Theorem 2.36: Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces. If $E \in \mathcal{M} \otimes \mathcal{N}$, then:

- (1) $x \to \nu(E_x)$ is \mathcal{M} -measurable, and $y \to \mu(E^y)$ is \mathcal{N} -measurable.
- (2) $\int_X \nu(E_x) d\mu(x) = \int_Y \mu(E^y) d\nu(y)$
- (3) If we set $\mu \times \nu(E) = \int_X \nu(E_x) d\mu(x)$, then $\mu \times \nu$ is a measure on $\mathcal{M} \otimes \mathcal{N}$.

Proof: First assume that $\nu(Y) < +\infty$ and $\mu(X) < +\infty$, and let $\mathcal{C} = \{E \in \mathcal{M} \otimes \mathcal{N} : (1) \text{ and } (2) \text{ hold.}\}$

Claim: If $E = A \times B$, $A \in \mathcal{M}$ and $B \in \mathcal{N}$, then $E \in \mathcal{C}$.

Proof of Claim: Let $E = A \times B$, $A \in \mathcal{M}$ and $B \in \mathcal{N}$. Then,

$$E_x = (A \times B)_x = \begin{cases} B & \text{if } x \in A \\ \emptyset & \text{if } x \notin A \end{cases} \text{ and so } x \to \nu(E_x)$$

$$= \begin{cases} \nu(B) & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} = \nu(B)\chi_A(x). \text{ Also, } y \to \mu(E^y)$$

$$= \mu(A)\chi_B(y). \text{ Thus, (1) hold for } E = A \times B, A \in \mathcal{M}$$
and $B \in \mathcal{N}$. Now, if $E = A \times B$, then $\int_X \nu(E_x) d\mu(x)$

$$= \int_X \nu(B)\chi_A d\mu(x) = \nu(B)\mu(A) \text{ and } \int_Y \mu(E^y) d\nu(y)$$

$$= \int_Y \mu(A)\chi_B d\nu = (y)\mu(A)\nu(B). \text{ Thus, (2) also hold}$$
for $E = A \times B$, and so $E = A \times B \in \mathcal{C}$.

Next, suppose that E = a finite disjoint union of rectangles $= \bigcup_{j=1}^{n} (A_j \times B_j)$. Then, $E_x = \bigcup_{j=1}^{n} (A_j \times B_j)_x$ is still a finite disjoint

union
$$\Rightarrow \nu(E_x) = \nu(\bigcup_{j=1}^n (A_j \times B_j)_x) = \sum_{j=1}^n \nu(A_j \times B_j)_x$$
 is

measurable. Thus, (1) holds for $E = \bigcup_{j=1}^{n} (A_j \times B_j)$. Also, when

$$E = \bigcup_{j=1}^{n} (A_j \times B_j), \ \nu(E_x) = \sum_{j=1}^{n} \nu(A_j \times B_j)_x = \sum_{j=1}^{n} \nu(B_j) \chi_{A_j}(x)$$

$$\Rightarrow \int_X \nu(E_x) d\mu(x) = \int_X \sum_{j=1}^n \nu(B_j) \chi_{A_j} d\mu(x_j) = \sum_{j=1}^n \mu(A_j) \nu(B_j).$$

Similarly, if $E = \bigcup_{j=1}^{n} (A_j \times B_j)$, then $\mu(E^y) = \sum_{j=1}^{n} \mu(A_j \times B_j)^y$

$$= \sum_{j=1}^n \mu(A_j) \chi_{B_j}(y) \Rightarrow \int_Y \mu(E^y) d\nu(y) = \int_Y \sum_{j=1}^n \mu(A_j) \chi_{B_j} d\nu(y)$$

$$=\sum_{j=1}^n \mu(A_j)\nu(B_j). \text{ Thus, (2) holds, and so } E=\bigcup_{j=1}^n (A_j\times B_j)$$
 $\in\mathcal{C}.$

Claim: Let $\mathcal{A} = \{\bigcup_{j=1}^n (A_j \times B_j) : A_j \in \mathcal{M} \text{ and } B_j \in \mathcal{N}\}$ Then,

 \mathcal{A} is an algebra.

Proof of Claim: Consider $(A \times B) \cup (C \times D) = (A \cap C) \times (B \cap D) \dot{\cup} (A \backslash C) \times B \dot{\cup} (C \backslash A) \times D \dot{\cup} (A \cap C) \times (B \backslash D) \dot{\cup} (A \cap C) \times (D \backslash B)$. You can rewrite them as a finite disjoint union. Also, $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$, and $(A \times B)^c = (A^c \times Y) \cup (A \times B^c)$. Thus, \mathcal{A} is an algebra, and $\mathcal{A} \subseteq \mathcal{C}$.

Claim: C is a monotone class.

Proof of Claim: Suppose that $E_j \in \mathcal{C}$, and $E_j \subseteq E_{j+1} \subseteq \cdots$, and $E = \bigcup_j E_j$. Then, $(E_j)_x \subseteq (E_{j+1})_x \subseteq \cdots$, and $E_x = \bigcup_j (E_j)_x \Rightarrow \nu(E_x) = \lim_j \nu((E_j)_x) \Rightarrow x \to \nu(E_x)$ is \mathcal{M} -measurable. Similarly, $y \to \mu(E^y)$ is \mathcal{N} -measurable. Also, if $E_j \in \mathcal{C}$ and $E_j \supseteq E_{j+1} \supseteq \cdots$, and $E = \bigcap_j E_j$, then $(E_j)_x \supseteq (E_{j+1})_x \supseteq \cdots$, and $E_x = \bigcap_j (E_j)_x \Rightarrow \nu(E_x) = \lim_i \nu((E_j)_x)$ since ν is finite. Thus, (1) holds.

