By with for B(X)

Corollary 2.2: Let X and Y be topological spaces (or metric spaces), $\mathcal{B}(X)$ and $\mathcal{B}(X)$ be Borel sets. If $f: X \to Y$ is continuous, then f is $(\mathcal{B}(X), \mathcal{B}(X))$ -measurable.

Proof: Let X and Y be topological spaces (or metric spaces), \mathcal{B}_X and \mathcal{B}_Y be Borel sets and $f: X \to Y$ be continuous. Let \mathcal{E} be the collection of open subsets of Y. Then, \mathcal{E} generates \mathcal{B}_Y . Let $U \in \mathcal{E}$, then $f^{-1}(U)$ is open in X because f is continuous. This implies that $f^{-1}(U) \in \mathcal{B}_X$. Thus, by Proposition 2.1, f is $(\mathcal{B}_X, \mathcal{B}_Y)$ - measurable.

Shorthand: Let (X, \mathcal{M}) be a measurable space and $f: X \to \mathbb{R}$, then we say that f is \mathcal{M} -measurable or measurable to mean that f is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ -measurable. That is $f^{-1}(B) \in \mathcal{M}$ for B, the Borel sets of \mathbb{R} .

Proposition 2.3: Let (X, \mathcal{M}) be a measurable space and $f: X \to \mathbb{R}$. Then the following statements are equivalent:

- (a) f is \mathcal{M} -measurable.
- (b) $f^{-1}((a, +\infty)) \in \mathcal{M}$ for all $a \in \mathbb{R}$.
- (c) $f^{-1}([a, +\infty)) \in \mathcal{M}$ for all $a \in \mathbb{R}$.
- (d) $f^{-1}((-\infty, a)) \in \mathcal{M}$ for all $a \in \mathbb{R}$.
- (e) $f^{-1}((-\infty, a]) \in \mathcal{M}$ for all $a \in \mathbb{R}$.

Proof: $((a) \Rightarrow (b))$ Suppose that f is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ -measurable. Then, $(a, +\infty) \in \mathcal{B}_{\mathbb{R}}$ implies that $f^{-1}((a, +\infty)) \in \mathcal{M}$. $((b) \Rightarrow (a))$ We have shown earlier that the sets of the form $\mathcal{E} = \{(a, +\infty) : a \in \mathbb{R}\}$ generate $\mathcal{B}_{\mathbb{R}}$. Thus, by Proposition 2.1, f is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ -measurable.

Note: The rest of the proofs are similar. Use that fact that the given collections generate the Borel sets.

Composition

Note 1: Suppose that $f, g : \mathbb{R} \to \mathbb{R}$, and they are both $\mathcal{B}_{\mathbb{R}}$ -measurable. This means that if $B \in \mathcal{B}_{\mathbb{R}}$, then $f^{-1}(B), g^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$. Then, if $f \circ g : \mathbb{R} \to \mathbb{R}$ and $B \in \mathcal{B}_{\mathbb{R}}$, then $(f \circ g)^{-1}(B) = g^{-1}(f^{-1}(B)) \in \mathcal{B}_{\mathbb{R}}$. Thus, $f \circ g$ is $\mathcal{B}_{\mathbb{R}}$ -measurable.

Note 2: Let \mathcal{L} be the collection of Lebesgue sets. Suppose that $f,g:\mathbb{R}\to\mathbb{R}$ and they are both \mathcal{L} -measurable. That is if $B\in\mathcal{B}_{\mathbb{R}}$, then $f^{-1}(B),g^{-1}(B)\in\mathcal{L}$. Now consider $f\circ g:\mathbb{R}\to\mathbb{R}$ and let $B\in\mathcal{B}_{\mathbb{R}}$. Now, $(f\circ g)^{-1}(B)=g^{-1}(f^{-1}(B))$ and $f^{-1}(B)\in\mathcal{L}$, but $f^{-1}(B)$ may not be a Borel set. Thus, in general, $(f\circ g)^{-1}(B)=g^{-1}(f^{-1}(B))\notin\mathcal{L}$. That is, $f\circ g$ need not be \mathcal{L} -measurable. In fact such examples that

Definition: Let $E \subseteq X$. Then the function $\chi_E : X \to \mathbb{R}$ defined by

$$\chi_{\scriptscriptstyle E}(x) = \left\{ egin{array}{ll} 1 & ext{if } x \in E \ 0 & ext{if } x
otin E \end{array}
ight.$$

is called the **characteristic function** of the set E.

