/20
HW &z [ F /(AJ——%/R %amzﬁ/mmé/{g,)
k<g = ZF[X)éjt/;z)o | |
Popne Rt £ s BUR- msziwiadlh,,
AW Lot £ R = R ard anpppine 6T
fou ook xem%/mz‘m £ < R>R £ 1) = fixy)
i BR)- manewndly and /%Vz‘/% cach
;i’é/)? ﬁﬁ%wm 762%:'/7(’,?/;{)) 70%05) — 7[[)();)’
i orlonste, . For Lack € )
it ;= m ad Aiine
Loy Toonpoa)=$ )
A }; 46:%[ _— Q{;’
%’ Zy SX = Al
Prgra: () £ 4 B(RY-matinids
(2) Am flog) = F060) '
7 . - /
(3) F « O?(/R‘“)%WW 2
(4) Guwe an tpanply o 4 furdtio 7R 2K




130 — |
Functionsof a Real Variable > & /

Shorthand Notation: Let (X, M) be a measurable space and f : X — R.
We will say f is measurable to mean f is (M, Bg)-measurable.

Definition: Suppose that f : X — R. Define f* = maxz{f,0} and f~ =
maz{—f,0}. Thatis:
oo [ f@) when f(z) >0
(o) = { when f(z) <0

_,~_ | —f(x) when f(z) <0
fo(z) = {O when f(z) > 0

Note that:

1) flz)=f(z)— f (=)
(2) If f is measurable, then f* and f~ are both measurable by

Corollary 2.8.
(3) f+(a:) f~(x) = 0 because if f* # 0, then f~=0,andif
‘ =0, then f~ #0
5
\\ N &
y
\
N —_—————— -

Definition: Let (X, M) be a measurable space. Then, f : X — Ris called
a simple function if f is measurable and the range of f is a finite set.

Note that:
(1) If f is simple, then the range of f is ﬁnlte say {a,,a,,...,a_}.

Then, f~1({a,}) = E; € M and f(z) = Za X, (z) is called

standard form. E;'s are disjoint.
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2 IfE; c M, let f =3 b.x;, then f is simple. But, f may not
| =17
be in standard form.

Example: 2, + 3 X, is not in standard form because
[0,2] N [1,3] # 0.
2 Xy 9" Xgy T3 Xy 18 in standard form
because [0,1) N [1,2] N (2, 3] = 0.

I CEEL!

SRS o

Theorem 2.10 (a): Let (X, M) be a measurable space. If f : X — [0, +00]
is M-measurable, then there exist simple functions {¢_} such that 0 < ¢,
<¢, <. - < fwithlim ¢ (x) = f(z) forall z. If f isbounded on a set

E,then ¢, — f uniformly on E.
Proof: Form, =0,1,2,...,and0< k<2 — 1, let E¥ = {z : k/2"
< flz) < (k+1)/2"},and F,, = {z : f(z) > 2"}.
92n_]
Define ¢, = >_ k/2" - x,, + 2" - X, Itis clear that each @,
k=0 L

is simple, and ¢, > 0. Given any z with f(x) # +o0, there
exists N such that f(z) <2V < 2" foralln > N =z ¢ F,
for all n > N, and so there exists k such that £ /2" < f(z) <
(k+1)/2" = ¢ (z) =k/2" = f(z) > ¢_(z) and also

|f(z) —¢.(z)] £1/2" = liTIanzSn(w) = f(z). Onthe other hand,

if f(z) = 400 = f(z) > 2" foralln = z € F, foralln =
¢ (z)=2"= ligngbn(a:) = 400 = f(z). Thus, ¢ — f

pointwise. Suppose that f is bounded on some set E. Then,
there exists M such that f(z) < M for all z € E. Now, pick
N such that M < 2V = f(x) < 2" forall z € E and for all
n> N =|f(z)— ¢, (z)] <1/2" forall z € E. Thus, ¢, — f
uniformly on E.

To see ¢ is monotone increasing, consider the division into 2"
going to 2”1, First, ¢, = 0 - X5 +20. Xz, Where E) =
{:0/2° < f(z) <1/2°=1}and Fy = {z : f(z) > 1}.
Next, ¢, =0 - X g +1/2- Xoy +2/2- Xz +3/2- Xes +

2! . Fy where E¥ = {z:k/2! < f(z) < (k+1)/2'} such
that 0 < k < 3and F} = {z: f(z) > 2'}. We see that ¢, < ¢,
as some of the range values of ¢, pushed up to be larger in ¢,.
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@ 2.2 Integration of Non-Negative Functions

Idea: Let (X, M, 1) be a measure space and f : X — [0, +o0] be M-
measurable. We want to define [ fdu = "area under graph"

If ¢ = 3" a,X,, , in standard form, define [¢du = - a, u(Ey).
k=1 k=1

By Theorem 2.10, there exist 0 < ¢, < ¢, < - - - < f, and we would like
Fix a measure space (X, M, p), and let L* = {f : X — [0, +o0] : f is M-
measurable. }

Definition: Let ¢ € L' be simple with standard representation ¢ =

n n

>, X, Define [¢du =3 a,pu(Ey). For A € M, we define [, ¢du =
k=1 k=1 :

kz g, (B N A) = [x,dp.

