

Proposition 1.13: Let $\mathcal{A} \subseteq \mathcal{P}(X)$ be an algebra of sets and μ_{σ} be a premeasure on \mathcal{A} . If μ^* is the outer measure from μ_{σ} and $\mathcal{M} = \{A : A \text{ is } \mu^*\text{-measurable}\}$, then:

- (a) $\mu^*(A) = \mu(A)$ for all $A \in \mathcal{A}$
- (b) Every $A \in \mathcal{A}$ is μ^* -measurable, that is $\mathcal{A} \subseteq \mathcal{M}_{\bullet}$,

Proof of (a): First
$$A = A \cup \emptyset \cup \emptyset \cup \ldots$$
, so $\mu^*(A) \leq \mu(A) + \mu(\emptyset) + \mu(\emptyset) + \ldots = \mu(A)$. Thus, $\mu^*(A) \leq \mu(A)$. [Now, show that it doe not get any smaller.]

Let
$$A \subseteq \bigcup_{n=1}^{\infty} A_n$$
 where each $A_n \in \mathcal{A}$. Let $B_n = A \cap (A_n \setminus \bigcup_{j=1}^{n-1} A_j)$.

Then, $B_n \in \mathcal{A}$ and B_n s are all disjoint. Also, notice that A =

$$\bigcup_{n=1}^{\infty}B_{n}. \text{ Thus, } \mu(A)=\sum_{n=1}^{\infty}\mu(B_{n})\leq\sum_{n=1}^{\infty}\mu(A_{n}), \text{ and so } \mu(A)\leq$$

$$\inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) : A \subseteq \bigcup_{n=1}^{\infty} A_n \text{ and } A_n \in \mathcal{A} \right\} \equiv \mu^*(A).$$
 Thus, $\mu^*(A) = \mu(A)$ for all $A \in \mathcal{A}$.

Proof of (b): Let $A \in \mathcal{A}$ and $E \in X$. (We need to show that $\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \cap A^c)$.)

Let
$$B_j \in \mathcal{A}$$
 and $\epsilon > 0$ such that $E \subseteq \bigcup_{j=1}^{\infty} B_j$ and $\mu^*(E) \le 0$

$$\sum_{j=1}^{\infty} \mu(B_j) \le \mu^*(E) + \epsilon. \text{ Now, } \mu(B_j) = \mu(B_j \cap A) + \epsilon.$$

$$\mu(B_j \cap A^c)$$
. So, $\mu^*(E) + \epsilon \ge \sum_{j=1}^{\infty} \mu(B_j) = \sum_{j=1}^{\infty} \mu(B_j \cap A) + \epsilon$

$$\textstyle\sum\limits_{j=1}^{\infty}\mu(B_j\cap A^c)\geq \mu^*(\bigcup\limits_{j=1}^{\infty}(B_j\cap A))+\mu^*(\bigcup\limits_{j=1}^{\infty}(B_j\cap A^c))\geq$$

$$\mu^*(E \cap A) + \mu^*(E \cap A^c)$$
. Thus, $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$, and so every $A \in \mathcal{A}$ is μ^* -measurable.

Theorem 1.14: Let $\mathcal{A} \subseteq \mathcal{P}(X)$ be an algebra of sets, μ be a premeasure on \mathcal{A} and \mathcal{M} be a σ -algebra generated by \mathcal{A} . Then, $\overline{\mu} = \mu^*|_{\mathcal{M}}$ is a measure on \mathcal{M} such that $\overline{\mu}(A) = \mu(A)$ for all $A \in \mathcal{A}$. [Uniqueness] If $\psi: \mathcal{M} \to [0, +\infty]$ is a measure such that $\psi(A) = \mu(A)$ for

all $A \in \mathcal{A}$, then $\nu(E) \leq \overline{\mu}(E)$ and $\nu(E) = \overline{\mu}(E)$ when $\overline{\mu}(E) < +\infty$ for all $E \in \mathcal{M}$. If μ is σ -finite, then $\nu(E) = \overline{\mu}(E)$ for all $E \in \mathcal{M}$.

