Claim: If $A \in \mathcal{M}$ and $B \in \mathcal{N}$, then $A \times B \in \mathcal{F}$.

Proof of Claim: $(A \times B)_x = \begin{cases} B & \text{if } x \in A \\ \emptyset & \text{if } x \notin A \end{cases}$ Since $B \in \mathcal{N}$ and $\emptyset \in \mathcal{N}$, $(A \times B)_x \in \mathcal{N}$ for all $x \in X$. Also, $(A \times B)^y = \begin{cases} A & \text{if } y \in B \\ \emptyset & \text{if } y \notin B \end{cases} \Rightarrow (A \times B)^y \in \mathcal{M} \text{ for all }$ $y \in Y$. Thus, $A \times B \in \mathcal{F}$ for all $A \in \mathcal{M}$ and for all $B \in \mathcal{N}$.

Thus, $\mathcal{M} \otimes \mathcal{N} \subseteq \mathcal{F}$, and hence $E \in \mathcal{M} \otimes \mathcal{N} \Rightarrow E \in \mathcal{F}$, that is $E_x \in \mathcal{N}$ for all $x \in X$ and $E^y \in \mathcal{M}$ for all $y \in Y$.

Proof of (b): Consider $f_{x_0}^{-1}((\alpha, +\infty]) = \{y: f_{x_0}(y) > \alpha\} = \{(x, y): x \in \mathbb{R}\}$
$$\begin{split} &f(x,y)>\alpha\}_{x_0}. \text{ Since } f \text{ is measurable, } \{(x,y):f(x,y)>\alpha\}\\ &\in \mathcal{M}\otimes\mathcal{N}\Rightarrow \{(x,y):f(x,y)>\alpha\}_{x_0}=f_{x_0}^{-1}((\alpha,+\infty])\in\mathcal{N} \end{split}$$
Thus, f_x is \mathcal{N} -measurable. Similarly, f^y is \mathcal{M} -measurable.

Definition: Let X be a set. Then, $C \subseteq \mathcal{P}(X)$ is called a monotone class if $E_j \in \mathcal{C}$ and $E_1 \subseteq E_2 \subseteq \cdots$, then $\bigcup_{i=1}^{\infty} E_j \in \mathcal{C}$, and also if $E_j \in \mathcal{C}$ and $E_1 \supseteq$

$$E_2\supseteq \, \cdot \, \cdot \, \cdot$$
 , then $\bigcap_{j=1}^\infty E_j\in \mathcal{C}.$

Note: Given any collection $\mathcal{E} \subseteq \mathcal{P}(X)$ of subsets, we can talk about the monotone class generated by \mathcal{E}

Prop:

Exercise in page 4: An algebra \mathcal{A} is a σ -algebra if and only if \mathcal{A} is closed under countable increasing unions (that is, if $\{E_j\}_{j=1}^\infty\subset\mathcal{A}$ and

$$E_1 \subset E_2 \subset \cdots$$
, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$.)

Proof (\Rightarrow): Suppose that an algebra \mathcal{A} is a σ -algebra, and suppose that $\{E_j\}_{j=1}^{\infty}\subset\mathcal{A} \text{ and } E_1\subset E_2\subset\cdots$ Then, $\bigcup_{j=1}^{\infty}E_j\in\mathcal{A}$ by the definition of σ -algebra.

Proof (\Leftarrow): Suppose that \mathcal{A} is an algebra, and \mathcal{A} is closed under countable increasing unions. Let $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A}$, and let $B_1 =$ $A_1, B_2 = A_1 \cup A_2, \cdots$ Then, $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$, and also $B_1 \subset B_2 \subset \cdots$. Thus, $\bigcup_{n=1}^{\infty} B_n \in \mathcal{A}$ and so $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

Therefore, A is a σ -algebra.

Monotone Class Theorem 2.35: Let X be a nonempty set, and $A \subseteq \mathcal{P}(X)$ be an algebra. Then, the monotone class generated by A is equal to the σ -algebra generated by A.

Proof: Let X be a nonempty set, and $A \subseteq \mathcal{P}(X)$ be an algebra. Also, let \mathcal{C} be the monotone class generated by A, and M be the σ -algebra generated by A. Since every σ -algebra is a monotone class, $\mathcal{C} \subseteq \mathcal{M}$.

[Show that $\mathcal{M} \subseteq \mathcal{C}$. It is enough to show that \mathcal{C} is a σ -algebra.] Fix $E \in \mathcal{C}$, and let $\mathcal{C}_E = \{F \in \mathcal{C} : F \setminus E, E \setminus F, E \cap F \in \mathcal{C}\}$. It is clear that $\emptyset \in \mathcal{C}_E$ and $E \in \mathcal{C}_E$. Now, $F \in \mathcal{C}_E$ if and only if $E \in \mathcal{C}_F$.

[Show that C_E is a monotone class.]

Let $F_j \in \mathcal{C}_E$, $F_1 \subseteq F_2 \subseteq \cdots$, and $F = \bigcup_j F_j$. We know that

 $F \in \mathcal{C}$, $F_j \setminus E \in \mathcal{C}$ for all j, and $F_j \setminus E \subseteq F_{j+1} \setminus E$ (increasing.) This implies that $\bigcup_j (F_j \setminus E) = F \setminus E \in \mathcal{C}$. Next, $E \cap F_j \in \mathcal{C}$ for

all j, and $E \cap F_j \subseteq E \cap F_{j+1}$ (increasing) implies that $\bigcup_j (E \cap F_j) = E \cap F \in \mathcal{C}$. Also, $E \setminus F_j \in \mathcal{C}$ for all j, and $E \setminus F_j$

 $\supseteq E \backslash F_{j+1}$ (decreasing) implies that $\bigcap_j (E \backslash F_j) = E \backslash F \in \mathcal{C}$.

