

## Examples of Lebesgue-Radon-Nikodym

1. Let 
$$F(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x^2 & \text{if } 0 < x < 1 \\ x^2 + 1 & \text{if } 1 \le x \end{cases}$$

Look at  $\mu_{\scriptscriptstyle F}$  and m — Lebesgue measure. We want to write  $\mu_{\scriptscriptstyle F}=\lambda+\rho$  where  $\rho\ll m$  and  $\lambda\perp m$ .

Take 
$$F_1(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ x^2 & \text{if } 0 < x \end{cases}$$
 and  $F_2(x) = \begin{cases} 0 & \text{if } x < 1 \\ 1 & \text{if } 1 \leq x \end{cases}$ 

Then,  $F=F_1+F_2$ , and so  $\mu_{\scriptscriptstyle F}=\mu_{\scriptscriptstyle F_1}+\mu_{\scriptscriptstyle F_2}.$ 

[Show that  $\mu_{F_2} \perp m$ .]

$$\mu_{\scriptscriptstyle F_2}(E) = \begin{cases} 1 & \text{if } 1 \in E \\ 0 & \text{if } 1 \notin E \end{cases} \text{ That is, } \mu_{\scriptscriptstyle F_2} = \delta_{\scriptscriptstyle \{1\}}, \text{ dirac delta, or point mass at 1. Let } A = \{1\} \text{ and } B = \mathbb{R} \backslash \{1\}, \text{ then } \mu_{\scriptscriptstyle F_2}(B) = 0 \text{ and } m(A) = 0. \text{ Thus, } \mu_{\scriptscriptstyle F_2} \perp m.$$

[Show that  $\mu_{{\scriptscriptstyle F_1}} \ll m$ .]

Let 
$$h(x) = 2x \cdot \chi_{(0,+\infty]}$$
. Then,  $\int_{(a,b]} h dm = \int_{(a,b]} 2x \cdot \chi_{(0,+\infty]} dm$ . If  $0 < a$ , then  $\int_{(a,b]} 2x \cdot \chi_{(0,+\infty]} dm = \int_a^b 2x dx = x^2]_a^b = b^2 - a^2$   $= F_1(b) - F_1(a)$ . If  $a < 0 < b$ , then  $\int_{(a,b]} 2x \cdot \chi_{(0,+\infty]} dm = \int_0^b 2x dx = x^2]_0^b = b^2 - 0^2 = F_1(b) - F_1(a)$ . Similarly, in all cases, we can see that  $\int_{(a,b]} 2x \cdot \chi_{(0,+\infty]} dm = F_1(b) - F_1(a)$ . Thus,  $\mu_{F_1}(E) = \int_E 2x \cdot \chi_{(0,+\infty]} dm$  for all  $E$  which is Borel and  $d\mu_{F_1}/dm = h$ , and  $\mu_{F_1} \ll m$ . Note that  $d\mu_{F_1}/dm = h$  is called the Radon-Nikodym derivative,

Canton Set,

2. Recall the Cantor function,  $f:[0,1] \to [0,1]$ , f(0)=1, f(1)=1, f is continuous and increasing, and f is constant on intervals the we "throw away" to get the Cantor set.

$$\text{Let } F(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ f(x) & \text{if } 0 \leq x \leq 1 \text{ Then, } F \text{ is increasing and} \\ 1 & \text{if } 1 \leq x \end{cases}$$
 continuous. Let  $E_n = (-n, +n]$ . Then,  $\mu_F(E_n) = F(+n) - F(-n) = 1 - 0 = 1$ . Notice that  $E_1 \subseteq E_2 \subseteq \cdots \subseteq \mathbb{R} = \bigcup_n E_n \Rightarrow \mu_F(\mathbb{R}) = \lim_n \mu_F(E_n) = 1$ . But,  $\mu_F([1, +\infty)) = 0$  and  $\mu_F((-\infty, 0]) = 0$ . Also,  $\mu_F((1/3, 2/3]) = F(2/3) - F(1/3) = 1/2 - 1/2 = 0 \Rightarrow \mu_F((1/3, 2/3)) = 0$ . Similarly,  $\mu_F((1/9, 2/9) = 0$  and  $\mu_F(7/9, 8/9)) = 0$ . Thus,  $\mu_F((-\infty, 0] \cup [1, +\infty) \cup (1/3, 2/3) \cup \cdots) = 0 = 0$ 

A CONTRACTOR

 $\mu_F(C^c)$  where C is the Cantor set. So, this implies that  $\mu_F(C)=1$ . Also,  $\mathbb{R}=C\ \dot\cup\ C^c$ , m(C)=0,  $\mu_F(C^c)=0\Rightarrow\mu_F\perp m$ . But, F is continuous on  $\mathbb{R}$ , so  $\mu_F(\{x\})=0$  for all  $x\in\mathbb{R}$ . That is all the measures live in the Cantor set.

## Further results of Radon-Nikodym

Let  $\mu$  and  $\nu$  be  $\sigma$ -finite measures on  $(X, \mathcal{M})$ . If  $\nu \ll \mu$ , then there exists f such that  $\nu(E) = \int_E f d\mu$ . If we have g such that  $\nu(E) = \int_E g d\mu$  for all  $E \in \mathcal{M}$ , then f = g a.e. with respect  $\mu$ .

Any such function is called  $d\nu/d\mu$ , which is a equivalence class of functions.

