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Abstract

The optimal liquidation problem with transaction costs, which includes a positive fixed
cost, and market impact costs, is studied in this paper as a constrained stochastic optimal
control problem. We assume that trading is instantaneous and the dynamics of the stock
to be liquidated follows a geometric Brownian motion. The solution to the impulse control
problem is computed at each time step by solving a linear partial differential equation and
a maximization problem. In contrast to results obtained from the static formulation in
Almgren and Chriss (2000), when risk is not considered, the optimal liquidation strategy
from our stochastic control formulation depends on temporary market impact cost and per-
manent market impact cost parameters. In addition, our computational results indicate
the following properties of the optimal execution strategy from the stochastic control for-
mulation. Due to the existence of no-transaction region, it may not be optimal for some
individuals to sell their assets on some trading dates. As the value of the permanent mar-
ket impact parameter increases, the expected optimal amount liquidated at the terminal
time increases. As the value of the quadratic temporary impact cost parameter increases,
the expected optimal amount liquidated at trading times tend to be uniform, and the no-
transaction region shrinks. In the presence of quadratic temporary market impact costs, in
contrast to optimal strategies that result from fixed and/or proportional transaction costs
alone, portfolios in the selling region are neither rebalanced into the no-transaction region
nor into the sell and no-transaction interface.
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region

*This work was supported by the National Sciences and Engineering Research Council of Canada and by TD
Securities Inc. The authors would like to thank their colleague Peter Forsyth for many insightful discussions. The
views expressed herein are solely from the authors.

TDepartment of Combinatorics and Optimization, University of Waterloo, 200 University Avenue West, Wa-
terloo, Ontario, Canada N2L 3G1, email: t2dravia@gmail.com

{Department of Combinatorics and Optimization, University of Waterloo, 200 University Avenue West, Wa-
terloo, Ontario, Canada N2L 3G1, email: tfcoleman@uwaterloo.ca.

§David R. Cheriton School of Computer Science, University of Waterloo, 200 University Avenue West, Water-
loo, Ontario, Canada N2L 3G1, email: yuying@uwaterloo.ca



1 Introduction

The tremendous growth in equity trading over the past decade necessitates the measurement
and management of ezecution costs, see e.g., (Bertsimas and Lo, 1998). Such costs include
bid/ask spreads, opportunity costs of waiting, and impact on asset prices due to trading, col-
lectively known as market impact costs. These costs can have substantial impact on execution
performance. It is well recognized that institutional large trading takes time, and that the very
act of trading affects not only current proceeds from liquidation but also the price dynamics of
assets which, in turn, affects future liquidation proceeds. Recent studies by Chan and Lakon-
ishok (1995) and Keim and Madhavan (1995) show that large institutional trades are always
broken up into smaller ‘packages’ executed over the course of several days, adapting to changing
market conditions. By using a sample of 1.2 million transactions of 37 large investment firms,
Chan and Lakonishok show that 20% of the market value of the packages are completed within
a day and that over 53% are spread over four trading days or more.

Bertsimas and Lo (1998) study the optimal execution problem in which a trader wants to
acquire stocks within a fixed time horizon. They define the best execution strategy in the sense
that it provides the minimum expected cost of acquiring the stocks. In their trading model,
they add an impact premium on the execution price of the trade. Such premium is modeled
by a pre-defined price impact function that yields the execution price of an individual trade as
function of the shares traded. When the market impact does not depend on the prevailing price
of the stock, the best-execution strategy is to buy at a constant rate over the liquidation period.
They have extended the analysis to the portfolio case in which trade in several securities must
be executed simultaneously. Almgren and Chriss (2000) extend the work of Bertsimas and
Lo (1998) by including an additional permanent impact in the model. The temporary impact
refers to imbalances in supply and demand at the moment of trading caused by a trade order,
the permanent impact refers to price drop that persists for the whole life of the liquidation
period. Almgren and Chriss (2000) assume that trading strategy is static when they maximize
the expected net proceeds for the given risk, quantified by the variance of the net expected
proceeds. When one is only interested in maximizing the net proceeds, the static strategy,
when the dynamics of the risky asset follows arithmetic random walk with no drift, leads to
sell at a constant rate over the liquidation period. This optimal liquidation (naive) strategy is
independent of the market and frictional parameters. This is not always the case, as we show in
this paper, when dynamic strategies are considered in our continuous time model using stochastic
optimal control theory. Also, the timings of the rebalancing are not predetermined but depend
on the evolution of the stock price, which is uncertain from the initial time perspective.

