HW8: Let f: R > R be increasing, i.e., $\chi \leq y \Rightarrow f(x) \leq f(y)$ Prove that f is B(R)-measurable. HW9: Let f: R -> R and suppose that for each XER the function f : R-R, fx(y) = f(x,y) is B(R)-measurable and that for each $y \in \mathbb{R}$ the function $f^{y} : \mathbb{R} \rightarrow \mathbb{R}, f^{y}(x) = f(x, y)$ is continuous. For each $n \in \mathbb{N}$ set a: = I'm and define $f(x,y) = \frac{f(a_{i+1},y)(x-a_i) - f(a_i,y)(x-a_{i+1})}{a_{i+1} - a_i}$ for ai & X & ai+1 Prove: (1) for is B(R2)-measurable (2) lem $f_n(x,y) = f(x,y)$ (3) f is $B(R^2)$ -measurable (4) Give an example of a function f: R->R such that fx, ft are continuous for each, x, y but f is not continuous

Shorthand Notation: Let (X, \mathcal{M}) be a measurable space and $f: X \to \overline{\mathbb{R}}$. We will say f is measurable to mean f is $(\mathcal{M}, \mathcal{B}_{\overline{\mathbb{R}}})$ -measurable.

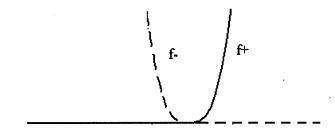
Definition: Suppose that $f: X \to \overline{\mathbb{R}}$. Define $f^+ = max\{f, 0\}$ and $f^- = max\{-f, 0\}$. That is:

$$f^{+}(x) = \begin{cases} f(x) & \text{when } f(x) \ge 0\\ 0 & \text{when } f(x) < 0 \end{cases}$$

$$f^{-}(x) = \begin{cases} -f(x) & \text{when } f(x) \le 0\\ 0 & \text{when } f(x) > 0 \end{cases}$$

Note that:

- (1) $f(x) = f^+(x) f^-(x)$
- (2) If f is measurable, then f^+ and f^- are both measurable by Corollary 2.8.
- (3) $f^+(x) \cdot f^-(x) = 0$ because if $f^+ \neq 0$, then $f^- = 0$, and if $f^+ = 0$, then $f^- \neq 0$



Definition: Let (X, \mathcal{M}) be a measurable space. Then, $f: X \to \mathbb{R}$ is called a **simple function** if f is measurable and the range of f is a finite set.

Note that:

(1) If f is simple, then the range of f is finite, say $\{a_1, a_2, \ldots, a_n\}$. Then, $f^{-1}(\{a_i\}) = E_i \in \mathcal{M}$ and $f(x) = \sum_{i=1}^n a_i \chi_{E_i}(x)$ is called standard form. E_i 's are disjoint.

(2) If $F_j \in \mathcal{M}$, let $f = \sum_{j=1}^m b_j \chi_{F_j}$, then f is simple. But, f may not be in standard form.

Example: $2 \cdot \chi_{_{[0,2]}} + 3 \cdot \chi_{_{[1,3]}}$ is not in standard form because $[0,2] \cap [1,3] \neq \emptyset$. $2 \cdot \chi_{_{[0,1)}} + 5 \cdot \chi_{_{[1,2]}} + 3 \cdot \chi_{_{(2,3]}}$ is in standard form because $[0,1) \cap [1,2] \cap (2,3] = \emptyset$.

Dery function is a limit of simple functions.

Theorem 2.10 (a): Let (X, \mathcal{M}) be a measurable space. If $f: X \to [0, +\infty]$ is \mathcal{M} -measurable, then there exist simple functions $\{\phi_n\}$ such that $0 \le \phi_0$ $\le \phi_1 \le \cdots \le f$ with $\lim_{n \to \infty} \phi_n(x) = f(x)$ for all x. If f is bounded on a set E, then $\phi_n \to f$ uniformly on E.

Proof: For $n_k = 0, 1, 2, \ldots$, and $0 \le k \le 2^{2n} - 1$, let $E_n^k = \{x : k/2^n < f(x) \le (k+1)/2^n\}$, and $F_n = \{x : f(x) > 2^n\}$.

