3/22-4

Thus, F is bounded $\Rightarrow T_F \pm F$ are bounded $\Rightarrow H_1$ and H_2 are both bounded.

Proof of (c): We know that all of these limits exist for bounded and increasing functions. Thus, they exist for H_1 and H_2 , and so they exist for $F = H_1$ H_2 .

Proof of (d): We know that H_1 and H_2 are continuous except at a countable set by Theorem 3.23 $\Rightarrow F = H_1 - H_2$ is continuous except for at most countably many points.

Proof of (e): Argue as (d) using Theorem 3.23.

Recall that if $F \in BV$ and T_F is a total variation, then $F = (T_F + F)/2 - (T_F - F)/2$. This decomposition of F is called the **Jordan decomposition** of F, and $(T_F + F)/2$ is called the **positive variation of** F and $(T_F - F)/2$ is called the **negative variation of** F.

Definition: A function $F : \mathbb{R} \to \mathbb{C}$ is absolutely continuous if for all $\epsilon > 0$, there exists $\delta > 0$ such that for all n and for all disjoint intervals (a_1, b_1) ,

$$(a_2,b_2), \cdots, (a_n,b_n)$$
 whenever $\sum_{i=1}^n (b_i-a_i) < \delta, \sum_{i=1}^n |F(b_i)-F(a_i)| < \epsilon.$

We say that $F:[a,b]\to\mathbb{C}$ is **absolutely continuous** if the above holds for all $(a_i,b_i)\subseteq[a,b]$. Note: absolute continuity \Rightarrow uniform continuity \Rightarrow $F + G \land C \Rightarrow F + G \land C \land F \land C$

Proposition 3.32: Let $H: \mathbb{R} \to \mathbb{R}$ be increasing, bounded and right continuous. Then, $\mu_H \ll m$ if and only if H is absolutely continuous.

Proof (\Rightarrow): Let $\mu_H \ll m$. Then, by Theorem 3.8 (The Lebesgue-Radon-Nikodym Theorem), there exists $f \geq 0$ such that $H(b) - H(a) = \int_{(a,b)} f dm$ for all a and b. Now, since H is bounded, $\lim_{x \to +\infty} H(x) = H(+\infty) < +\infty$ and $\lim_{x \to -\infty} H(x) = H(-\infty) < -\infty \Rightarrow \int_{\mathbb{R}} f dm = H(+\infty) - H(-\infty) < +\infty \Rightarrow f \in L^1(m)$. By Theorem 3.5 or Corollary 3.6, if $f \in L^1(m)$ and given $\epsilon > 0$, there exists $\delta > 0$ such that $m(E) < \delta \Rightarrow |\int_E f dm| < \epsilon$. Now, given $(a_1, b_1), (a_2, b_2), \cdots, (a_n, b_n)$ disjoint and $\sum_{i=1}^n (b_i - a_i) < \delta$. Let $E = \bigcup_{i=1}^n (a_i, b_i)$, then $m(E) < \delta \Rightarrow |\int_E f dm| < \epsilon$. But, $\int_E f dm = \sum_{i=1}^n \int_{(a_i, b_i)} f dm = \sum_{i=1}^n H(b_i) - H(a_i) = \sum_{i=1}^n |H(b_i) - H(a_i)| < \epsilon$. Thus, H is absolutely continuous.

Proof (\Leftarrow): Conversely, suppose that H is absolutely continuous, then given $\epsilon > 0$, let $\delta > 0$ such that for all n and for all disjoint intervals $(a_1,b_1), (a_2,b_2), \cdots, (a_n,b_n)$ and $\sum_{i=1}^n (b_i-a_i) < \delta$ $\Rightarrow \sum_{i=1}^n H(b_i) - H(a_i) < \epsilon \Rightarrow \sum_{i=1}^n \mu_H((a_i,b_i]) = \mu_H(\bigcup_{i=1}^n (a_i,b_i])$ $< \epsilon. \text{ Thus, } m(\bigcup_{i=1}^n (a_i,b_i]) < \delta \Rightarrow \mu_H(\bigcup_{i=1}^n (a_i,b_i]) < \epsilon, \text{ and so}$ $\mu_H \ll m \text{ by Theorem 3.5}.$

Note: Let $F : \mathbb{R} \to \mathbb{R}$ defined by F(x) = x. Then, F is absolutely continuous (to see this, let $\epsilon = \delta$), but $F \notin BV$.