If  $\nu_1 \ll \mu$  and  $\nu_2 \ll \mu$ , and let  $\nu = \nu_1 + \nu_2$ , then  $\nu \ll \mu$ , and  $\nu(E) = \nu_1(E) + \nu_2(E) = \int_E (d\nu_1/d\mu) \, d\mu + \int_E (d\nu_2/d\mu) \, d\mu = \int_E (d\nu_1/d\mu) + d\nu_2/d\mu$  and  $\mu = d\nu_1/d\mu + d\nu_2/d\mu \Rightarrow d(\nu_1 + \nu_2)/d\mu = d\nu_1/d\mu + d\nu_2/d\mu$  and  $\mu = d\nu_1/d\mu + d\nu_2/d\mu$ 

**Proposition 3.9**: Let  $\nu$ ,  $\mu$  and  $\lambda$  be  $\sigma$ -finite measures on  $(X, \mathcal{M})$ . If  $\lambda \ll \nu$  and  $\nu \ll \mu$ , then  $\lambda \ll \mu$  and  $d\lambda/d\mu = d\lambda/d\nu \# d\nu/d\mu \mu \ a.e.$ 

Proof: Let  $\nu$ ,  $\mu$  and  $\lambda$  be  $\sigma$ -finite measures on  $(X, \mathcal{M})$ . Suppose that  $\lambda \ll \nu$  and  $\nu \ll \mu$ . Then, if  $\mu(E) = 0$ , then  $\nu(0) \Rightarrow \lambda(E) = 0$ . Thus,  $\lambda \ll \mu$ . By Exercise 14 in page 63, if  $\nu(E) = \int_E f d\nu$ , then for  $g \geq 0$ ,  $\int_X g d\nu = \int_X g f d\mu$ . So,  $\lambda(E) = \int_E (d\lambda/d\nu) d\nu = \int_X (\chi_E d\lambda/d\nu) d\nu = \int_X \chi_E (d\lambda/d\nu \cdot d\nu/d\mu) d\mu = \int_E (d\lambda/d\nu \cdot d\nu/d\mu) d\mu \Rightarrow d\lambda/d\mu = d\lambda/d\nu \cdot d\nu/d\mu$ .

**Corollary 3.10**: Let  $\lambda$  and  $\mu$  be  $\sigma$ -finite. suppose that  $\lambda \ll \mu$  and  $\mu \ll \lambda$ , then  $d\lambda/d\mu \cdot d\mu/d\lambda = 1$   $\mu$   $a.e. = \lambda$  a.e.

Proof: Let  $\lambda$  and  $\mu$  be  $\sigma$ -finite. suppose that  $\lambda \ll \mu$  and  $\mu \ll \lambda \Rightarrow \lambda \ll \lambda$  and  $1 = d\lambda/d\lambda = d\lambda/d\mu \cdot d\mu/d\lambda$  by Theorem 3.9.

**Proposition 3.11:** Let  $\mu_1, \mu_2, \dots, \mu_n$  be  $\sigma$ -finite measures, and suppose that  $\mu = \mu_1 + \mu_2 + \dots + \mu_n$ . Then,  $\mu_i \ll \mu \Rightarrow \mu_i(E) = \int_E (d\mu_i/d\mu) d\mu$  and  $d\mu_1/d\mu + d\mu_2/d\mu + \dots + d\mu_n/d\mu = 1 \ \mu \ a.e.$ 

3/12-3 Differentiation and Integration What functions have the property that fix) exists a.e.m, and is measurable and  $\int_{\alpha}^{\infty} f'(x)dm = f(b) - f(a)$ Example f Cantor function  $f(x)=0 \forall x \notin C$   $f'(x)=0 \forall x \notin C$  f'(x)=0, f'(x)=0.First look at mondone encreasing or decreasing functions Defr EER, d-collection gentervals. We say the I covera E in the sense of Vitalli if such x & E, E>O & I Ed, x & I and m(I) < E Lemma (Vitali) m\*(E) <+00, al correr Ein sense of Vitali. The Gener EN F [II, .., IN] = d disjoint  $\rightarrow m^*(E \setminus U_i^* I_i) < \epsilon$ Pf WLOG assume each interval closed  $E \subseteq \partial$  - open,  $m(\theta) < +00$ , While can assume each  $T \in \mathcal{O}$ . Define  $\{I_n\}$  inductiblely. Suppose  $\{I_1, \dots, I_n\}$  chosen. Let  $k_n = \sup\{\ell(I): I \le d, I \cap I_j = \emptyset\}$   $k_n \in m(\theta) < +\infty$  Unless  $E \subseteq I_1 \cup \dots \cup I_n$  than  $\exists I_i \in I_j$ ,  $\ell(I_{n,i}) > \frac{k_n}{2}$ 

3/15-4 and Ine disjoint from I, Y-WIn  $\Rightarrow m(U_{I_m}) = \sum m(I_m) \leq m(0) < tob)$  $f(x) = \frac{1}{2} \int_{N+1}^{\infty} \int$ R=E\UIn Claim m(R) (E Let  $x \in R$  since  $x \notin U$  In - colored 3  $z \in I$ ,  $I \cap (O I_n) = \emptyset$ 2 (I) < k\_ < 2 (IN+1) If I 1 the ( ) = b = l(I) = km -> 0 = 3 mallest In In + p, and n > N  $I \cap (\mathcal{O}_{G_i}^{(I)}) \rightarrow l(I) \leq k_{i-1} \leq 2l(I_m)$ ≤ l(I)+ ±l(In) ≤ =l(In) Let In - interval same midpoint as In, 5 times the length => XEIn => REUIn  $\rightarrow m(R) \leq 2m(I_m) = 5 2m(I_m) < 6$