HW10 Let F:R->R increasing and right continuous, All (R, M=)/1=) the Cebesque-Stieltjes measure. Given EEM, with ME(E) < +00 Prove that there exists $A = O(a_i, b_i)$ (given E>0) with MF(EDA) < E. (EAA = (E\A) U(A\E) this is called the symmetric difference of sets)

Proof of (b): Proposition 2.16, $\int |f-g| d\mu = 0 \Leftrightarrow |f-g| = 0$ a.e. Also, |f-g| = 0 a.e. $\Leftrightarrow f = g$ a.e. Thus, $\int |f-g| d\mu = 0$ $\Leftrightarrow f = g$ a.e. Now, let $E \in \mathcal{M}$. Then, $\int |f-g| d\mu = 0$, $\Leftrightarrow \int_E |f-g| d\mu = 0$. But, $0 \le |\int_E (f-g) d\mu| \le \int_E |f-g| d\mu$ = 0. Thus, $\int_E (f-g) d\mu = 0$, and so $\int_E f d\mu = \int_E g d\mu$ for all $E \in \mathcal{M}$. Next, suppose that $\int_E f d\mu = \int_E g d\mu$ for all $E \in \mathcal{M}$. (Complex case) Then, $\int_E Ref d\mu = \int_E Reg d\mu$ and $\int_E Imf d\mu$ = $\int_E Img d\mu$ for all $E \in \mathcal{M}$ $\Leftrightarrow \int_E (Ref - Reg) d\mu = 0$ and $\int_E (Imf - Img) d\mu = 0$ for all $E \in \mathcal{M}$. Next, suppose that $E = \{x : Ref(x) - Reg(x) \ge 0\}$. Then, $\int_E (Ref - Reg) d\mu = \int_E (Ref - Reg)^+ d\mu$. Therefore, by Proposition 2.16, $\mu(\{x \in E : Ref(x) - Reg(x) > 0\}) = 0$. Also, suppose that $E^c = \{x : Ref(x) - Reg(x) < 0\}$. Then, $\mu(E^c) = 0$. Thus, Ref = Reg a.e. Similarly, Imf = Img a.e., and so f = g a.e.

Remark: Let $f: X \to \overline{\mathbb{R}}$ be measurable and $\int |f| d\mu < +\infty$. Then, $\int f^+ d\mu < +\infty$ and $\int f^- d\mu < +\infty \Rightarrow \mu(\{x: f^+(x) = +\infty\}) = 0$, $\mu(\{x: f^-(x) = +\infty\}) = 0$, $\mu(\{x: f^-(x) = -\infty\}) = 0$. So, up to a set of measure 0, f is real-valued. That is, $f: X \to \mathbb{R}$. "Throwing away the set of measure 0" does not effect integration.

Motivation: Define $f \sim g$ if and only if f = g a.e. Then, we see that \sim is an equivalence relation. Now, let $\mathcal{N} = \{h : h = 0 \ a.e\} \subseteq \mathcal{L}^1(\mu)$. Then, \mathcal{N} is a vector space, and f = g a.e. if and only if g = f + h for some $h \in \mathcal{N}$. Also, cosets are $[f] = \{g : g \sim f\} = \{g : g = f \ a.e.\} = f + \mathcal{N}$.

Definition: $L^1(\mu) = \{ [f] : f \in \mathcal{L}^1(\mu) \} = \mathcal{L}^1(\mu) / \mathcal{N}$

Proposition: Define $\rho([f], [g]) = \int |f - g| d\mu$. Then, ρ is well-defined, and is a metric on $L^1(\mu)$.

Proof: Suppose that $f_1 \sim f_2$ and $g_1 \sim g_2$. Then, $f_1 - g_1 \sim f_2 - g_2$, and so $f_1 - g_1 = f_2 - g_2$ a.e. $\Rightarrow \int |f_1 - g_1| d\mu = \int |f_2 - g_2| d\mu$. Thus, ρ is well-defined. It is clear that $\rho([f], [g]) \geq 0$. Thus, ρ is nonnegative. Also, $\rho([f], [g]) = 0 \Leftrightarrow \int |f - g| d\mu = 0 \Leftrightarrow f = g$ a.e. (by Proposition 2.23) $\Leftrightarrow f \sim g \Leftrightarrow [f] = [g]$.