Proof: By Proposition 1.13-(b), we know that every set in \mathcal{A} is μ^* -measurable. A collection of μ^* -measurable sets is a σ -algebra by Caratheodory's Theorem.

1.5 Borel Measures on R

Motivation: Suppose that we had a finite measure on the Borel sets of \mathbb{R} , denoted by $\mathcal{B}_{\mathbb{R}}$. Say, $\mu : \mathcal{B}_{\mathbb{R}} \to [0, +\infty]$ is a finite measure.

Let $F(x) = \mu((-\infty, x])$ which is called the (cumulative) distribution function of μ .

If
$$x_n$$
 $\downarrow x$, then $\lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} \mu((-\infty, x_n]) = \mu(\bigcap_{n=1}^{\infty} (-\infty, x_n]) = \lim_{n \to \infty} \mu((-\infty, x_n]) = \lim_$

 $\mu(-\infty, x] = F(x)$. Thus, F is continuous from the right at x.

If
$$x_n \nearrow x$$
, then $\bigcup_{n=1}^{\infty} (-\infty, x_n] = (-\infty, x)$. So, $\lim_{n \to \infty} F(x_n) = (-\infty, x)$.

$$\lim_{n\to\infty}\mu((-\infty,x_n])=\mu(\bigcup_{n=1}^\infty(-\infty,x_n])=\mu((-\infty,x))\leq\mu((-\infty,x])=F(x)$$

Now,
$$(-\infty, x] = (-\infty, x) \cup \{x\}$$
, so $\mu((-\infty, x]) \models \mu((-\infty, x)) \cup \mu(\{x\})$

Thus, if $\mu(\lbrace x \rbrace) \neq 0$, then F is <u>not</u> continuous from the left at x.

So, when we do Lebesgue-Stieltjes outer measure, we will really only look at F right continuous.

Let $F: \mathbb{R} \to \mathbb{R}$ be increasing and right continuous. Let \mathcal{A} be an algebra generated by sets of the form $(a,b], (-\infty,b]$ and $(a,+\infty)$. (Note that they are called **h-intervals**.) Set $F(+\infty) = \lim_{x \to +\infty} F(x)$ and $F(-\infty) = \lim_{x \to -\infty} F(x)$.

Now, for any h-interval, set
$$\mu_0((a,b]) = F(b) - F(a)$$
, $\mu_0((a,+\infty)) = F(+\infty) - F(a)$ and $\mu_0((-\infty,b]) = F(b) - F(-\infty)$.

Proposition 1.15: Let F be right continuous and increasing. For $\bigcup_{i=1}^{n} (a_i, b_i]$

$$\in \mathcal{A}$$
, algebra, which are all disjoint, set $\mu_0(\bigcup_{j=1}^n (a_j,b_j]) = \sum_{j=1}^n F(b_j) - F(a_j)$.

Then, μ_0 is well-defined, and is a premeasure on A.

Proof: [Show that μ_0 is well-defined.]

First suppose that $(a,b] = \bigcup_{j=1}^{n} (a_j,b_j]$ where each $(a_j,b_j]$ is

 $\mathcal{Q}_{l} \leqslant \mathcal{Q}_{2} \leqslant \dots \leqslant \mathcal{Q}_{n} \text{ disjoint. After relabeling } (a_{j}, b_{j}] \text{ as } a = a_{1}, b_{1} = a_{2}, b_{2} = a_{3},$

$$\dots, b_{n-1} = a_n, b_n = b, \mu_0(\bigcup_{j=1}^n (a_j, b_j]) = \sum_{j=1}^n F(b_j) - F(a_j) = 0$$

$$F(b_1) - F(a_1) + F(b_2) - F(a_2) + \ldots + F(b_n) - F(a_n) = F(b_n) - F(a_1) = F(b) - F(a).$$

Next, let $A = \bigcup_{j=1}^{n} (a_j, b_j] = \bigcup_{i=1}^{m} (c_i, d_i]$. Let $J_j = (a_j, b_j]$ and $I_i = (c_i, d_i]$, then $\{J_j \cap I_i : i, j\}$ is a collection of disjoint sets.

