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Functionsof a Real Variable

m
Corollary: Let ¢ be simple and ¢ = > b, X > May not be in standard form,
=1

but each b, > 0. Then, [¢du = > b u(F).
i=1

Proof: By Proposition 2.14-(b) and induction, [¢dy = Z[ il b,Xrdu]

3

= J(b, Xy +0- XFc)dM (notice that this is in standard form)
l_
= Zb u(F) +0- p(Fy) = Zb w(FD).
Definition: Let (X M, 1) be a measure space For, f € L™, we define
[fdp=sup{fédp:0 < ¢ < fand ¢ is simple.}

€8%. Nefe (1): Let be simple. Then. [4dy = sup{[¢dp: 0 < ¢ < pand ¢

is simple. We have no trouble here, sup gives the same value for a simple
function .

3 |

Note (2): If f € Lt and ¢ > 0, then [cfdy = sup{[odp:0< ¢ < cf
and ¢ is simple.} Letv = c1¢, that is cy) = @, where 9 is simple. Then,
¢ < cf and ¢ is simple < cyp < cf and 9 is simple < ¢ < fand P is
simple. So, [cfdu = sup{[¢du:0< ¢ < cf and ¢ is simple.} =

sup{[odu : 0 < < f,1pis simple and p=c™1¢.} =

sup{ [eypdp : 0 <9 < f, and ¢ is simple.} =

csup{ [Ydp: 0 < ¢ < f,and ¢ is 51mple } =

cf fapu.

oety): If f,g € LT and f < g, then [fdp < [gdu because there are
more ¢'s in the definition of sup for [gdu.

A R A

Theorem (The Monotone Convergence Theorem): Suppose that
{f.} € LT and f, < f,, forall j. Let f(z) = szjapfj(a:) = 1i§nf(ac).
Then, [fdu = lijr_nffjd,u = sup [fdu.
Proof:  [Show that sup [ f,du < [ fdu.]
Since each fjg fo [fdu < [fdp = sszpffjd,u < [ fdp.
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[Show that [ fdu < sup [ f.dp.]
j

Fix a where 0 < o < 1. Take 0 < ¢ < f where ¢ is simple.
Then, a¢p < f. Let E, = {z : f.(z) > a¢(z)}. Then, each
E,e M,E, C E, C - . -because f, is increasing, and
UE; = X. Now, [ fau 2 Jo fudn = [f.xsdp > [ addu
j

= osz ¢du. Thus, supff dp > afE ¢dy for all n.

By Proposition 2.13-(d), [#¢du = v(E,) is a measure which
is continuous from below. = v(X) = limv(E,) = [fodu =

Jupdp = lirnfE‘:quu = sup [ f.dp > af ¢dp which is true for
allg < f=sup[fdu>a-sup{[odu:¢ < fand¢is
simple} = o fdp which is true forall @ < 1 = sup [ f,dp

> [ fdp.
Therefore, [ fdu = sup [ f.du.
)
Corollary: Let f e LT,0< ¢, < ¢, < - - - < f, each ¢_be simple, and

limg, (z) = f(z) then ffd,u = 11qu5 du.
(=) £, efl. %k SH+2)oku "f’:’% *fﬁﬂ(}’/z
Notation: f < f2 < -0 L fandh;nfn =fef /f

Example: Let u(E) = 0and f(z) = { (’)*'OO gz Z g

Also,let ¢ (z) =n-x,. Then, ¢, " f,and [fdpy =lm[¢ du =
limnu(E) =n-0=0.

Theorem 2.15: Suppose that {f.} C L*, and f(z) = >_ f,(z). Then,
n=1

ffdﬂ=2ffndu-
Proof: Ltv,b/‘fb fhple) and f, be-simple, the

( +¢ /\ »MN\@MM

%hv 0 y = 1m W, au>~1Im | O~ = d/,l,
/_ _ QL.
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Proposition 2.16: If f € L, then [fdu=0& f=0a.e.

Proof:

(=) suppose that f € LT and [ fdp=0. Let0 < ¢ < f
and ¢ be simple. Then 0 < [¢dy < [fdu = [¢pdu=0.

