1.4 $L^p - L^q$ Duality $(1 \le p, q \le +\infty, 1/p + 1/q = 1)$

Definition: A linear map $T: L^p(X, \mathfrak{A}, \mu) \to \mathbb{R}$ is called a **linear functional**. If there exists $M \geq 0$ such that $|T(f)| \leq M||f||_p$ for all $[f] \in L^p$, then T is called a **bounded linear functional** (b.l.f.). The least such M is called the **norm of** T, denoted by ||T||.

Proposition: Let $g \in \mathcal{L}^q$. Then setting $T_g : L^p(X, \mathfrak{A}, \mu) \to \mathbb{R}$ via $T_g([f]) = \int_X f g d\mu$ defines a b.l.f. with $||T_g|| = ||g||_q$. Moreover, $T_{g_1} = T_{g_2}$ if and only if $g_1 = g_2$ a.e. μ (That is $[g_1] = [g_2]$)

By Holder's inequality, if $f \in \mathcal{L}^p$, then $\left| \int_X fg d\mu \right| \leq ||f||_p ||g||_q$. So, Proof: $\int_X fg d\mu$ is a finite number for all $f \in \mathcal{L}^p$. If $[f_1] = [f_2] \Rightarrow$ $f_1 - f_2 = 0$ $a.e.\mu \Rightarrow \int_X (f_1 - f_2) g d\mu = 0 \Rightarrow \int_X f_1 g d\mu = \int_X f_2 g d\mu$ This shows that T_q is a well-defined map. Check for T_q Linear: Let $[f_1], [f_2] \in L^p \Rightarrow [f_1] + [f_2] = [f_1 + f_2].$ So, $T_q([f_1+f_2]) = \int_X (f_1+f_2)gd\mu = \int_X f_1gd\mu + \int_X f_2gd\mu =$ $T_g([f_1]) + T_g([f_2])$. Similarly, $T_g(\alpha[f]) = \alpha T_g([f])$. Check for T_g bounded: Apply Holder, $|T_g([f])| = |\int_X fg d\mu| \le$ $||f||_p||g||_q$. Thus, T_g is bounded by $||g||_q \Rightarrow ||T_g|| \leq ||g||_q$. Case $1 and <math>1 < q < +\infty$: Let f(x) = $sgn(g(x))|g(x)|^{q-1}$. Then, $f(x)g(x) = sgn(g(x))g(x)|g(x)|^{q-1} =$ $|g(x)|^q$. Thus, $||g||_q^q = \int_X |g|^q d\mu = T_g(f) \le ||T_g|| ||f||_p =$ $||T_g||(\int_X |f(x)|^p d\mu)^{1/p} = ||T_g||(\int_X |g(x)|^{(q-1)p} d\mu)^{1/p} =$ $||T_g||(\int_X |g(x)|^q d\mu)^{1/p} = ||T_g||||g||_q^{q/p} \Rightarrow ||g||_p^{q-q/p} \le ||T_g|| \Rightarrow$ $|g||_q \le ||T_q||$, and so $||g||_q = ||T_q||$. Finally, if $g_1 = g_2$ a.e. μ , then $||g_1 - g_2|| = 0 \rightarrow ||T_{(g_1 - g_2)}|| = 0 \Rightarrow$ $T_{(g_1-g_2)} = 0$ for all f. $\int_X f(g_1 - g_2) d\mu = 0$, $\int_X fg_1 d\mu = \int_X fg_2 d\mu$, $T_{g_1(f)} = T_{g_2(f)}$ for all f. So, $g_1 = g_2 \ a.e. \mu \Rightarrow T_{g_1} = T_{g_2}$. But, $T_{g_1} = T_{g_2} \Rightarrow ||T_{g_1} - T_{g_2}|| = 0 \Rightarrow ||T_{g_1} - T_{g_2}|| = ||g_1 - g_2||_q = 0$ $\Rightarrow g_1 = g_2 a.e.\mu.$

Proposition: Let $T: L^p(X, \mathfrak{A}, \mu) \to \mathbb{R}$ be b.l.f., then T is continuous. Proof: Given $\epsilon > 0$, let $\delta = \epsilon/||T||$. Then, if $||[f_1] - [f_2]||_p < \delta$, then $|T([f_1]) - T([f_2])| = |T([f_1 - f_2])| \le ||T|| \cdot ||[f_1 - f_2]||_p < ||T|| \cdot \delta$ $= \epsilon$. So, in fact, T is uniformly continuous.