Proposition 2.13: Let ¢,1) € Lt be simple. Then:
(0 (@ Ifc>0,then [(ch)du = cfpdu.
) J(@ )= [edu+ [dp
() If0< ¢ <, then [pdu < [¢dp.
(d) Fix ¢ and define v(A) = [,pdp, thenv : M — [0, 400] is
also a measure. o
Proof of (a): If ¢ = 0, then both sides equal to 0. Letc > 0, then ¢ =

Za Xz, in standard form, and c¢ = Z(ca )X, which is the
‘7_

standard form of c¢. Thus, f(cgb)du = Z(Ca,-)l»b( ‘j) =
=1
cZa w(E;) = cf ddp.

Proof of (b): Let ¢ = Z @; X5, and ¢ = Z bk X'r, be both in standard form. Then,
=1

E,UE,U . UEn—X—FlLJFQ . UFm. This

n m
implies that E; N Fy, are disjoint. So,|J U (E;NFy) =X
_7 1k=1

/ Also, note that U E;NF, = E; and U E; N Fy = Fy,.
k=1 J=
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Thus, [ gdp+ [dp = Ya,u(B;) + S buu(Fi) =
= =

n m m n

Y2 au(E;NFy)+ 3 Y b, (FrNE;) =
j=1k=1 k=1j=1

n m

> 2 (a; +b,)u(E; N Fy). Now, let ¢ + 1 = 3 ¢,X,, and let
F=1k=1 I
z € Gy. Then, there exist j, and k, such that z € E; N F, .

This implies that ¢, = (¢ + ¢)(x) = a, +b, . Thus, each ¢, isa

suma, + b, and G; = {E; N F : ¢, = a, + b,}. Thus, u(Gy)

ik
= Z pw(E;NFy),and so [(¢ +¢)du = chu(Gl) =
ka—cl
(e, b)Y wENF) =Y. Y- (a,+b)u(E; N Fy) =
Jédu+ [ddp.

Proof of (¢): Let0 < ¢ < 1. Then, v = ¢ + (¢ — ¢) where ¢ — ¢ is
o still simple. Thus, by (b), [¥dy = [[¢ + (¥ — ¢)]dp =
Jédu+ [(d—¢) dp > [ ddu.
Proof of (d): Fix ¢ andlet ¢ = Za Xz, in standard form, and define
J=1
v: M —[0,+00] by v(A) = [,¢dp. Ttis clear that v(0) =
Jy#dp =0and v(A) = [,¢du > 0. Let A = UA;c where

each Ay, are disjoint. Then, u(UAk) =v(4) = f L dp =

> a,u(E; N 4) = z [iu(Ej AW =

k=1
Ij; [Jéaju(EmAm - iijkcﬁczu gvmk).

Thus, v is a measure.

T
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Corollary: Let ¢ be simple and ¢ = lf%bl X > May not be in standard form,
but each b, > 0. Then, [¢du = lilblu(Fl).
Proof: By Proposition 2.14-(b) and induction, [¢dy = lfjl[ Joxzdu]
= l_il [ (b, Xp +0- Xplc)d:“ (notice that this is in standard form)

= Su(R) +0- w(FY) = (),

Definition: Let (X, M, 1) be a measure space. For, f € LT, we define
[fdu=sup{fédy:0 < ¢ < fand ¢ is simple. }

€85, Nof (1): Let ¥ be simple. Then. [vdy = sup{ [¢dp: 0 < ¢ < pand ¢
is simple. We have no trouble here, sup gives the same value for a simple
function ).

Note (2): If f € Lt and ¢ > 0, then [cfdy = sup{[¢dp:0< ¢ < cf
€ and ¢ is simple.} Let1) = c~1¢, thatis cip = ¢, where 9 is simple. Then,
¢ < cfand ¢issimple & cyp < cf and ) issimple & ¢ < fand ¢ is
simple. So, [cfdu = sup{[pdu:0 < ¢ < cf and ¢ is simple.} =
sup{[éddu : 0 < < f,+issimple and y=c™'¢.} =
sup{fepdp: 0 < ¢ < f, and 1 is simple.} =
csup{ [ydp : 0 <9 < f,and 9 is simple.} =
cffdp. |

o8#3): If f,g€ L™ and f < g, then [fdu < [gdp because there are
more ¢'s in the definition of sup for [gdpu.

Thé;)fefxi ‘(;i‘he Monotone Convergence Theorem): Suppose that
{f}CS LT and f, < f,, forall j. Let f(x) = sup f,(z) = limf(z).
J j

Then, [ fdp = lim[ f dy = sup [ f.du.
i J
Proof:  [Show that sup [ fdu < [ fdp.]
j
Since each f, < f, [ f,du < [ fdu = sup [ f,du < [ fdp.
j