Now, $J_j = \bigcup_{i=1}^m (J_j \cap I_i)$, and let $J_j \cap I_i = (e_{ij}, f_{ij}]$. By the first

case,
$$F(b_j) - F(a_j) = \mu_0(\bigcup_{i=1}^m (J_j \cap I_i)) = \sum_{i=1}^m F(f_{ij}) - F(e_{ij}).$$

Thus,
$$\sum_{j=1}^n F(b_j) - F(a_j) = \sum_{j=1}^n \sum_{i=1}^m F(f_{ij}) - F(e_{ij}) =$$

 $\sum_{i=1}^{m} F(d_i) - F(c_i)$. Thus, μ_0 is well-defined.

[Show that μ_0 is a premeasure on \mathcal{A} .]

Case:
$$(a,b] = \bigcup_{n=1}^{\infty} (a_n, b_n]$$

Since $b\in(a,b]$, there exists i_0 such that $b\in(a_{i_0},b_{i_0}]$, that is $b=b_{i_0}$. Relabel i_0 with 1 so that $b_1=b_{i_0}=b$, $a_1=a_{i_0}$ and $a\leq a_1$. Now, $a_1\in(a,b]$ implies that there exists i_1 such that $a_1\in(a_{i_1},b_{i_1}]$, that is $b_{i_1}=a_1$. Relabel $b_{i_1}=b_2$, $a_{i_1}=a_2$ and $(a_2,b_2]$ with $b_2=a_1$. Continue relabeling with this manner, we

see that $(a, b] = \bigcup_{n=1}^{\infty} (a_n, b_n]$ where $b_1 = b, b_2 = a_1, \dots,$

 $b_n = a_{n-1}$ and $a_1 > a_2 > \ldots > a$ with $\lim_{n \to \infty} a_n = a$.

(We need to show that $\mu_{\scriptscriptstyle 0}((a,b]) = \sum\limits_{n=1}^\infty \mu_{\scriptscriptstyle 0}((a_{\scriptscriptstyle n},b_{\scriptscriptstyle n}]).)$

The R.H.S. $= \sum_{n=1}^{\infty} \mu_0((a_n,b_n]) = \lim_{n \to \infty} \sum_{j=1}^{n} \mu_0((a_j,b_j]) = \lim_{n \to \infty} [F(b_1) - F(a_1) + F(b_2) - F(a_2) + \ldots + F(b_n) - F(a_n)] = \lim_{n \to \infty} [F(b_1) - F(a_n)] = \lim_{n \to \infty} [F(b) - F(a_n)] = F(b) - F(a) = \mu_0((a,b]).$ Thus, μ_0 is a premeasure on \mathcal{A} .

General case: Use case $(a, b] = \bigcup_{n=1}^{\infty} (a_n, b_n]$, double indexing and the similar argument.

11/18 - 4 Theorem: Let $F: R \to R$ be increasing and right continuous. Then there exists a Borel measure $\mu_F: B(R) \to [0, +\infty]$ such that $\mu_{\pm}(a,b] = F(b) - F(a)$ Pf: By Caratheodory the outer measure no where $\mu_0((a, 67) = F(6) - F(a)$ gives rise to a measure on the po-measurable sets 3Mo Sence po 12 a premeasure on A we have that A = m and so the o-algebra generated by A is in M. But the o-algebra generated by A is B(R) So, ME is just 10° restricted to the Borel sets Finally, $\mu_{F}((a, b)) = \mu_{o}((a, b)) = \mu_{o}((a, b))$ = F(6)-F(a), since for premeasures me: know $\mu_0^*(A) = \mu_0(A)$ when $A \in A_o$