Theorem (Riesz Representation Theorem):

Let $1 \leq p < +\infty$ and let (X, \mathfrak{A}, μ) be σ -finite. If $T : L^p(X, \mathfrak{A}, \mu) \to \mathbb{R}$ is b.l.f., then there exists unique $[g] \in L^q(X, \mathfrak{A}, \mu)$ such that $T = T_g$ and $||g||_q = ||T||$.

Proof: Case $\mu(X) < +\infty$: Then, for all $E \in \mathfrak{A}$,

 $\int_X |\mathcal{X}_E|^p d\mu = \mu(E) \le \mu(X) < +\infty \Rightarrow \mathcal{X}_E \in \mathcal{L}^p \text{ for all } E \in \mathfrak{A}.$ Thus, $T([\mathcal{X}_E]) \in \mathbb{R}$ is defined.

Define $\nu : \mathfrak{A} \to \mathbb{R}$ via $\nu(E) = T([\mathcal{X}_E])$.

Claim: ν is a signed measure.

Proof of Claim:

First $|\nu(E)| = ||T(\mathcal{X}_E)|| \le ||T|| ||\mathcal{X}_E||_p \le ||T|| \mu(X)^{1/p} < +\infty.$

Let $E = \bigcup_{n=1}^{\infty} E_n$, a disjoint union. We need $\nu(E) = \sum_{n=1}^{\infty} \nu(E_n)$.

Note that if E_1 and E_2 are disjoint, then $\mathcal{X}_{E_1 \cup E_2} = \mathcal{X}_{E_1} + \mathcal{X}_{E_2}$.

So, if
$$F_m = \bigcup_{n=1}^m E_n$$
, then $\mathcal{X}_{F_m} = \sum_{n=1}^m \mathcal{X}_{E_n}$. $||\mathcal{X}_E - \mathcal{X}_{F_m}||_p =$

$$(\int_X |\mathcal{X}_E(x) - \mathcal{X}_{F_m}(x)|^p d\mu)^{1/p} = \left(\int_X |\mathcal{X}_{E\setminus F_m}(x)|^p d\mu\right)^{1/p} =$$

 $\mu(E \backslash F_m)^{1/p}$. We know, since $\mu(X) < +\infty \Rightarrow \mu(E) < +\infty \Rightarrow \lim_{m} \mu(F_m) = \mu(E) \Rightarrow \lim_{m} \mu(E \backslash F_m) = \lim_{n} (\mu(E) - \mu(F_m).$

So, $||\mathcal{X}_E - \mathcal{X}_{F_m}||_p \to 0$ as $n \to +\infty$. T is continuous by the last proposition. So, $\nu(E) = T([\mathcal{X}_E]) = \lim_{m \to \infty} T([\mathcal{X}_{F_m}]) =$

 $\lim_{m} \sum_{n=1}^{m} T([\mathcal{X}_{E_n}]) = \lim_{m} \sum_{n=1}^{m} \nu(E_n), \text{ and so } \nu(E) = \sum_{n=1}^{\infty} \nu(E_n), \text{ Thus, } \nu \text{ is a signed measure.}$

Recall Hahn-Decomposition: There exist $A \cup B = X$, A-positive, B-negative, $\nu^+(E) = \nu(E \cap A)$, $\nu^-(E) = \nu(E \cap B)$, then ν^+ and ν^- are positive measures, and $\nu(E) = \nu^+(E) - \nu^-(E)$. Let $\mu(E) = 0 \Rightarrow \mu(E \cap A) = 0 \Rightarrow [\mathcal{X}_{E \cap A}] = [0]$. Thus, $\nu^+(E) = \nu(E \cap A) = T([\mathcal{X}_{E \cap A}]) = 0$, and $\nu^+ \ll \mu$. Similarly $\nu^- \ll \mu$.

Therefore, by Radon-Nikodym, There exist g^+ and g^- such that $\nu^+(E)=\int_E g^+d\mu$ and $\nu^-(E)=\int_E g^-d\mu$, and so $\nu(E)=\int_E (g^+-g^-)d\mu=\int_X \mathcal{X}_E(g^+-g^-)d\mu$.

Let
$$g = g^+ - g^-$$
. Then, $T(\mathcal{X}_E) = \int_X \mathcal{X}_E g d\mu$, and so if $\psi = \sum_{k=1}^n \alpha_k \mathcal{X}_{E_k}$, then $T(\psi) = \sum_{k=1}^n \alpha_k T(\mathcal{X}_{E_k}) = \sum_{k=1}^n \int_X \mathcal{X}_{E_k} g d\mu = 0$

 $\int_X \psi g d\mu$. Now, we want to show $g \in \mathcal{L}^q$.

