and } \int |f| d\mu < +\infty\}.$

Complex Case: Let $f: X \to \mathbb{C} (\mathbb{R} \times \mathbb{R})$, which is still Borel. Write f = Ref + iImf where $Ref = Ref^+ - Ref^-$, and $Imf = Imf^+ - Imf^-$. For complex numbers z = a + ib, $|z| = \sqrt{a^2 + b^2} \le |a| + |b| \le 2|z|$. $|Ref| = Ref^+ + Ref^-$, $|Imf| = Imf^+ + Imf^-$ and $|f| \le Ref^+ + Ref^- + Imf^+ + Imf^- \le 2|f|$. So, $\int |f| d\mu < +\infty \Leftrightarrow \int Ref^+ d\mu < +\infty$, $\int Ref^- d\mu < +\infty$, $\int Imf^+ d\mu < +\infty$, and $\int Imf^- d\mu < +\infty$.

Definition: If $f: X \to \mathbb{C}$ is measurable and $\int |f| d\mu < +\infty$, then f is said to be **integrable**. $\mathcal{L}^1_{\mathbb{C}} = \{f: X \to \mathbb{C} : f \text{ is measurable and } \int |f| d\mu < +\infty\}$

Proposition 2.21: The set of integrable functions is a vector space. Also, if f and g are integrable and λ is a scalar, then $\int (f+g)d\mu = \int f d\mu + \int g d\mu$ and $\int \lambda f d\mu = \lambda \int f d\mu$.

Proof (Real case): [Show that f + g and λf are integrable.]

Let f and g be integrable. Then, $\int |f| d\mu < +\infty$ and $\int |g| d\mu < +\infty$. First, $|f+g| \leq |f| + |g|$ implies that $\int |f+g| d\mu \leq \int (|f|+|g|) d\mu \leq \int |f| d\mu + \int |g| d\mu < +\infty$. Thus, f+g is integrable. Next, $|\lambda f| = |\lambda| |f|$. Thus, $\int |\lambda f| d\mu = \int |\lambda| |f| d\mu = |\lambda| \int |f| d\mu < +\infty$, and so λf is also integrable. Hence, the set of integrable functions is a vector space. [Show that $\int (f+g) d\mu = \int f d\mu + \int g d\mu$.]

[Show that $\int (f+g)d\mu = \int fd\mu + \int gd\mu$.] Let h = f+g, and write $h = h^+ - h^-$. Then, $f+g = f^+ - f^- + g^+ - g^- \Rightarrow h^+ - h^- = f^+ - f^- + g^+ - g^- \Rightarrow h^+ + f^- + g^- = f^+ + g^+ + h^-$. Since f, g and h are all integrable, the integrals of all these 6 functions are finite. Now, $\int (h^+ + f^- + g^-) d\mu = \int (f^+ + g^+ + h^-) d\mu$. Also, $\int (h^+ + f^- + g^-) d\mu = \int h^+ d\mu + \int f^- d\mu + \int g^- d\mu$, and $\int (f^+ + g^+ + h^-) d\mu = \int f^+ d\mu + \int g^+ d\mu + \int h^- d\mu$ by Theorem 2.15. This implies that $\int h^+ d\mu + \int f^- d\mu + \int g^- d\mu$ $= \int f^+ d\mu + \int g^+ d\mu + \int h^- d\mu \Rightarrow \int h^+ d\mu - \int h^- d\mu =$ $\int f^+ d\mu - \int f^- d\mu + \int g^+ d\mu - \int g^- d\mu \Rightarrow \int (f+g)d\mu =$ $\int hd\mu = \int fd\mu + \int gd\mu.$ [Show that $\int \lambda f d\mu = \lambda \int f d\mu$.] First suppose that $\lambda \geq 0$. Then, $(\lambda f)^+ = \lambda f^+$ and $(\lambda f)^- =$ λf^- . Thus, $\int \lambda f d\mu = \int (\lambda f)^+ d\mu - \int (\lambda f)^- d\mu = \int \lambda f^+ d\mu$ $- \int \lambda f^{-} d\mu = \lambda \int f^{+} d\mu - \lambda \int f^{-} d\mu = \lambda (\int f^{+} d\mu - \int f^{-} d\mu)$ $=\lambda \int (f^+ - f^-)d\mu = \lambda \int f d\mu$. Next, if $\lambda < 0$, then $(\lambda f)^+ =$ $-\lambda f^-$ and $(\lambda f)^- = -\lambda f^+$. Thus, $\int \lambda f d\mu = \int (\lambda f)^+ d\mu - \int (\lambda f)^+ d\mu$ $\int (\lambda f)^{-} d\mu = \int -\lambda f^{-} d\mu - \int -\lambda f^{+} d\mu = -\lambda \int f^{-} d\mu - \int -\lambda f^{-} d\mu = -\lambda \int f^{-} d\mu$ $(-\lambda) \int f^+ d\mu = \lambda (\int f^+ d\mu - \int f^- d\mu) = \lambda \int (f^+ - f^-) d\mu$ $=\lambda \int f d\mu$.

Proof of Complex case is similar; use Re and Im

Proposition 2.22: If $f \in \mathcal{L}^1(\mu)$, then $|\int f d\mu| \leq \int |f| d\mu$.

Proof: If f is real-valued, then $|\int f d\mu| = |\int f^+ d\mu - \int f^- d\mu| \le \int f^+ d\mu + \int f^- d\mu = \int (f^+ + f^-) d\mu = \int |f| d\mu$. Next, suppose that f is complex-valued. If $\int f d\mu = 0$, then $|\int f d\mu| \le \int |f| d\mu$ is trivially true. So, suppose that $\int f d\mu \ne 0$. Let $\alpha = e^{i\theta}$ so that $\alpha \int f d\mu = |\int f d\mu|$. Then, $|\int f d\mu| = \alpha \int f d\mu = \int \alpha f d\mu = \int Re(\alpha f) d\mu + i \int Im(\alpha f) d\mu = \int Re(\alpha f) d\mu < \int |\alpha f| d\mu = \int |f| d\mu$ since $|\alpha| = |e^{i\theta}| = 1$.

Proposition 2.23

- (a) If $f \in \mathcal{L}^1(\mu)$, then $\{x : f(x) \neq 0\}$ is σ -finite.
- (b) Let $f, g \in \mathcal{L}^1(\mu)$. Then, $\int_E f d\mu = \int_E g d\mu$ for all $E \in \mathcal{M} \Leftrightarrow \int |f g| d\mu = 0 \Leftrightarrow f = g \text{ a.e. } \mu$.

Proof of (a): Let $f \in \mathcal{L}^1(\mu)$, then $\int |f| d\mu < +\infty$. Then, $\{x : |f(x)| \neq 0\}$ = $\{x : f(x) \neq 0\} = \{x : f(x) > 0\}$ is σ -finite by Proposition 2.20.