But, if we write ¢ = > a X, , then 0 = [¢du = ) a,u(E;)
=1 ! j=1

anda, > 0. Thus,a;, # 0= pu(E;) =0= ¢ =0a.e.
Now,let0< ¢, <o, < - -+ < f,0, / fand ¢, be simple.
Then, for eachn, [¢ dp =0 = ¢, = 0 a.e. Now,let N, =
{z: ¢,(x) # 03 Then, u(N,) = 0. Let N = |J Ny, then

n=1

u(N)=0. Forz ¢ N, ¢ (z) = 0 for all n. This implies that
f(z) =1lim¢ (z) =0ifz ¢ N = {z: f(z) # 0} C N. Thus,

p({z: f(z) #0}) < u(N)=0,andso f =0 a.e.
(<) Let f(z) =0a.e. Also,let0< ¢, <o, < - - < f,
¢, /" fand ¢_be simple. Then, ¢, = 0 a.e. So,if ¢, =

Za Xz, then [o.du= Za p(E,) = 0 because if a, 7 0, then

u(E)—O Thus, ffdu—hmfgbdu 0.

Corollary 2.17: Let{f.} C L*, andf( )< f(z) < - - - < f(x) forall
x ¢ N where u(N) = 0. Ifhmf f(a:/‘_thﬁpffdy—hmffdu

Proof:

Write f = f - xy + [ Xye. THeD, [ fdu = [f-xydp+

[F Xpdp= [f Xxydpbecause [ f - x,du =0 a.

Thus, the Monotone Convergence Theorem, [ f - x,.dp =
lim [ £, Xy dp since f,xye /* f - Xwer B, [ frdpp = [ f Xy dp

+ [f.xwdp = [ f,xydp because [f.xydp =0a.e. Thus,
[ fdp=Hm[f dp.
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¢ Notation: f, / f a.e. when the hypotheses of Corollary 2.17 are met
[throw away where the measure is 0.]

o

Corollary 2.17 restated: If f, / f a.e., [ fdu =lim{ f dp.

Example: Importance of the hypothesis that { .} be increasing.
Let f, =7 Xq,,m- Then, limf, (z) =0. But, [ f,dm = n-m((0,1/n))

=n-(1/n—0)=1. Thus, [ fdm # 1i711rnffndm.

Notice thatif z € (1/(n+1),1/n), thenn = f () > f,,(z) = 0. So, f,
is not increasing.

Fatou's Lemma 2.18: Let {f .} C L*. Let f(z) = liminf f () which is
measurable (by Proposition 2.7.) Then, [ fdu < liminf [ f,dp.

- [Note that 1i711n infa, = li;nbk = supb, where b, = in zkan, b, <b, < - - -]

Proof:  Define g,(z) = inf f,(x). Then, g, is measurable, g, < g, <
1 -+ -,and lilgngk (:?Sk= 1i7rln inf f (x). This implies that g, ,/* f.
Note that g, < f,. Thus, [ fdp = Iilgnfgkdp = lilgninffgkdu
< li’?m'nfffkdu.

o7 Corollary 2.19: Let{f } C L* and f € L*, and f,(z) — f(z) a.e. Then,
[fdp <liminf [ f dup.

Proposition 2.20: Let f € L" and [ fdu < +o0. Then, p({z : f(z) =
+00}) =0and {z : f(z) > 0} is a o-finite set.
Proof: Let A= {z: f(z) = +oo},andlet ¢, = nx,. Then, ¢ < f.
This implies that nu(A4) = [¢ dp < [ fdu < +oo forall n
= u(A) = 0 since the L.H.S. becomes unbounded when ;1(A)
# 0. Let B, —{a: f(z) > 1/n}. Then, [z: f(z) #0} =

{z: f(z) >0} = UE Let$, =1/n-x, < f. Then,

1/n- M(E)—fgb dp<ffd,u<+oo=>u(E)<+oofor
Q& | alln = {z: f(z) > 0} is a o-finite set.



7

Y=

Functions of a Real Variable Rege=56

2.3 Integration of Real and Complex Functions

Real Case: Let (X, M, u) be a measure space, f : X — R be measurable
and write f = f+ — f~. Then, |f| = f*+ f~. So, [|fldu= [fTdu+
[f du,and [|fldp < 400 & [fTdpu < +ooand [f-du < +oo.

If one of [ f*du and [ f~du is finite, then we define [ fdu = [fTdu —
Jfdp.