Proposition: Let (X, \mathcal{M}) be a measurable space, and $E \subseteq X$. Then,

Proposition: Let
$$(X, \mathcal{M})$$
 be a measurable space, and $E \subseteq X$. Then, $\chi_E : X \to \mathbb{R}$ is \mathcal{M} -measurable if and only if $E \in \mathcal{M}$.

Proof: χ_E is measurable $\Leftrightarrow \chi_E^{-1}(B) \in \mathcal{M}$ for all $B \in \mathcal{B}_{\mathbb{R}}$. But,
$$\chi_E^{-1}(B) = \begin{cases} \emptyset & \text{if } \mathcal{B}, \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B}, \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} \emptyset & \text{if } \mathcal{B}, \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B}, \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B}, \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B}, \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B}, \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B}, \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B}, \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B}, \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ E & \text{if } \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{if } \mathcal{B} \\ \mathcal{B} \end{cases}$$

$$\chi_E^{-1}(B) = \begin{cases} 0 & \text{$$

Example: Recall h(x) = x + f(x) where f is ternary, and $h: [0.1] \rightarrow$ [0.2] is a homeomorphism. If $C \subseteq [0,1]$ is a Cantor set, then h(C)has measure 1.

So, there exist $E\subseteq h(C)$ such that E is non-measurable. Pick Esuch that $0 \notin E$ and $2 \notin E$. Let $B = h^{-1}(E) \subseteq C$. Then, B is measurable, $0 \notin B$ and $1 \notin B$. So, $h^{-1}: [0,2] \to [0,1]$ is continuous and can be extended to $b: \mathbb{R} \to \mathbb{R}$ defined by

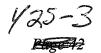
$$b(x) = \begin{cases} 0 & \text{if } x < 0\\ h^{-1}(x) & \text{if } 0 \le x \le 2\\ 1 & \text{if } 2 < x \end{cases}$$

Thus, b is continuous on \mathbb{R} implies that b is $(\mathcal{B}_{\mathbb{R}}, \mathcal{B}_{\mathbb{R}})$ -measurable. Note that χ_B is $(\mathcal{L}, \mathcal{B}_{\mathbb{R}})$ -measurable. Now, consider $(\chi_B \circ b)^{-1}(\{1\})$ = $\{x: (\chi_B \circ b)(x) = 1\} = \{x: b(x) \in B\} = \{x: h^{-1}(x) \in B\} = (h^{-1})^{-1}(B) = h(B) = E$ which is non-measurable. Thus, $\chi_B \circ b$ is not $(\mathcal{L}, \mathcal{B}_{\scriptscriptstyle D})$ -measurable.

Idea of Finite Products: Given measurable spaces (Y_1, \mathcal{N}_1) and (Y_2, \mathcal{N}_2) . We want a σ -algebra on the product space $Y_1 \times Y_2$. To define such a σ algebra, look at the σ -algebra generated by all sets of the form $\{B_1 \times B_2 :$ $B_1 \in \mathcal{N}_1$ and $B_2 \in \mathcal{N}_2$. This σ -algebra is denoted by $\mathcal{N}_1 \otimes \mathcal{N}_2$.

has So, such mea and DM17

Thu Not



Proposition: Let $Y_1 = Y_2 = \mathbb{R}$ and $\mathcal{N}_1 = \mathcal{N}_2 = \mathcal{B}_{\mathbb{R}}$. Then, $Y_1 \times Y_2 = \mathbb{R}^2$ and $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}} = \mathcal{B}_{\mathbb{R}^2}$.

Proof: [Show that $\mathcal{B}_{_{\mathbb{R}^2}}\subseteq\mathcal{B}_{_{\mathbb{R}}}\otimes\mathcal{B}_{_{\mathbb{R}}}.$]

Let $O \in \mathbb{R}^2$ be open. Look at rectangles $(p_1,q_1) \times (p_2,q_2) \subseteq O$ such that $p_i,q_i \in \mathbb{Q}$. Since O is open, $O = \bigcup \{(p_1,q_1) \times (p_2,q_2) : p_i,q_i \in \mathbb{Q} \text{ and } (p_1,q_1) \times (p_2,q_2) \subseteq O\}$. Then, this is a countable union. But, $(p_i,q_i) \in \mathcal{B}_{\mathbb{R}} \Rightarrow (p_1,q_1) \times (p_2,q_2) \in \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}} \Rightarrow O \in \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$. Since open sets generates $\mathcal{B}_{\mathbb{R}^2}$, $\mathcal{B}_{\mathbb{R}^2} \subseteq \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$.

