Theorem 2.37 (Fubini-Tonelli): Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be both σ -finite.

- (a) (Tonelli): Let $f: X \times Y \to \overline{\mathbb{R}}$, $f \geq 0$ and $\mathcal{M} \otimes \mathcal{N}$ -measurable, then $g(x) = \int_Y f_x d\nu(y)$ is \mathcal{M} -measurable and $h(y) = \int_X f^y d\mu(x)$ is \mathcal{N} -measurable, and $\int_X [\int_Y f_x d\nu(y)] d\mu(x) = \int_Y [\int_X f^y d\mu(x)] d\nu(y)$.
- (b) (Fubini): Let $f: X \times Y \to \mathbb{R}$ be $\mathcal{M} \otimes \mathcal{N}$ -measurable. Suppose that $f \in \mathcal{L}^1(\mu \times \nu)$, then $f_x \in \mathcal{L}^1(\nu)$ a.e. x and $f^y \in \mathcal{L}^1(\mu)$ a.e. y, and $\int_X [\int_Y f_x d\nu(y)] d\mu(x) = \int_Y [\int_X f^y d\mu(x)] d\nu(y)$.

Note: The following example show that why we need "a.e. x" Let $X = Y = \mathbb{R}$, and $\mu = \nu =$ Lebesgue measure. Suppose that $f = +\chi_{\{x_0\} \times \mathbb{R}} - \chi_{\mathbb{R} \times \{y_0\}}$. Then, $f \in \mathcal{L}^1(\mu \times \nu)$ because f is 0

except on $x=x_0$ or $y=y_0$. As $x\neq x_0 \Rightarrow f_x(y)=\begin{cases} 0 & \text{if } y\neq y_0 \\ -1 & \text{if } y=y_0 \end{cases}$

But, $f_{x_0}(y)=\left\{egin{array}{ll} 1 & \mbox{if } y
eq y_0 \\ 0 & \mbox{if } y=y_0 \end{array}
ight.$ So, $f_{x_0}(y)
otin \mathcal{L}^1(
u)$

Proof of (a) (Tonelli): <u>Case 1</u> Suppose that $f = \chi_E$ and $E \in \mathcal{M} \otimes \mathcal{N}$. Then, $f_x = (\chi_E)_x = \chi_{E_x}$ and $g(x) = \int_Y \chi_{E_x} d\nu = \nu(E_x)$ which is measurable by Theorem 2.36. Also, $h(y) = \int_X \chi_{E_y} d\mu = \mu(E^y)$ which is also measurable by Theorem 2.36. Moreover, $\int_X g(x) d\mu(x) = \int_X \nu(E_x) d\mu(x) = \int_Y \mu(E^y) d\nu(y) = \int_Y h(y) d\mu(y)$. Thus, (a) is true in this case.

Case 2: Now, let $f = \sum_{j=1}^{n} a_j \chi_{E_j}$ where $a_j \geq 0$, and $E_j \in \mathcal{M} \otimes \mathcal{N}$.

Then, $g(x) = \sum_{j=1}^n a_j \nu((E_j)_x)$ and $h(y) = \sum_{j=1}^n a_j \mu((E_j)^y)$ are both

measurable. Also, $\int_X g(x) d\mu(x) = \sum_{j=1}^n a_j \int_X \nu((E_j)_x) d\mu(x) =$

 $\sum_{j=1}^{n} \int_{Y} \mu((E_{j})^{y}) d\nu(y) = \int_{Y} h(y) d\mu(y).$ So, (a) is true when f is simple.

Case 3: Let $f \ge 0$ and $\mathcal{M} \otimes \mathcal{N}$ -measurable. Then, there exists $\phi_1 \le \phi_2 \le \cdots \le f$ where each ϕ_n is simple and $\lim_n \phi_n(x,y)$

$$=f(x,y)\Rightarrow g(x)=\int_Y f_x(y)d\nu(y)\stackrel{*}{=}\lim_n \int_Y (\phi_n)_x(y)d\nu(y)$$

and $h(y) = \int_X f^y(x) d\mu(x) \stackrel{*}{=} \lim_n \int_X (\phi_n)^y(x) d\mu(x)$.

Thus, $\int_X g(x) d\mu(x) = \int_X [\lim_n \! \int_Y (\phi_{\scriptscriptstyle n})_x(y) d\nu(y)] d\mu(x) \stackrel{*}{=}$

 $\lim_{n} \int_{X} \int_{Y} (\phi_{n})_{x}(y) d\nu(y) d\mu(x) \stackrel{**}{=} \lim_{n} \int_{Y} \int_{X} (\phi_{n})^{y}(x) d\mu(x) d\nu(y)$ $\stackrel{*}{=} \int_{Y} [\lim_{n} \int_{X} (\phi_{n})^{y}(x) d\mu(x)] d\nu(y) = \int_{Y} h(y) d\nu(y), \text{ and so}$ Tonelli is true.

[Note that $\stackrel{*}{=}$ is true by the Monotone Convergence Theorem, and $\stackrel{**}{=}$ is true by the Case 2.]