Page 59

Next, $\rho([f], [g]) = \int |f - g| d\mu = \int |g - f| d\mu = \rho([g], [f]).$ Thus, ρ is symmetric. Finally, given $[f], [g], [h] \in L^1(\mu)$, $\rho([f], [g]) = \int |f - g| d\mu = \int |(f - h) + (h - g)| d\mu \le \int (|f - h| + |h - g|) d\mu = \int |f - h| d\mu + \int |h - g| d\mu = \rho([f], [h]) + \rho([h], [g]).$ Thus, the triangular inequality holds. Thus, ρ is a metric on L^1 (not on L^1 .)

Note: In this metric space, $[f_n] \to [f] \Leftrightarrow \rho([f_n], [f]) \to 0 \Leftrightarrow \int |f_n - f| d\mu \to 0$.

Theorem 2.24 (Lebesgue Dominated Convergence Theorem - DCT) Let $\{f_n\} \subseteq \mathcal{L}^1(\mu), f_n \to f \ a.e.$ and there exist $g \in \mathcal{L}^1(\mu)$ such that $|f_n(x)| \leq g(x) \ a.e.$ Then, $f \in \mathcal{L}^1(\mu)$ and $\int f d\mu = \lim_n \int f_n d\mu$.

Proof: (Real case) Let $\{f_n\}\subseteq \mathcal{L}^1(\mu), f_n\to f\ a.e.$ and there exist $g\in \mathcal{L}^1(\mu)$ such that $|f_n(x)|\leq g(x)\ a.e.\Leftrightarrow |f(x)|\leq g(x)\Rightarrow g(x)+f_n(x)\geq 0\ a.e.$ and $g(x)-f_n(x)\geq 0\ a.e.$, and also $g(x)+f(x)\geq 0\ a.e.$ and $g(x)-f(x)\geq 0\ a.e.$ By Fatou's Lemma, $\int (g+f)d\mu\leq \liminf_n f\int (g+f_n)d\mu\Rightarrow \int fd\mu+\int gd\mu$ $\leq \int gd\mu+\liminf_n f\int f_nd\mu\Rightarrow \int fd\mu\leq \liminf_n f\int f_nd\mu$. Also, similarly $\int gd\mu-\int fd\mu=\int (g-f)d\mu\leq \liminf_n \inf \int (g-f_n)d\mu$ $=\lim_n \inf (\int gd\mu-\int f_nd\mu)=\int gd\mu-\lim_n \sup \int f_nd\mu\Rightarrow -\int f_nd\mu\leq -\lim_n \sup \int f_nd\mu\geq \lim_n \sup \int f_nd\mu$. Thus, the limit exists, and $\lim_n \int f_nd\mu=\int fd\mu$.

Theorem 2.25: Suppose that $\{f_j\}\subseteq \mathcal{L}^1(\mu)$ and $\sum_{j=1}^\infty \int |f_j| d\mu < +\infty$. Then, $\sum_{j=1}^\infty f_j(x)$ converges a.e. Also, if we let $f(x)=\sum_{j=1}^\infty f_j(x)$, then $\int f d\mu = \int \sum_{j=1}^\infty f_j d\mu = \sum_{j=1}^\infty \int f_j d\mu$. Proof: Define $g(x)=\sum_{j=1}^\infty |f_j(x)|$. (Notice that $g(x)=+\infty$ sometimes.) Then, $S_N(x)=\sum_{j=1}^N |f_j(x)| \Rightarrow S_N\nearrow g$. Thus, by the Monotone

Convergence Theorem, $\int g d\mu = \lim_N \int S_N d\mu = \lim_N \sum_{j=1}^N \int |f_j| d\mu$ $\sum_{j=1}^\infty \int |f_j| d\mu < +\infty$. So, $g(x) \geq 0$ and $\int g d\mu < +\infty$ implies that $\mu(\{x:g(x)-+\infty\}) = 0$. Now, let $N=\{x:g(x)-+\infty\}$. Then, if $x \notin N$, then $g(x) < +\infty \Rightarrow$ if $x \notin N$, then $\sum_{j=1}^\infty |f_j(x)| < +\infty \Rightarrow$ if $x \notin N$, then $f(x) = \sum_{j=1}^\infty f_j(x) < +\infty$ since absolute convergence \Rightarrow convergence. Thus, $f(x) = \sum_{j=1}^\infty f_j(x)$ is finite a.e.Finally, if $h_N(x) = \sum_{j=1}^N f_j(x)$, then $|h_N(x)| = \left|\sum_{j=1}^N f_j(x)\right| \leq \sum_{j=1}^\infty |f_j(x)| = g(x)$ and $h_N(x) \to f(x)$ a.e. Thus, by Dominated Convergence Theorem, $\int f d\mu = \lim_N \int h_N d\mu = \lim_N \int \sum_{j=1}^N f_j d\mu = \lim_N \int f_j d\mu = \sum_{j=1}^\infty \int f_j d\mu$.