[Show that $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}} \subseteq \mathcal{B}_{\mathbb{R}^2}$.]

It is enough to show that if $B_1, B_2 \in \mathcal{B}_{\mathbb{R}}$, then $B_1 \times B_2 \in \mathcal{B}_{\mathbb{R}^2}$. Let $\mathcal{A} = \{E \subseteq \mathbb{R} : E \times \mathbb{R} \in \mathcal{B}_{\mathbb{R}^2}\}$. Note that $\emptyset \in \mathcal{A}, \mathbb{R} \in \mathcal{A}$, and $E \in \mathcal{A} \Rightarrow E \times \mathbb{R} \in \mathcal{B}_{\mathbb{R}^2} \Rightarrow (E \times \mathbb{R})^c \in \mathcal{B}_{\mathbb{R}^2}$. But, $(E \times \mathbb{R})^c = E^c \times \mathbb{R} \Rightarrow E^c \in \mathcal{A}$. Finally, $E_n \in \mathcal{A} \Rightarrow E_n \times \mathbb{R} \in \mathcal{B}_{\mathbb{R}^2} \Rightarrow \bigcup_n (E_n \times \mathbb{R}) \in \mathcal{B}_{\mathbb{R}^2}$. But, $\bigcup_n (E_n \times \mathbb{R}) = (\bigcup_n E_n) \times \mathbb{R} \Rightarrow \bigcup_n E_n \in \mathcal{A}$.

Thus, A is a σ -algebra.

If we do the following: $(a,b) \times \mathbb{R} \in \mathcal{B}_{\mathbb{R}^2} \Rightarrow (a,b) \in \mathcal{A}$. Thus, $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{A}$. Hence, if $B \in \mathcal{B}_{\mathbb{R}}$, then $B \times \mathbb{R} \in \mathcal{B}_{\mathbb{R}^2}$. Similarly, if $B \in \mathcal{B}_{\mathbb{R}}$, then $\mathbb{R} \times B \in \mathcal{B}_{\mathbb{R}^2}$. Hence, $B_1 \times B_2 = (B_1 \times \mathbb{R}) \cap (\mathbb{R} \times B_2) \in \mathcal{B}_{\mathbb{R}^2}$. This shows that $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}} \subseteq \mathcal{B}_{\mathbb{R}^2}$, and so $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}} = \mathcal{B}_{\mathbb{R}^2}$.

Proposition 2.4: (Case n=2) Given $(X,\mathcal{M}), (Y_1,\mathcal{N}_1)$, and (Y_2,\mathcal{N}_2) , and also $f_1:X\to Y_1$ and $f_2:X\to Y_2$, define $f:X\to Y_1\times Y_2$ by $f(x)=(f_1(x),f_2(x))$. Then, f is $(\mathcal{M},\mathcal{N}_1\otimes\mathcal{N}_2)$ -measurable if and only if f_i is $(\mathcal{M},\mathcal{N}_i)$ -measurable for each i=1,2.

Proof: (\Rightarrow) Given $B_1 \in \mathcal{N}_1 \Rightarrow B_1 \times Y_2 \in \mathcal{N}_1 \times \mathcal{N}_2 \Rightarrow f^{-1}(B_1 \times Y_2) \in \mathcal{M}$. But, $f^{-1}(B_1 \times Y_2) = \{x: f(x) \in B_1 \times Y_2\} = \{x: (f_1(x), f_2(x)) \in B_1 \times Y_2\} = \{x: f_1(x) \in B_1\} = f_1^{-1}(B_1)$. Thus, $f_1^{-1}(B_1) \in \mathcal{M}$, and so f_1 is $(\mathcal{M}, \mathcal{N}_1)$ -measurable. Similarly, f_2 is $(\mathcal{M}, \mathcal{N}_2)$ -measurable. (\Leftarrow) Let $\mathcal{A} = \{B \in Y_1 \times Y_2: f^{-1}(B) \in \mathcal{M}\}$. It is easy to show that \mathcal{A} is a σ -algebra. Let $B_i \in \mathcal{N}_i$. Then, $B_1 \times B_2 = (B_1 \times Y_2) \cap (Y_1 \times B_2) \Rightarrow f^{-1}(B_1 \times B_2) = f^{-1}(B_1 \times Y_2) \cap f^{-1}(Y_1 \times B_2)$. Now, $f^{-1}(B_1 \times Y_2) = \{x: f(x) \in B_1 \times Y_2\} = \{x: f_1(x) \in B_1\} = f_1^{-1}(B_1) \in \mathcal{M} \Rightarrow B_1 \times Y_2 \in \mathcal{A}$, and