Lemma 3.34: If F is absolutely continuous on [a, b], then $F \in BV([a, b])$. Proof: Let F be absolutely continuous on [a, b]. Let $\epsilon = 1$.

Then, there exists $\delta>0$ such that $\sum\limits_{i=1}^n(b_i-a_i)<\delta\Rightarrow$

 $\sum_{i=1}^n |F(b_i) - F(a_i)| < 1. \text{ Now, find } M \text{ such that } a + M\delta \leq b$ $< a + (M+1)\delta. \text{ Given any partition, } a = x_0 < x_1 < \cdot \cdot \cdot$ $< x_n = b, \sum_{i=1}^n |F(x_i) - F(x_{i-1})| \text{ goes up if we add more}$

points, so include the points $a+k\delta$ where $M \leq k < M+1$; $a=x_0 < x_1 < x_2 < a+\delta < x_3 < \cdot \cdot \cdot < a+k\delta < x_n=b$. The sum of the length of these intervals must be most δ , and also for an example $|F(x_1)-F(x_0)|+|F(x_2)-F(x_1)|+$

$$|F(a+\delta) - F(x_2)| < 1$$
. Thus, $\sum_{i=1}^{n} |F(x_i) - F(x_{i-1})| \le M + 1 = [(b-a)/\delta] + 1$ where $[(b-a)/\delta]$ is the greates

 $M+1=[(b-a)/\delta]+1$ where $[(b-a)/\delta]$ is the greatest integer of $(b-a)/\delta$.

Lemma: Let F be absolutely continuous on [a, b], then $T_F(x)$ is also absolutely continuous.

Proof: Let F be absolutely continuous on [a,b]. Given $\epsilon>0$, pick the $\delta>0$ that works for F and $\epsilon/2$. Suppose that $(a_1,b_1), (a_2,b_2), \cdots, (a_n,b_n)$ are disjoint and $\sum_{i=1}^n (b_i-a_i) < \delta$. Without loss of generality, consider $a \leq a_1 < b_1 \leq a_2 < b_2 \leq \cdots < b_n \leq b$ and take $a_i = x_0^i < x_1^i < \cdots < x_{m_i}^i = b_i$ such that

Page 🐙

$$\begin{split} |T_F(b_i) - T_F(a_i)| &\leq \sum_{j=1}^{m_i} |F(x_j^i) - F(x_{j-1}^i)| + \epsilon/2n \Rightarrow \\ &\sum_{i=1}^n |T_F(b_i) - T_F(a_i)| \leq \sum_{i=1}^n (\sum_{j=1}^{m_i} |F(x_j^i) - F(x_{j-1}^i)| + \epsilon/2n) = \\ &(\sum_{i=1}^n \sum_{j=1}^{m_i} |F(x_j^i) - F(x_{j-1}^i)|) + \epsilon/2 < \epsilon/2 + \epsilon/2 = \epsilon. \ \, \text{Thus, } T_F \text{ is absolutely continuous.} \end{split}$$
 absolutely continuous.

Theorem 3.35 (The Fundamental Theorem of Calculus for Lebesgue **Integrals**): If $-\infty < a < b < +\infty$, and $F : [a, b] \to \mathbb{C}$, then the following are equivalent:

F is absolutely continuous on [a, b]. (a)

There exists $f \in L^1([a,b])$ such that $F(x) - F(a) = \int_{[a,x]} f dm$, $\forall a \leq x \leq b$ (b)

F' exists $a.e., F' \in L^1$ and $F(x) - F(a) = \int_{[a,x]} F' dm$, $\forall a \in x \in \mathcal{B}$ (c)

Proof of (a) \Rightarrow (b): Let F be absolutely continuous on [a, b], then $F \in BV([a,b])$ by Lemma 3.34. So, write $F = (T_F + F)/2$ $-(T_F-F)/2=H_1-H_2$. Then, H_1 and H_2 are increasing on [a, b] and absolutely continuous by the previous Lemma. Now, extend these H_i s to \mathbb{R} by setting

$$\widetilde{H}_i(x) = \begin{cases} H_i(a) & \text{if } x \leq a \\ H_i(x) & \text{if } a \leq x \leq b \\ H_i(b) & \text{if } x \geq b \end{cases}$$