Define $\phi_n = \sum_{k=0}^{2^{2n}-1} k/2^n \cdot \chi_{E_n^k} + 2^n \cdot \chi_{F_n}$. It is clear that each ϕ_n

is simple, and $\phi_n \geq 0$. Given any x with $f(x) \neq +\infty$, there exists N such that $f(x) \leq 2^N < 2^n$ for all $n \geq N \Rightarrow x \notin F_n$ for all n > N, and so there exists k such that $k/2^n < f(x) \leq (k+1)/2^n \Rightarrow \phi_n(x) = k/2^n \Rightarrow f(x) \geq \phi_n(x)$ and also $|f(x) - \phi_n(x)| \leq 1/2^n \Rightarrow \lim_n \phi_n(x) = f(x)$. On the other hand, if $f(x) = +\infty \Rightarrow f(x) > 2^n$ for all $n \Rightarrow x \in F_n$ for all $n \Rightarrow \phi_n(x) = 2^n \Rightarrow \lim_n \phi_n(x) = +\infty = f(x)$. Thus, $\phi_n \to f$

pointwise. Suppose that f is bounded on some set E. Then, there exists M such that $f(x) \leq M$ for all $x \in E$. Now, pick N such that $M < 2^N \Rightarrow f(x) < 2^n$ for all $x \in E$ and for all $n > N \Rightarrow |f(x) - \phi_n(x)| \leq 1/2^n$ for all $x \in E$. Thus, $\phi_n \to f$ uniformly on E.

To see ϕ is monotone increasing, consider the division into 2^n going to 2^{n+1} . First, $\phi_0 = 0 \cdot \chi_{E_0^0} + 2^0 \cdot \chi_{F_0}$ where $E_0^0 = \{x: 0/2^0 < f(x) \le 1/2^0 = 1\}$ and $F_0 = \{x: f(x) > 1\}$. Next, $\phi_1 = 0 \cdot \chi_{E_1^0} + 1/2 \cdot \chi_{E_1^1} + 2/2 \cdot \chi_{E_1^2} + 3/2 \cdot \chi_{E_1^3} + 2^1 \cdot F_1$ where $E_1^k = \{x: k/2^1 < f(x) \le (k+1)/2^1\}$ such that $0 \le k \le 3$ and $F_1 = \{x: f(x) > 2^1\}$. We see that $\phi_0 \le \phi_1$ as some of the range values of ϕ_0 pushed up to be larger in ϕ_1 .

2.2 Integration of Non-Negative Functions

<u>Idea</u>: Let (X, \mathcal{M}, μ) be a measure space and $f: X \to [0, +\infty]$ be \mathcal{M} -measurable. We want to define $\int f d\mu =$ "area under graph"

If
$$\phi = \sum_{k=1}^n a_k \chi_{E_k}$$
, in standard form, define $\int \phi d\mu = \sum_{k=1}^n a_k \mu(E_k)$.

By Theorem 2.10, there exist $0 \le \phi_0 \le \phi_1 \le \cdots \le f$, and we would like $\int f d\mu = \lim_n \int \phi_n d\mu$.

Fix a measure space (X, \mathcal{M}, μ) , and let $L^+ = \{f : X \to [0, +\infty] : f \text{ is } \mathcal{M}$ -measurable.}

Definition: Let $\phi \in L^+$ be simple with standard representation $\phi = \sum_{k=1}^n a_k \chi_{E_k}$. Define $\int \phi d\mu = \sum_{k=1}^n a_k \mu(E_k)$. For $A \in \mathcal{M}$, we define $\int_A \phi d\mu = \sum_{k=1}^n a_k \mu(E_k \cap A) = \int \phi \chi_A d\mu$.