Similarly, (2) holds, and so \mathcal{C} is a monotone class. So, by the Monotone Convergence Theorem, the σ -algebra generated by $\mathcal{A} \subseteq \mathcal{C} \Rightarrow \mathcal{M} \otimes \mathcal{N} \subseteq \mathcal{C}$. So, every $E \in \mathcal{M} \otimes \mathcal{N}$ has properties (1) and (2).

[Show that $\mu \times \nu(E) = \int_X \nu(E_x) d\mu(x)$ is a measure.]

Suppose that $E = \bigcup_{n=0}^{\infty} E_n$ and $E_n \in \mathcal{M} \otimes \mathcal{N}$.

Then,
$$E_x = \bigcup_{n=1}^{\infty} (E_n)_x \Rightarrow \nu(E_x) = \sum_{n=1}^{\infty} \nu((E_n)_x).$$

So,
$$\mu \times \nu(E) = \int_X \nu(E_x) d\mu(x) = \int_X \sum_{n=1}^{\infty} \nu((E_n)_x) d\mu(x)$$

$$= \sum_{n=1}^{\infty} \int_{X} \nu((E_n)_x) d\mu(x) = \sum_{n=1}^{\infty} \mu \times \nu(E_n).$$

Proof for σ -finite case: Let (X,\mathcal{M},μ) and (Y,\mathcal{N},ν) be σ -finite. Then, $X=\bigcup\limits_{i=1}^{\infty}X_i$ and $\mu(X_i)<+\infty$ for each i. Also, $Y=\bigcup\limits_{j=1}^{\infty}Y_j$ and $\nu(Y_j)<+\infty$ for each j. If $E\in\mathcal{M}\otimes\mathcal{N}$, then E can be written as $\bigcup\limits_{i,j=1}^{\infty}[E\cap(X_i\times Y_j)]$, call these $E_{i,j}\subseteq X_i\times Y_j$.

February

By finite case, each
$$x \to \nu((E_{i,j})_x)$$
 and $y \to \mu((E_{i,j})^y)$ are measurable functions, $\nu(E_x) = \sum_{i,j} \nu((E_{i,j})_x)$, and $\mu(E^y) = \sum_{i,j} \mu((E_{i,j})^y)$. Also, $\int_X \nu(E_x) d\mu(x) = \sum_{i,j} \int_X \nu((E_{i,j})_x) d\mu(x) = \sum_{i,j} \int_Y \mu((E_{i,j})^y) d\nu(y) = \int_Y \mu(E^y) d\nu(y)$.

General Product Measure Non σ -finite Case:

Given (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) , measure spaces, start with an outer measure on $X \times Y$ defined by $\lambda^*(E) = \inf\{\sum_j \mu(A_j)\nu(B_j) : E \subseteq \bigcup_j A_j \times B_j, A_j \in \mathcal{M} \text{ and } B_j \in \mathcal{N}\}$. It is easy to show that λ^* is an outer measure. It is harder to show that every set in $\mathcal{M} \otimes \mathcal{N}$ is λ^* -measurable. To do this, use theorems about measures on algebra and show that $A \in \mathcal{M}$ and $B \in \mathcal{N} \Rightarrow \lambda^*(A \times B) = \mu(A)\nu(B)$. This always defines a measure $\mu \times \nu$. In fact, when they are both σ -finite measures, this measure is the same as the one given by Theorem 2.36.

Example (The reason why Theorem 2.36 requires σ -finite.)

Let X=Y=[0,1], $\mathcal{M}=\mathcal{N}=\mathcal{B}_{\mathbb{R}}$, $\mu=$ Lebesgue measure which is finite ($\Rightarrow \sigma$ -finite), and $\nu=$ counting measure which is $\underline{\mathrm{not}}\ \sigma$ -finite. Let $D=\{(t,t):0\leq t\leq 1\}\subseteq [0,1]\times [0,1]$ which is a diagonal of the square. Then, $D\in\mathcal{B}_{\mathbb{R}}\times\mathcal{B}_{\mathbb{R}}=\mathcal{B}_{\mathbb{R}^2}$, $D_x=\{x\}$, $\nu(D_x)=1$, $D^y=\{y\}$ and $\mu(D^y)=0$. Thus, $\int_X \nu(D_x)d\mu(x)=\int_{[0,1]}1d\mu=1$ and $\int_Y \mu(D_y)d\nu(y)=\int_{[0,1]}0d\nu=0$; they are not equal as in σ -finite case. Let $D\subseteq A_j\times B_j$ and $C_j=A_j\cap B_j$. Then, $D\subseteq\bigcup_j (C_j\times C_j)\Rightarrow [0,1]\subseteq\bigcup_j C_j$ which is a countable union and $C_j\subset\mathcal{B}_{\mathbb{R}}$ covering [0,1] \Rightarrow there exists j_0 such that $\mu(C_{j_0})>0$, Lebesgue measure is positive $\Rightarrow C_{j_0}$ is an infinite set $\Rightarrow \nu(C_{j_0})=+\infty\Rightarrow \mu(C_{j_0})\nu(C_{j_0})=+\infty\Rightarrow \lambda^*(D)=+\infty$. Thus, $\mu\times\nu(D)==+\infty$. Note that $\int_X \nu(D_x)d\mu(x)=1$ and $\int_Y \mu(D_y)d\nu(y)=0$ are different, but finite. However, $\mu\times\nu(D)==+\infty$ is nowhere near 0 or 1. So, when μ and ν are not both σ -finite, things get $\underline{\mathrm{bad}}$!