Then, H_i is increasing, absolutely continuous and bounded \Rightarrow $\mu_{\widetilde{H_i}} \ll m$. So, there exist $f_1, f_2 \in L^1(m)$ such that $\mu_{\widetilde{H_i}}(E) =$ $\int_E f_i dm$. Let $f = f_1 - f_2$. Then, $\int_{(a,x)} f dm = \int_{(a,x)} f_1 dm - \int_{(a,x)} f_1 dm$ $\int_{(a,x)} f_2 dm = (\widetilde{H}_1(x) - \widetilde{H}_1(a)) - (\widetilde{H}_2(x) - \widetilde{H}_2(a)) = (\widetilde{H}_1(x) - \widetilde{H}_2(x)) - (\widetilde{H}_1(a) - \widetilde{H}_2(a)) = (\widetilde{H}_1 - \widetilde{H}_2)(x) - (\widetilde{H}_1(a) - \widetilde{H}_1(a) - \widetilde{H}_2)(x) - (\widetilde{H}_1(a) - \widetilde{H}_1(a) - \widetilde{H}_1(a) - (\widetilde{H}_1(a) - \widetilde{H}_1(a) - \widetilde{H}_1(a) - (\widetilde{H}_1(a) - (\widetilde{H}_1(a)$ $(\widetilde{H}_1 - \widetilde{H}_2)(a) = F(x) - F(a).$

Proof of (b) \Rightarrow (c): Let $f \in L^1$ such that $F(x) - F(a) = \int_{(a,x)} f dm$. If $y > x/(F(y) - F(x))/(y - x) = 1/(y - x) \int_{(x,y)} f dm \to f(x) de / Thus, \lim_{y \to x} (F(y) - F(x))/(y - x) \text{ exists and equal to} f(x) a.e. That is <math>F'(x) = f(x)$ a.e.

Lemma: If f bounded and measurable, suppose $F(x) = F(a) + \int_{(a,x)} f dm$ then F'(x) = f(x) a.e.Pf: Let $|f(x)| \leq C$, $|m(E)| \leq C$. $\int_{E} |f(x)| dm \ \ell \ \epsilon \ \Rightarrow \ F \ A \ \ell \Rightarrow F(x)$ exists $d \cdot e \cdot Set f_n(x) = \frac{F(x+\frac{1}{n}) - F(x)}{y_n}$ then $F(x) = \lim_{n \to \infty} f_n(x)$ a.e. Also, $f_n(x) = n \int_{(x, x+y_n)} f dm \leq m \int_{(x, x+y_n)} |f| dm \leq C$ By BCT, $\int_{C} F(x) dx = \lim_{n \to \infty} \int_{a}^{C} f_{n}(x) dx =$ $\lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^{c+\ln n} \frac{f(x)}{a} dx = \lim_{n \to \infty} \int_{a+\ln n}^$ = F(c) - F/a) serve F cont.

3/22-3-2
Thm f integrable on [a, b], suppose $F(x) = F(a) + \int_{(a,x)} f dm$. Then F(x) = f(x) a.e. Pf: Set $f(x) = \begin{cases} f(x) & \text{if } f(x) \leq m \\ m & \text{if } f(x) \geq m \end{cases}$ Then f_n bounded $F_n(x) = F(a) + \int_{(a,x)} f_n dm \implies f_n(x) = f_n(x) = 0.0.$ Let $G_m(x) = \int_a^x (f - f_m)$ so $G_n(x)$ increasing $\Rightarrow G_n(x) = \int_a^x (f - f_m) dx$ $\Rightarrow G_n(x) = \int_a^x (f - f_m) dx$ $\Rightarrow G_n(x) = \int_a^x (f - f_m) dx$ $\Rightarrow G_n(x) = \int_a^x (f - f_m) dx$ $f-f_m \gg F(x) = F_m(x) + G_m(x)$ \Rightarrow F(x) exists a.e., $F(x) = F_n(x) + G_n(x) \geq f_n(x)$ \rightarrow $F(x) \ge f(x)$ $\exists \int_{a}^{c} F'(x) \geqslant \int_{a}^{c} f dm = F(c) - F(a)$ $\exists \int_{a}^{c} F'(x) \geqslant \int_{a}^{c} f dm = F(c) - F(a)$ $\exists \int_{a}^{c} F'(x) \Rightarrow \int_{a}^{c} f_{m}(x) + \int_{a}^{c} f_{m}(x) \neq F(c) - F(a)$ $\exists \int_{a}^{c} F'(x) \Rightarrow \int_{a}^{c} f_{m}(x) + \int_{a}^{c} f_{m}(x) \neq F(c) - F(a)$ = F(c) - F(a)