Proposition 2.13: Let $\phi, \psi \in L^+$ be simple. Then:

- (a) If $c \ge 0$, then $\int (c\phi)d\mu = c\int \phi d\mu$.
- (b) $\int (\phi + \psi) d\mu = \int \phi d\mu + \int \psi d\mu$
- (c) If $0 \le \phi \le \psi$, then $\int \phi d\mu \le \int \psi d\mu$.
- (d) Fix ϕ and define $\nu(A) = \int_A \phi d\mu$, then $\nu : \mathcal{M} \to [0, +\infty]$ is also a measure.

Proof of (a): If c=0, then both sides equal to 0. Let c>0, then $\phi=\sum_{j=1}^n a_j\chi_{E_j}$, in standard form, and $c\phi=\sum_{j=1}^n (ca_j)\chi_{E_j}$ which is the standard form of $c\phi$. Thus, $\int (c\phi)d\mu=\sum_{j=1}^n (ca_j)\mu(E_j)=c\sum_{j=1}^n a_j\mu(E_j)=c\int \phi d\mu$.

Proof of (b): Let $\phi = \sum_{j=1}^n a_j \chi_{E_j}$ and $\psi = \sum_{k=1}^m b_k \chi_{F_k}$ be both in standard form. Then, $E_1 \stackrel{.}{\cup} E_2 \stackrel{.}{\cup} \cdots \stackrel{.}{\cup} E_n = X = F_1 \stackrel{.}{\cup} F_2 \stackrel{.}{\cup} \cdots \stackrel{.}{\cup} F_m$. This implies that $E_j \cap F_k$ are disjoint. So, $\bigcup_{j=1}^n \bigcup_{k=1}^m (E_j \cap F_k) = X$. Also, note that $\bigcup_{k=1}^m E_j \cap F_k = E_j$ and $\bigcup_{j=1}^n E_j \cap F_k = F_k$.

Thus,
$$\int \phi d\mu + \int \psi d\mu = \sum_{j=1}^{n} a_{j}\mu(E_{j}) + \sum_{k=1}^{m} b_{k}\mu(F_{k}) = \sum_{j=1}^{n} \sum_{k=1}^{m} a_{j}\mu(E_{j} \cap F_{k}) + \sum_{k=1}^{m} \sum_{j=1}^{n} b_{k}(F_{k} \cap E_{j}) = \sum_{j=1}^{n} \sum_{k=1}^{m} (a_{j} + b_{k})\mu(E_{j} \cap F_{k}).$$
 Now, let $\phi + \psi = \sum_{l} c_{l}\chi_{G_{l}}$, and let $x \in G_{l}$. Then, there exist j_{0} and k_{0} such that $x \in E_{j_{0}} \cap F_{k_{0}}$. This implies that $c_{l} = (\phi + \psi)(x) = a_{j_{0}} + b_{k_{0}}$. Thus, each c_{l} is a sum $a_{j} + b_{k}$ and $G_{l} = \bigcup_{j,k} \{E_{j} \cap F_{k} : c_{l} = a_{j} + b_{k}\}$. Thus, $\mu(G_{l}) = \sum_{\substack{j,k \\ a_{j}+b_{k}=c_{l}}} \mu(E_{j} \cap F_{k}),$ and so $\int (\phi + \psi)d\mu = \sum_{l} c_{l}\mu(G_{l}) = \sum_{\substack{j,k \\ a_{j}+b_{k}=c_{l}}} \mu(E_{j} \cap F_{k}) = \sum_{j=1}^{n} \sum_{k=1}^{m} (a_{j} + b_{k})\mu(E_{j} \cap F_{k}) = \int \phi d\mu + \int \psi d\mu.$

(c): Let $0 < \phi < \psi$. Then, $\psi = \phi + (\psi - \phi)$ where $\psi - \phi$ is

Proof of (c): Let $0 \le \phi \le \psi$. Then, $\psi = \phi + (\psi - \phi)$ where $\psi - \phi$ is still simple. Thus, by (b), $\int \psi d\mu = \int [\phi + (\psi - \phi)] d\mu = \int \phi d\mu + \int (\psi - \phi) d\mu \ge \int \phi d\mu$.