similarly $Y_1 \times B_2 \in \mathcal{A} \Rightarrow B_1 \times B_2 = (B_1 \times Y_2) \cap (Y_1 \times B_2)$ $\in \mathcal{A}$. Thus, $\mathcal{N}_1 \otimes \mathcal{N}_2 \subseteq \mathcal{A}$, and so $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{N}_1 \otimes \mathcal{N}_2$. Therefore, f is $(\mathcal{M}, \mathcal{N}_1 \otimes \mathcal{N}_2)$ -measurable.

Proposition 2.6: Let (X, \mathcal{M}) be measurable. If $f, g: X \to \mathbb{R}$ are $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ -measurable, then f + g and fg are $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ -measurable.

Proof: Look at $F: X \to \mathbb{R}^2$ defined by F(x) = (f(x), g(x)). By Proposition 2.4, F is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}})$ -measurable. Let $s: \mathbb{R}^2 \to \mathbb{R}$ be defined by s((x,y)) = x + y. Then, s is continuous. This implies that s is $(\mathcal{B}_{\mathbb{R}^2}, \mathcal{B}_{\mathbb{R}})$ -measurable by Corollary 2.2. But, $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}} = \mathcal{B}_{\mathbb{R}^2}$. So, $s \circ F: X \to \mathbb{R}$ is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ -measurable, and $(s \circ F)(x) = s((f(x), g(x)) = f(x) + g(x)$. Thus, f + g is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ -measurable. Next, $p: \mathbb{R}^2 \to \mathbb{R}$ be defined by p((a, b)) = ab. Then, p is continuous. By Corollary 2.2, p is $(\mathcal{B}_{\mathbb{R}^2}, \mathcal{B}_{\mathbb{R}})$ -measurable. So, $p \circ F: X \to \mathbb{R}$ is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ -measurable , and $(p \circ F)(x) = p(f(x), g(x)) = f(x)g(x)$. Thus, fg is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ -measurable.

General Product

Let $(Y_{\alpha}, \mathcal{N}_{\alpha})$ where $\alpha \in A$ be measurable spaces. Then, $Y = \prod_{\alpha \in A} Y_{\alpha}$

 $=\{y:y=(y_{\alpha})_{\alpha\in A} \text{ and } y_{\alpha}\in Y_{\alpha}\}.$ Also, the **product \sigma-algebra**, denoted by $\mathcal{N}=\bigotimes_{\alpha\in A}\mathcal{N}_{\alpha}$, is the σ -algebra generated by all sets of the

following form:

Pick countably many α 's, say $\{\alpha_n\}$.

For each n, pick $E_n \in \mathcal{N}_{\alpha_n}$.

Let $E = \{y = (y_{\alpha}) : y_{\alpha_n} \in E_n \text{ for all } n\}$ which is called

countable windows. Another set that generates \mathcal{N} :

Pick one α , say α_1 and $E_1 \in \mathcal{N}_{\alpha_1}$.

Let $E = \{ y = (y_{\alpha}) : y_{\alpha_1} \in E_1 \}.$

They are the same set because:

$$\{y=(y_{\scriptscriptstyle lpha}):y_{\scriptscriptstyle lpha_n}\in E_n ext{ for all } n\}=\bigcap_{n=1}^\infty \{\{y=(y_{\scriptscriptstyle lpha}):y_{\scriptscriptstyle lpha_n}\in E_n\}.$$

Proposition 2.4: Let (X, \mathcal{M}) and $(Y_{\alpha}, \mathcal{N}_{\alpha})$ be measurable spaces, and $f_{\alpha}: X \to Y_{\alpha}$. Define $f: X \to \prod Y_{\alpha}$ by $f(x) = (f_{\alpha}(x))$. Then, f is $(\mathcal{M}, \bigotimes \mathcal{N}_{\alpha})$ -measurable if and only if f_{α} is $(\mathcal{M}, \mathcal{N}_{\alpha})$ -measurable for all α .