Thus, $F = \bigcup_j F_j \in \mathcal{C}_E$. Similarly, if $F_j \in \mathcal{C}_E$ and $F_j \supseteq F_{j+1}$,

then $\bigcap_{j} F_{j} \in \mathcal{C}_{E}$. Therefore, \mathcal{C}_{E} is a monotone class.

[Show that $C_E = C$.]

If $E, F \in \mathcal{A}$, then $F \in \mathcal{C}_E \Rightarrow \mathcal{A} \subseteq \mathcal{C}_E$ whenever $E \in \mathcal{A} \Rightarrow \mathcal{C} \subseteq \mathcal{C}_E \Rightarrow \mathcal{C} = \mathcal{C}_E$ whenever $E \in \mathcal{A}$.

[Show that C is an algebra.]

Since $X \in \mathcal{A}$, $\mathcal{C} = \mathcal{C}_X$. Thus, $E \in \mathcal{C} \Rightarrow E \in \mathcal{C}_X \Rightarrow X \in \mathcal{C}_E$ for any $E \in \mathcal{C}$. So, if $E \in \mathcal{C}$, then $X \setminus E = E^c \in \mathcal{C}$. Also, if $E, F \in \mathcal{C}$, then $E \setminus F, F \setminus E, E \cap F \in \mathcal{C}$. Thus, \mathcal{C} is an algebra. [Show that \mathcal{C} is a σ algebra, and thus $\mathcal{M} \subseteq \mathcal{C}$.]

By Exercise 4 in page 24, C is a σ -algebra. Thus, $\mathcal{M} \subseteq C$ and so $\mathcal{M} = C$.

Theorem 2.36: Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces. If $E \in \mathcal{M} \otimes \mathcal{N}$, then:

- (1) $x \to \nu(E_x)$ is \mathcal{M} -measurable, and $y \to \mu(E^y)$ is \mathcal{N} -measurable.
- (2) $\int_X \nu(E_x) d\mu(x) = \int_Y \mu(E^y) d\nu(y)$
- (3) If we set $\mu \times \nu(E) = \int_X \nu(E_x) d\mu(x)$, then $\mu \times \nu$ is a measure on $\mathcal{M} \otimes \mathcal{N}$.

Proof: First assume that $\nu(Y) < +\infty$ and $\mu(X) < +\infty$, and let $\mathcal{C} = \{E \in \mathcal{M} \otimes \mathcal{N} : (1) \text{ and } (2) \text{ hold.}\}$

Claim: If $E = A \times B$, $A \in \mathcal{M}$ and $B \in \mathcal{N}$, then $E \in \mathcal{C}$.

Proof of Claim: Let $E = A \times B$, $A \in \mathcal{M}$ and $B \in \mathcal{N}$. Then,

$$E_x = (A \times B)_x = \begin{cases} B & \text{if } x \in A \\ \emptyset & \text{if } x \notin A \end{cases} \text{ and so } x \to \nu(E_x)$$

$$= \begin{cases} \nu(B) & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} = \nu(B)\chi_{A}(x). \text{ Also, } y \to \mu(E^{y})$$

 $=\mu(A)\chi_B(y)$. Thus, (1) hold for $E=A\times B, A\in\mathcal{M}$ and $B\in\mathcal{N}$. Now, if $E=A\times B$, then $\int_X \nu(E_x)d\mu(x)$

 $=\int_X \nu(B)\chi_A d\mu(x) = \nu(B)\mu(A)$ and $\int_Y \mu(E^y) d\nu(y)$

 $= \int_Y \mu(A) \chi_B d\nu = (y) \mu(A) \nu(B).$ Thus, (2) also hold

for $E = A \times B$, and so $E = A \times B \in \mathcal{C}$.

Next, suppose that E = a finite disjoint union of rectangles $= \bigcup_{j=1}^{n} (A_j \times B_j)$. Then, $E_x = \bigcup_{j=1}^{n} (A_j \times B_j)_x$ is still a finite disjoint

union
$$\Rightarrow \nu(E_x) = \nu(\bigcup_{j=1}^n (A_j \times B_j)_x) = \sum_{j=1}^n \nu(A_j \times B_j)_x$$
 is

measurable. Thus, (1) holds for $E = \bigcup_{j=1}^{n} (A_j \times B_j)$. Also, when

$$E = \bigcup_{j=1}^{n} (A_j \times B_j), \nu(E_x) = \sum_{j=1}^{n} \nu(A_j \times B_j)_x = \sum_{j=1}^{n} \nu(B_j) \chi_{A_j}(x)$$

$$\Rightarrow \int_X \nu(E_x) d\mu(x) = \int_X \sum_{j=1}^n \nu(B_j) \chi_{A_j} d\mu(x_j) = \sum_{j=1}^n \mu(A_j) \nu(B_j).$$

Similarly, if $E = \bigcup_{j=1}^{n} (A_j \times B_j)$, then $\mu(E^y) = \sum_{j=1}^{n} \mu(A_j \times B_j)^y$

$$= \sum_{j=1}^n \mu(A_j) \chi_{B_j}(y) \Rightarrow \int_Y \mu(E^y) d\nu(y) = \int_Y \sum_{j=1}^n \mu(A_j) \chi_{B_j} d\nu(y)$$

$$= \sum_{j=1}^{n} \mu(A_j) \nu(B_j). \text{ Thus, (2) holds, and so } E = \bigcup_{j=1}^{n} (A_j \times B_j)$$

 $\in \mathcal{C}.$