Proof of (d): Fix ϕ and let $\phi = \sum_{j=1} a_j \chi_{E_j}$, in standard form, and define $\nu: \mathcal{M} \to [0, +\infty]$ by $\nu(A) = \int_A \phi d\mu$. It is clear that $\nu(\emptyset) = \int_\emptyset \phi d\mu = 0$ and $\nu(A) = \int_A \phi d\mu \geq 0$. Let $A = \bigcup_k A_k$ where each A_k are disjoint. Then, $\nu(\bigcup_k A_k) = \nu(A) = \int_A \phi d\mu = \sum_{j=1}^n a_j \mu(E_j \cap A) = \sum_{j=1}^n a_j [\sum_{k=1}^\infty \mu(E_j \cap A_k)] = \sum_{k=1}^\infty [\sum_{j=1}^n a_j \mu(E_j \cap A_k)] = \sum_{k=1}^\infty [\int_{A_k} \phi d\mu] = \sum_{k=1}^\infty \nu(A_k)$. Thus, ν is a measure.

Corollary: Let ϕ be simple and $\phi = \sum_{l=1}^{m} b_{l} \chi_{F_{l}}$, may not be in standard form, but each $b_l \geq 0$. Then, $\int \phi d\mu = \sum_{l=1}^{m} b_l \mu(F_l)$.

By Proposition 2.14-(b) and induction, $\int \phi d\mu = \sum_{l=1}^{m} [\int b_{l} \chi_{F_{l}} d\mu]$ Proof: $=\sum_{l=1}^{m}\int (b_{l}\chi_{F_{l}}+0\cdot\chi_{F_{l}^{c}})d\mu$ (notice that this is in standard form) $=\sum_{l=1}^{m}b_{l}\mu(F_{l})+0\cdot\mu(F_{l}^{c})=\sum_{l=1}^{m}b_{l}\mu(F_{l}).$

Definition: Let (X, \mathcal{M}, μ) be a measure space. For, $f \in L^+$, we define $\int f d\mu = \sup \{ \int \phi d\mu : 0 \le \phi \le f \text{ and } \phi \text{ is simple.} \}$

Note (1): Let ψ be simple. Then, $\int \psi d\mu = \sup \{ \int \phi d\mu : 0 \le \phi \le \psi \text{ and } \phi \}$ is simple. We have no trouble here, sup gives the same value for a simple function ψ .

Note (2): If $f \in L^+$ and c > 0, then $\int cf d\mu = \sup \{ \int \phi d\mu : 0 \le \phi \le cf \}$ and ϕ is simple.} Let $\psi = c^{-1}\phi$, that is $c\psi = \phi$, where ψ is simple. Then, $\phi \leq cf$ and ϕ is simple $\Leftrightarrow c\psi \leq cf$ and ψ is simple $\Leftrightarrow \psi \leq f$ and ψ is simple. So, $\int cf d\mu = \sup \{ \int \phi d\mu : 0 \le \phi \le cf \text{ and } \phi \text{ is simple.} \} =$ $\sup \{ \int \phi d\mu : 0 \le \psi \le f, \psi \text{ is simple and } \psi = c^{-1}\phi. \} =$ $\sup \{ \int c\psi d\mu : 0 \le \psi \le f, \text{ and } \psi \text{ is simple.} \} =$ $csup\{ \int \psi d\mu : 0 \le \psi \le f, \text{ and } \psi \text{ is simple.} \} =$ $c \int f d\mu$.

Theorem (The Monotone Convergence Theorem): Suppose that $\{f_n\}\subseteq L^{\stackrel{\smile}{+}} ext{ and } f_j \leq f_{j+1} ext{ for all } j. ext{ Let } f(x)=\sup_i f_j(x)=\lim_i f(x).$

Then, $\int f d\mu = \lim_{i} \int f_{i} d\mu = \sup_{i} \int f_{i} d\mu$.

[Show that $\sup_{i} \int f_i d\mu \leq \int f d\mu$.] Proof: Since each $f_j \leq f, \int f_j d\mu \leq \int f d\mu \Rightarrow \sup_i \int f_j d\mu \leq \int f d\mu.$