OMIT

Extended Reals

 $\mathbb{R}_{e} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$ $\mathbb{R}_{e} = \{B \subseteq \mathbb{R}_{e} : B \cap \mathbb{R} \in \mathcal{B}_{\mathbb{R}}\}$

Note that $\mathcal{B}_{\mathbb{R}}$ is a σ -algebra, and $B \in \mathcal{B}_{\mathbb{R}}$ if and only if $B = B_1$, $B_1 \cup \{+\infty\}$, $B_1 \cup \{-\infty\}$, or $B_1 \cup \{+\infty\} \cup \{-\infty\}$ where $B_1 \in \mathcal{B}_{\mathbb{R}}$.

Proposition: Let (X, \mathcal{M}) be a measurable space and $f: X \to \mathbb{R}_2$. Then, following statements are equivalent:

- Ing statements are equivalent:
 (1) f is $(\mathcal{A}, \mathcal{B})$ -measurable. $(\mathcal{M}, \mathcal{B}(\mathcal{R}))$ -measurable.
- (2) $f^{-1}((a, +\infty]) \in \mathcal{M}$ for all $a \in \mathbb{R}$
- (3) $f^{-1}([a, +\infty]) \in \mathcal{M}$ for all $a \in \mathbb{R}$
- (4) $f^{-1}([-\infty, a)) \in \mathcal{M}$ for all $a \in \mathbb{R}$
- (5) $f^{-1}([-\infty, a]) \in \mathcal{M} \text{ for all } a \in \mathbb{R}$

Proof: $((1) \Rightarrow (2))$ Recall that $(a, +\infty) = (a, +\infty) \cup \{+\infty\}$, and $(a, +\infty) \in \mathcal{B}_{\mathbb{R}}$ implies that $(a, +\infty) \cup \{+\infty\} \in \mathcal{B}_{\mathbb{R}}$. Since f is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ -measurable, $f^{-1}((a, +\infty)) \in \mathcal{M}$ for all $a \in \mathbb{R}$. Similarly, $(1) \Rightarrow (3)$, $(1) \Rightarrow (4)$, and $(1) \Rightarrow (5)$. $((2) \Rightarrow (1)$ - sketch) The set of the form $(a, +\infty)$ generates $\mathcal{B}_{\mathbb{R}}$, and $(a, +\infty)^c = \{-\infty\}$. Now, $\{B : f^{-1}(B) \in \mathcal{M}\}$ is a σ -algebra, and a generating set for $\mathcal{B}_{\mathbb{R}}$. So, it must contain $\mathcal{B}_{\mathbb{R}}$. Thus, $B \in \mathcal{B}_{\mathbb{R}}$, then $f^{-1}(B) \in \mathcal{M}$, and so f is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ -measurable. Similarly, $(3) \Rightarrow (1)$, $(4) \Rightarrow (1)$, and $(5) \Rightarrow (1)$ because $[a, +\infty]$, $[-\infty, a)$ and $[-\infty, a]$ also generate $\mathcal{B}_{\mathbb{R}}$.

Proposition 2.7: Let (X,\mathcal{M}) be a measurable space, and $f_j:X\to\overline{\mathbb{R}}$ be all $(\mathcal{M},\mathcal{B}_{\overline{\mathbb{R}}})$ -measurable. Then, $g_1(x)=\sup_j f_j(x),$ $g_2(x)=\inf_j f_j(x),$ $g_3(x)=\lim_j \sup_j f_j(x)$ and $g_4(x)=\lim_j \inf_j f_j(x)$ are all $(\mathcal{M},\mathcal{B}_{\overline{\mathbb{R}}})$ -measurable. If $\lim_i f_j(x)$ exists for all x, then it is also $(\mathcal{M},\mathcal{B}_{\overline{\mathbb{R}}})$ -measurable.