Take ϕ_n simple, $0 \le \phi_1 \le \phi_2 \le \ldots \le g^+$. Then, $\lim \phi_n(x) = g^+(x)$.

Similarly, take ψ_n simple, $0 \le \psi_1 \le \psi_2 \le \ldots \le g^{-1}$.

Let $\gamma_n = \phi_n^{q/p} - \psi_n^{q/p}$. Then, γ_n is simple. Now, $T(\gamma_n) = \int_X \gamma_n g d\mu$ $=\int_{Y} (\phi_n^{q/p} - \psi_n^{q/p})(g^+ - g^-)d\mu = \int_{Y} (\phi_n^{q/p} g^+ + \psi_n^{q/p} g^-)d\mu.$

By the MCT, $\lim T(\gamma_n) = \int_X ((g^+)^{q/p}(g^+) + (g^-)^{q/p}(g^-)) d\mu =$

 $\int_{\mathcal{X}} ((g^+)^{q/p+1} + (g^-)^{q/p+1}) d\mu = \int_X |g|^{q/p+1} d\mu = \int_X |g|^q d\mu.$

But, $||\gamma_n||_p = (\int_X |\gamma_n|^p d\mu)^{1/p} = (\int_X (\phi_n^q + \psi_n^q) d\mu)^{1/p} \xrightarrow{\text{By MCT}}$

 $(\int_X ((g^+)^q + (g^-)^q) d\mu)^{1/p} = (\int_X |g|^q d\mu)^{1/p}.$

Now, $|T(\gamma_n)| \le ||T|| \cdot ||\gamma_n||_p$. So, $||g||_q^q = \int_Y |g|^q d\mu \le 1$

 $||T||(||g||_q)^{q/p} \Rightarrow ||g||_q^{q-q/p} \leq ||T|| \Rightarrow ||g||_q \leq ||T||, \text{ in particular,}$ $g \in \mathcal{L}^q$. Since $g \in \mathcal{L}^q \Rightarrow T_g$ is b.l.f. by the proposition.

 $T_g(\psi) = \int_X \psi g d\mu = T(\psi), \psi \text{ simple, } T_g \text{ and } T \text{ b.1.f.} \Rightarrow T_g \text{ and } T \text{ are}$ continuous, by the previous proposition.

By Density Theorem, the simple functions are dense in L^p . So, two continuous functions are equal on dense set \Rightarrow They are equal everywhere.

(Recall simple dense \Rightarrow If $f \in \mathcal{L}^p$, then there exists $\{\psi_n\}$ such that $||f-\psi_n||_p\to 0$. If T and T_g are continuous, then $T(f)=\lim_n T(\psi_n)$ $=\lim T_g(\psi_n)=T_g(f).)$

g is unique a.e. follows from the earlier proposition.

General Case X: X is σ -finite $\Rightarrow X = \bigcup_{n=1}^{\infty} X_n, X_n$ disjoint and

 $\mu(X_n) < +\infty.$

Now, if $f \in \mathcal{L}^p(X_n, \mathfrak{A}, \mu)$ and define $\widetilde{f}: X \to \mathbb{R}$ by $\widetilde{f}(x) = \begin{cases} f(x) & \text{if } x \in X_n \\ 0 & \text{if } x \notin X_n \end{cases}$ then $\widetilde{f} \in \mathcal{L}^p(X, \mathfrak{A}, \mu)$ and $||\widetilde{f}||_p = ||f||_p.$

Given $f_1, f_2 \in \mathcal{L}^p(X_n, \mathfrak{A}, \mu)$, then $\widetilde{f_1} + \widetilde{f_2} = f_1 + f_2$, and $\alpha \widetilde{f_1} = f_1 + f_2$ $\alpha \widetilde{f}_1$. (Think of $\mathcal{L}^p(X_n, \mathfrak{A}, \mu)$ as a subspace of $\mathcal{L}^p(X, \mathfrak{A}, \mu)$)