Proof of (c) \Rightarrow (a): Suppose that F' exists a.e. and $F' \in L^1$, and $F(x) - F(a) = \int_{[a,x]} F' dm \Rightarrow |F(b_i) - F(a_i)| \leq \int_{(a_i,b_i)} |f| dm$ where f = F'. Since $|f| \in L^1$, by Corollary 3.6, given $\epsilon > 0$, there exists $\delta > 0$ such that $m(E) < \delta \Rightarrow \int_E |f| dm$. So, take $E = \bigcup_{i=1}^n (a_i,b_i)$, then $m(E) = \sum_{i=1}^n b_i - a_i < \delta \Rightarrow \sum_{i=1}^n |F(b_i) - F(a_i)|$ $= \sum_{i=1}^n |\int_{(a_i,b_i)} F' dm| \leq \sum_{i=1}^n \int_{(a_i,b_i)} |F'| dm = \int_{\cup(a_i,b_i)} |F'| dm < \epsilon$. Thus, F is absolutely continuous on [a,b].

3.6 Applications of Absolute Continuity

Definition: A function $F:[a,b] \to \mathbb{R}$ is **Lipschitz** with a constant M provided that for all $x,y \in [a,b], |F(y)-F(x)| \leq M|y-x|$.

Proposition: A function $F:[a,b]\to\mathbb{R}$ is Lipschitz with a constant M if and only if F is absolutely continuous and $|F'(x)|\leq M$ a.e. In particular, if F is Lipschitz, then F'(x) exists a.e. and $F(x)-F(a)=\int_{[a,x]}F'dm$.

Proof (\Leftarrow): Given $\epsilon > 0$, let $\delta = \epsilon/M$. Then, for any $(a_1,b_1), (a_2,b_2), \cdots, (a_n,b_n)$ disjoint intervals with $\sum_{i=1}^n (b_i-a_i) < \delta \Rightarrow$ $\sum_{i=1}^n |F(b_i)-F(a_i)| \leq \sum_{i=1}^n M|b_i-a_i| < M \cdot \delta = M \cdot \epsilon/M = \epsilon.$ Thus, F is absolutely continuous. This implies that F'(x) exists a.e., and at any point where F'(x) exists, $|F'(x)| = \lim_{y \to x} |(F(y)-F(x))/(y-x)|$. But, by Lipschitz condition, $|F(y)-F(x)| \leq M|y-x|$. Thus, $|F'(x)| \leq M$.

Proof (\Rightarrow): Suppose that F is absolutely continuous and $|F'(x)| \leq M$. Then, $|F(y) - F(x)| \leq |\int_{[x,y]} F' dm| \leq \int_{[x,y]} |F'| dm \leq M \cdot m([x,y]) = M|y-x|$. Thus, F is Lipschitz with constant M.

Definition: A function $F:(a,b) \to \mathbb{R}$ is **convex** if for all a < s < t < b and $0 \le \lambda \le 1$, $F(\lambda s + (1 - \lambda)t) \le \lambda F(s) + (1 - \lambda)F(t)$.

Lemma 1: Let $F:(a,b) \to \mathbb{R}$ be convex, and $a < s < r \le t < b$, then $(F(r) - F(s))/(r - s) \le (F(t) - F(s))/(t - s)$.

Proof: Write $r = \lambda s + (1 - \lambda)t \Rightarrow r - t = \lambda(s - t) \Rightarrow \lambda = (r - t)/(s - t) = (t - r)/(t - s) \Rightarrow 1 - \lambda = 1 - (t - r)/(t - s) = [(t - s) - (t - r)]/(t - s) = (r - s)/(t - s)$. Thus, $(F(r) - F(s))/(r - s) \leq [\lambda F(s) + (1 - \lambda)F(t)]/(r - s) = [-(1 - \lambda)F(s) + (1 - \lambda)F(t)]/(r - s) = [(F(t) - F(s))(1 - \lambda)]/(r - s) = [(F(t) - F(s))/(t - s)]/(t - s)$.

Lemma 2: Let $a_1 < b_1 \le a_2 < b_2$. Then, $(F(b_1) - F(a_1))/(b_1 - a_1) \le (F(b_2) - F(a_2))/(b_2 - a_2)$.