Proof: [Show that g_1 is $(\mathcal{M}, \mathcal{B}_{\overline{\mathbb{R}}})$ -measurable.] $g_1^{-1}((a, +\infty]) = \bigcup_{j=1}^{\infty} f_j^{-1}((a, +\infty]) \in \mathcal{M} \text{ because each } f_j^{-1}((a, +\infty]) \in \mathcal{M}. \text{ Thus, } g_1 \text{ is } (\mathcal{M}, \mathcal{B}_{\overline{\mathbb{R}}}) \text{-measurable.}$ [Show that g_2 is g_1 is $(\mathcal{M}, \mathcal{B}_{\overline{\mathbb{R}}})$ -measurable.] $g_2^{-1}([-\infty, a)) = \bigcup_{j=1}^{\infty} f_j^{-1}([-\infty, a)) \in \mathcal{M} \text{ because each } f_j^{-1}([-\infty, a)) \in \mathcal{M}. \text{ Thus, } g_2 \text{ is } (\mathcal{M}, \mathcal{B}_{\overline{\mathbb{R}}}) \text{-measurable.}$

[Show that g_3 is $(\mathcal{M},\mathcal{B}_{\overline{\mathbb{R}}})$ -measurable.] Let $h_k(x) = \sup_{j>k} f_j(x)$, then $\inf_k h_k(x) = \lim_j \sup_j f_j(x)$. By the first argument, h_k is measurable for all k. This implies that $\inf_k h_k(x) = \lim_j \sup_j f_j(x) = g_3(x)$ is measurable. Thus, g_3 is $(\mathcal{M},\mathcal{B}_{\overline{\mathbb{R}}})$ -measurable. [Show that g_4 is $(\mathcal{M},\mathcal{B}_{\overline{\mathbb{R}}})$ -measurable.] Similarly, let $l_k(x) = \inf_j f_j(x)$, then $\sup_k l_k(x) = \lim_j \inf_j f_j(x) = g_4(x)$. Thus, g_4 is $(\mathcal{M},\mathcal{B}_{\overline{\mathbb{R}}})$ -measurable. Finally, if $\lim_j f_j(x)$ exists for all x, the it is the same as $\lim_j \sup_j f_j(x) = \lim_j \inf_j f_j(x)$, and so $\lim_j f_j(x)$ is $(\mathcal{M},\mathcal{B}_{\overline{\mathbb{R}}})$ -measurable.

Corollary 2.8: Let (X, \mathcal{M}) be a measurable space, and $f, g: X \to \overline{\mathbb{R}}$ be $(\mathcal{M}, \mathcal{B}_{\overline{\mathbb{R}}})$ -measurable. Then, $max\{f,g\}$ and $min\{f,g\}$ are both $(\mathcal{M}, \mathcal{B}_{\overline{\mathbb{R}}})$ -measurable.

Note: Let (X, \mathcal{M}) be a measurable space and $E \in \mathcal{M}$. Then, $\mathcal{M}_E = \{B \cap E : B \in \mathcal{M}\}$ is a σ -algebra of subsets of E.

Corollary 2.9⁺(This says more than the text): Let (X, \mathcal{M}) be a measurable space, and suppose that $f_j: X \to \overline{\mathbb{R}}$ be all $(\mathcal{M}, \mathcal{B}_{\overline{\mathbb{R}}})$ -measurable. Then, $E = \{x: \lim_j f_j(x) \text{ exists}\}$ is a measurable set. Moreover, if we define $f: E \to \overline{\mathbb{R}}$ by $f(x) = \lim_j f_j(x)$, then f is $(\mathcal{M}_E, \mathcal{B}_{\overline{\mathbb{R}}})$ -measurable.

Proof: Let $E=\{x: \underset{j}{\lim} f_j(x) \text{ exists}\}=\{x: \underset{j}{\lim} \sup f_j(x)=\lim \inf f_j(x)\}=\{x: g_3(x)=g_4(x)\}=\{x: g_3(x)-g_4(x)=0\}=(g_3-g_4)^{-1}(\{0\}).$ Since g_3-g_4 is $(\mathcal{M},\mathcal{B}_{\overline{\mathbb{R}}})$ -measurable, $(g_3-g_4)^{-1}(\{0\})=E\in\mathcal{M},$ that is E is a measurable set. On E, $\lim_j f_j(x)=g_3(x)=g_4(x).$ So, $\lim_j f_j(x)$ is measurable on E. Thus, if define $f:E\to\overline{\mathbb{R}}$ by $f(x)=\lim_j f_j(x),$ then f is $(\mathcal{M}_E,\mathcal{B}_{\overline{\mathbb{R}}})$ -measurable.