Example (Example (

- (a) $g \in \mathcal{L}^1(m)$, and in particular g is finite a.e.
- (b) g is discontinuous at every point and unbounded on every interval.

Proof: $\int f dm = R \int_0^1 x^{-1/2} dx = \lim_{\epsilon \downarrow 0} R \int_{\epsilon}^1 x^{-1/2} dx = \lim_{\epsilon \downarrow 0} 2x^{1/2}]_{\epsilon}^1 = \lim_{\epsilon \downarrow 0} (2 - 2\sqrt{\epsilon}) = 2. \text{ So, } \int f dm = 2.$ Let $\{r_n\}$ enumerate all rationals. Let $g(x) = \sum_{n=1}^{\infty} 2^{-n} f(x - r_n).$ Then, $\int g dm = \int \sum_{n=1}^{\infty} 2^{-n} f(x - r_n) dm = \sum_{n=1}^{\infty} \int 2^{-n} f(x - r_n) dm = \sum_{n=1}^{\infty} \int 2^{-n} f(x - r_n) dm = \sum_{n=1}^{\infty} 2^{-n} \int f$

 $<+\infty$, and so g is finite a.e. Therefore, for almost all x, $\sum_{n=1}^{\infty} 2^{-n} f(x-r_n)$ converges and we have calculated its integral, and g(x) is unbounded in the neighborhood of every rational numbers $\Rightarrow g(x)$ is discontinuous at every rational number.

Theorem 2.26: Let (X, \mathcal{M}, μ) be a measure space. If $f \in \mathcal{L}^1(\mu)$ and $\epsilon > 0$, then there exists $\phi = \sum a_j \chi_{E_j}$ which is integrable and simple such that

 $\int |f-\phi|d\mu < \epsilon$. [That is, simple functions are dense in $(L^1(\mu),\rho)$ which is a metric space.] If μ is Lebesgue-Stieltjes measure on $\mathbb R$, then the set E_j can be taken to be a finite union of open intervals. Moreover, in this case (Lebesgue-Stieltjes measure), there exists g which is a continuous function that vanishes outside of a bounded interval and $\int |f-g|d\mu < \epsilon$.

Proof (Real case): Write $f=f^+-f^-$. Then, we have simple functions $\phi_n\nearrow f^+$ and $\psi_n\nearrow f^-$. Thus, by the Monotone Convergence Theorem, $\lim_n\int\phi_n d\mu=\int f^+d\mu$ and $\lim_n\int\psi_n d\mu=\int f^-d\mu$. Thus, $\lim_n\int (f^+-\phi_n)d\mu=0$ and $\lim_n\int (f^--\psi_n)d\mu=0$. Next, look at $\int |f-(\phi_n-\psi_n)|d\mu=\int |f^+-f^--\phi_n+\psi_n|d\mu$ $\leq \int [|f^+-\phi_n|+|f^--\psi_n|]d\mu\to 0$. Pick n_0 such that $\phi=\phi_{n_0}-\psi_{n_0}=\sum a_j\chi_{E_j}$.

Now, assume that μ is a Lebesgue-Stieltjes measure. Then by Proposition 1.20 (Littlewood's First Principle), there exists U_j , a finite union of open intervals, such that $\mu(E_j \triangle U_j)$ which is

arbitrarily small. Let
$$\gamma = \sum\limits_{j=1}^N a_j \chi_{U_j}$$
. Pick $\phi = \sum\limits_{j=1}^N a_j \chi_{E_j}$ such that $\int |f - \phi| d\mu < \epsilon/2$. Then, $\int |f - \gamma| d\mu \leq \int (|f - \phi| + |\phi - \gamma|) d\mu < \epsilon/2 + \int |\sum\limits_{j=1}^N a_j (\chi_{E_j} - \chi_{U_j})| d\mu \leq \epsilon/2 + |\phi - \gamma|$

$$\int \sum_{j=1}^{N} |a_j| |\chi_{E_j} - \chi_{U_j}| d\mu = \epsilon/2 + \sum_{j=1}^{N} |a_j| \mu(E_j \bigtriangleup U_j) < \epsilon/2 + \epsilon/2$$

 $= \epsilon$ by picking U_j such that $\mu(E_j \triangle U_j) < \epsilon/2(|a_j|+1)N$. Finally, given a U_j which is a finite union of open intervals, χ_{U_j} is 1 on these open intervals. Pick g_j continuous such that

$$\int |\chi_{v_j} - g_j| d\mu$$
 is arbitrarily small. Let $g = \sum\limits_{j=1}^N a_j g_j$ to get