Define $T_n: L^p(X_n, \mathfrak{A}, \mu) \to \mathbb{R}$ by $T_n([f]) = T(\widetilde{f})$. Now, $|T_n([f])| = |T(\widetilde{f})| \le ||T|| \cdot ||\widetilde{f}||_p = ||T|| \cdot ||f||_p$. So, T_n is b.1.f. on $L^p(X, \mathfrak{A}, \mu)$. Since $\mu(X_n) < +\infty$, by the first case, there exists $g_n \in \mathcal{L}^q(X_n, \mathfrak{A}, \mu)$ satisfies for all $f \in \mathcal{L}^p(X_n, \mathfrak{A}, \mu)$, $T_n(f) = \int_{X_n} f g_n d\mu$. Define $g: X \to \mathbb{R}^e$ by

$$g(x) = \begin{cases} g_1(x) & \text{if } x \in X_1 \\ g_2(x) & \text{if } x \in X_2 \\ \vdots & \vdots \\ \vdots & \vdots \end{cases}$$

If we take $f_j \in \mathcal{L}^p(X_j, \mathfrak{A}, \mu)$, and let $\widetilde{f_j} \in \mathcal{L}^p(X, \mathfrak{A}, \mu)$, then

$$T\left(\sum_{j=1}^{n}\widetilde{f}_{j}\right)=\sum_{j=1}^{n}T(\widetilde{f}_{j})=\sum_{j=1}^{n}T_{j}(f_{j})=\sum_{j=1}^{n}\int_{X_{j}}f_{j}g_{j}d\mu=\int_{X}(\widetilde{f}_{1}+\widetilde{f}_{2}+\ldots+\widetilde{f}_{n})gd\mu.$$

 $\int_X (f_1 + f_2 + \ldots + f_n) g d\mu$. So, $T(f) = \int_X f g d\mu$ as long as f is nonzero only on finitely many X_j . Let

$$h_m(x) = \begin{cases} g_1(x) & \text{if } x \in X_1 \\ g_2(x) & \text{if } x \in X_2 \\ \vdots & \vdots \\ g_m(x) & \text{if } x \in X_m \\ 0 & \text{if } x \notin \bigcup_{j=1}^m X_j \end{cases}$$

Then, $|h_m(x)|^t \nearrow |g(x)|^t$, and if $F_m = \bigcup_{j=1}^m X_j$, then $h_m = g \cdot \mathcal{X}_{F_m}$.

Let $f_m(x) = sgn(g(x))|h_m(x)|^{q/p}$.

We need to show: (1) If $g(x) = g_n(x)$ for $x \in X$, then $[g] \in L^q(X, \mathfrak{A}, \mu)$. (2) For $[f] \in L^p(X, \mathfrak{A}, \mu)$, $T([f]) = \int_X f g d\mu$.

Now, $f_m = sgn(g)|g|^{q/p}\mathcal{X}_{F_m}$, which is nonzero only on $\bigcup_{n=1}^m X_n$.

So,
$$f_m = \sum_{n=1}^m sgn(g)|g|^{q/p}\mathcal{X}_{X_n}$$
, and $T(f_m) = \sum_{n=1}^m T(sgn(g)|g|^{q/p}\mathcal{X}_{X_n})$
 $= \sum_{n=1}^m \int_X sgn(g)|g|^{q/p}\mathcal{X}_{X_n}d\mu = \sum_{n=1}^m \int_X |g|^{q/p+1}\mathcal{X}_{X_n}d\mu = \int_X |g|^{q/p+1}\mathcal{X}_{F_m}d\mu \le ||T||||f_m||_p = ||T||(\int_X |g|^q \mathcal{X}_{F_m}d\mu)^{1/p}$. So, $(\int_X |g|^q \mathcal{X}_{F_m}d\mu)^{1-1/p} \le ||T||$ for all m . Let $m \to +\infty$ and use

MCT, then $(\int_X |g|^q d\mu)^{1/q} \le ||T|| \Rightarrow ||g||_q \le ||T||$.

Finally, we know that $T_g(f) = \int_X fg d\mu$ is a b.l.f. If f is only nonzero on, say X_n , then $T_g(f) = \int_{X_n} fg d\mu = \int_X fg_n d\mu =$

nonzero on, say X_n , then $T_g(f) = \int_{X_n} fg d\mu = \int_X fg_n d\mu = \int_X f(g\mathcal{X}_{X_n}) d\mu = T(f)$. Hence, by taking sums, if f is only nonzero on $F_m = \bigcup_{n=1}^m X_n$, $T_g(f) = T(f)$.

Finally, given any $f \in \mathcal{L}^p$, by MCT, $f\mathcal{X}_{F_m} \xrightarrow{||\cdot||} f$. So,

$$T_g(f) = \lim_m T_g(f\mathcal{X}_{F_m}) = \lim_m T(f\mathcal{X}_{F_m}) = T(f).$$