Definition: If f : X — R is measurable and [ | f|dp < +o00, then we say
that f is integrable, and we let £!(p) = {f : X — R : f is measurable and
J1fldp < +oo}.

Complex Case: Let f : X — C (R x R), which is still Borel. Write f =
Ref +iImf where Ref = Reft™ — Ref,and Imf = Imf*™ —Imf~.
For complex numbers z = a + b, |z| = /a? + b2 < |a| + |b] < 2|z|.
|Ref| = Reft + Ref ™, |Imf| = Imft +Imf~ and |f| < Reft +
Ref~™ +Imft +Imf~ < 2|f]. So, [|fldu < +00 < [Reftdp < +oo,
[Ref~dp < 400, [Imftdu < +oo,and [Imf~du < +o0.

Definition: If f : X — C is measurable and [|f|du < +oo0, then f is said
to be integrable. L& = {f : X — C: f is measurable and [ |f|dy < +o0}

Proposition 2.21: The set of integrable functions is a vector space. Also, if

f and g are integrable and A is a scalar, then [(f + g)dp = [ fdp+ [gdp

and [Afdp = X[ fdp.

Proof (Real case): [Show that f + g and Af are integrable.]

Let f and g be integrable. Then, [|f|dy < +oco and [|g|du
< +4oo. First, |f + g| < |f| + |g| implies that [|f + gldp <
J(f+lahdn < [If|dp+ [lgldp < +oo. Thus, f +gis
integrable. Next, |Af| = |A||f]|. Thus, [|Afldu = [|A||fldp
= |\|[]f]ldp < +o0, and so A f is also integrable. Hence, the
set of integrable functions is a vector space.
[Show that [(f + g)dp = [ fdu+ [gdp.]
Leth = f+g,andwritt h = ht —h™. Then, f+g= ft —
fT+gt—g=2ht—-h =ft—f +gt—g =ht+
f~4+g = ft 4+ g+ h~. Since f, g and h are all integrable,
the integrals of all these 6 functions are finite.
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Now, [(ht + f~+g )du= [(fT + g7 +h™)dp. Also,
S+ f~+g7)dp= [htdu+ [f~dp+ [g™du, and
J(FH+gt+h7)du = [frdu+ [gtdu+ [h™duby
Theorem 2.15. This implies that [hTdu + [f~du+ [g-dp
= [ftdp+ [g7du+ [h~du= [h*du— [h™dp=
[frdu— [fdu+ fgtdp— [gdp= [(f+g)du=
Jhdp = [fdu+ [gdp.
[Show that [Afdu = A[ fdp.]
First suppose that A > 0. Then, (Af)™ = Af* and (\f)~ =
Af~. Thus, [Afdp = [Af)Tdu— [ONf)~dp= [Xf*dp
S AFdu= AL Frdp— Af fdu = A(J frdu = [ f-dp)
= N[ (f* — f)dp= A[ fdp. Next,if X < 0, then (Af)* =
“Af~and (\f)” = —Af*. Thus, [Afdp = [(\f)*dp —
SO dp = f=Mf~dp— [-Mfrdu= —A] f~dp —
(~N)[ Frdp= X[ Frdp— [f-du) = [ (F* = f~)dp
= X[ fdu.

Proof of Complex case is similar; use Re and Im

Proposition 2.22: If f € £(u), then | [ fdu| < [|f]dp.

Proof:  If f is real-valued, then | [ fdu| = | [ fTdu — [f~dp| <
Jfrap+ [frdp= [(f* + f7)dp= [|f|du. Next,
suppose that f is complex-valued. If [ fdu = 0, then | [ fdu|

< [|f|du is trivially true. So, suppose that [ fdu # 0. Let

a=cePsothataf fdp = |[fdu|. Then,|[fdu|=caf fdu
= [afdu = [Re(af)du+ifIm(af)dy = [Re(af)du <
Jlafldy = fifldp since |of = |e] = 1.

Proposition 2.23
(a) Iff e L), then {z: f(x) # 0} is o-finite.
(b) Letf,g€ L'(u). Then, [pfdu= [pgduforall E € M &
[If—gldp=0% f=gae.p.
Proof of (a): Let f € L'(u),then [|f|du < +oo. Then, {z : |f(x)| # 0}
= {z: f(z) # 0} = {z: f(x) > 0} is o-finite by Proposition
2.20.