Proof of (b) (Fubini): By Tonelli, $h \ge 0 \Rightarrow \text{If } g(x) = \int h(x,y) d\nu(y)$, then $\int_X g(x)d\mu(x) = \int_{X\times Y} hd(\mu\times\nu)$. So, if $\int_{X\times Y} hd(\mu\times\nu)$ $<+\infty$, then $\int_V g(x)d\mu(x)<+\infty \Rightarrow \{x:g(x)=+\infty\}$ has measure 0. So, $f \in \mathcal{L}^1(\mu \times \nu) \to \int_{X \times Y} |f| d(\mu \times \nu) < +\infty$ $\Rightarrow \int_{X\times Y} f^+ d(\mu \times \nu) < +\infty \text{ and } \int_{X\times Y} f^- d(\mu \times \nu) < +\infty.$ Let $g^{+}(x) = \int_{V} f^{+}(x, y) d\nu(y)$ and $g^{-}(x) = \int_{V} f^{-}(x, y) d\nu(y)$ \Rightarrow If $N^+ = \{x : g^+(x) = +\infty\}$ and $N^- = \{x : g^-(x) = -\infty\}$ $+\infty$ }, then $\mu(N^+) = \mu(N^-) = 0 \Rightarrow \text{If } N = N^+ \cup N^-$, then $\mu(N) = 0$. For $x \notin N$, $g^+(x)$ and $g^-(x)$ are both finite. So, $g^{+}(x) - g^{-}(x) = \int_{V} f^{+}(x, y) d\nu(y) - \int_{V} f^{-}(x, y) d\nu(y) =$ $\int_V f(x,y) d\nu(y) = g(x)$ is defined for all $x \notin N$. Finally, $\int_{X\times Y} f^+ d(\mu \times \nu) = \int_X [\int_Y f^+(x,y) d\nu(y)] d\mu(x) =$ $\int_{X\setminus N} [\int_{Y} f^{+}(x,y)d\nu(y)]d\mu(x)$. Similarly, $\int_{X\times Y} f^{-}d(\mu\times\nu)$ $=\int_{X\backslash N}[\int_Y f^-(x,y)d\nu(y)]d\mu(x)\Rightarrow \int_{X\times Y} fd(\mu\times \nu)=$ $\int_{X\times Y} f^+ d(\mu \times \nu) - \int_{X\times Y} f^- d(\mu \times \nu) =$ $\int_{X\setminus N} [\int_Y f(x,y)d\nu(y)] d\mu(x) = \int_X [\int_Y f(x,y)d\nu(y)] d\mu(x).$ Similarly, iteration in other direction is also true.

<u>Caution</u>: If $f \in \mathcal{L}^1(\mu \times \nu)$, then by Fubini $\int_X [\int_Y f(x,y) d\nu(y)] d\mu(x) = \int_Y [\int_X f(x,y) d\mu(x)] d\nu(y)$. Note that if $\int_X [\int_Y f(x,y) d\nu(y)] d\mu(x)$ and $\int_Y [\int_X f(x,y) d\mu(x)] d\nu(y)$ are both finite, but $\int_X [\int_Y f(x,y) d\nu(y)] d\mu(x) \neq \int_Y [\int_X f(x,y) d\mu(x)] d\nu(y) \Rightarrow f \notin \mathcal{L}^1(\mu \times \nu)$. The following example illustrate the problem:

Let $X=Y=\mathbb{R}^+$ and $\mu=\nu=m$, Lebesgue measure.

Consider the graph in the next page.

It is clear that $f \notin \mathcal{L}^1(m \times m)$.

First,
$$g(x) = \int_{[0,+\infty]} f(x,y) dy = \begin{cases} 0 & \text{if } x \ge 1 \\ \text{something} & \text{if } x < 1 \end{cases}$$
 and $\int_{[0,+\infty]} \int_{[0,+\infty]} f(x,y) dy dx = \int_{[0,1]} [\int_{[0,+\infty]} f(x,y) dy] dx = 1/2.$

On the other hand,

$$h(y) = \int_{[0,+\infty]} f(x,y) dx = \begin{cases} 0 & \text{if } y \ge 1 \\ \text{something} & \text{if } y < 1 \end{cases}$$
 and

$$\begin{split} &\int_{[0,+\infty]} \int_{[0,+\infty]} f(x,y) dx dy = \int_{[0,1]} [\int_{[0,+\infty]} f(x,y) dx] dy - -1/2. \\ &\text{Thus, } \int_{[0,+\infty]} \int_{[0,+\infty]} f(x,y) dy dx \text{ and } \int_{[0,+\infty]} \int_{[0,+\infty]} f(x,y) dx dy \\ &\text{are both finite, but } \int_{[0,+\infty]} \int_{[0,+\infty]} f(x,y) dy dx = 1/2 \neq -1/2 = \\ &\int_{[0,+\infty]} \int_{[0,+\infty]} f(x,y) dx dy. \end{split}$$

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces, and get $\mu \times \nu$ on $X \times Y$ with $\mathcal{M} \otimes \mathcal{N}$. Complete this measure (that is, throw in the sets of measure 0) to get $\mu \times \nu = \lambda$ and a bigger σ -algebra $\mathcal{M} \otimes \mathcal{N} = \mathcal{L}$. Now, we can state the Theorem 2.37 in more general.

Theorem 2.39 (Fubini-Tonelli): Let $f: X \times y \to \overline{\mathbb{R}}$ be \mathcal{L} -measurable. Then, f_x is \mathcal{N} -measurable $a.e.\ x$, and f^y is \mathcal{M} -measurable $a.e.\ y$. The rest is the same as Theorem 2.37.