In a related literature, there have been many studies that extend Merton’s dynamic portfolio
selection problems by incorporating various transaction costs models. Proportional transaction
costs are considered, see, e.g., (Magill and Constantinides, 1976; Constantinides, 1986; Davis and
Norman, 1990; Dumas and Luciano, 1991; Shreve and Soner, 1994; Akian et al., 1996; Sulem,
1997; Tourin and Zariphopoulou, 1997; Leland, 2000; Atkinson and Mokkhavesa, 2003). In
addition studies of fixed transaction costs can also be found, see, e.g., (Eastham and Hastings,
1988; Hastings, 1992; Schroder, 1995; Korn, 1998). Moreover, fixed and proportional transaction
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(a) Proportional Transaction Costs. B is a portfo-
lio that lies in the buying region and A is a portfolio
that lies on the buy-no transaction interface. D is
a portfolio that lies in the selling region and C is
a portfolio that lies on the sell-no transaction in-
terface, Ay and Ay are the proportional buying and
selling temporary market impact cost rates.
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(b) Fixed and Proportional Transaction Costs. B
is a portfolio that lies in the buying region, A is
a portfolio that lies on the buy-no transaction in-
terface and C is a portfolio that lies within the no
transaction region. E is a portfolio that lies in the
selling region, D is a portfolio that lies on the sell-
no transaction interface and F is a portfolio that
lies within the no transaction region.

Figure 1: Characterization of Optimal Policies




costs are considered in, e.g., (Chancelier et al., 2000; Oksendal and Sulem, 2002; Zakamouline,
2005; Chellathurai and Draviam, 2007). In the presence of proportional transaction costs, the
problem is characterized by buy and no-transaction and sell and no-transaction interfaces in the
portfolio space. The optimal transaction policy, in the presence of proportional transaction costs,
is a minimal trading to stay inside the wedge defined by the no transaction region, preceded by
an immediate transaction to the closest point in the wedge if the initial endowment is outside of
it, see, Figure 1 (a). When there are strictly positive fixed and proportional transaction costs,
the problem is characterized by buy and no-transaction and sell and no-transaction interfaces,
and buy and sell targets in the portfolio space. If there are two portfolios which lie in the buying
(selling) region so that their net values remain the same, then the risky asset is bought (sold)
such that the two rebalancings result in the same buy target (sell target) portfolio with the same
net value which lies within the no transaction region, see, Figure 1 (b). The buy and the sell
targets coincide when the proportional transaction costs are zero. In the presence of fixed (and
proportional) transaction costs, the volume of the trade is large if it takes place. More recently,
Ly Vath et al. (2007) study the optimal liquidation problem with fixed transaction costs and
market impact costs. They characterize the value function as the unique viscosity solution to
the associated quasi-variational Hamilton-Jacobi-Bellman (HJB) inequality. Unfortunately no
numerical results are provided in the paper.

In this paper, we study the dynamic liquidation problem with fixed, proportional or quadratic
transaction costs, and market impact costs in a dynamic portfolio selection framework based on
a continuous time stochastic optimal control approach. We compute dynamic optimal trading
strategies that maximize the expected utility of the net proceeds resulting from the trading of a
large block of equity over a fixed time horizon. Rebalancing is assumed to be instantaneous, and
the controls are the amounts of the risky asset sold. The market impact costs incurred depend
on the amount liquidated. Ly Vath et al. (2007) formulate the optimal liquidation problem
with fixed transaction costs and market impact costs as an impulse control problem. In this
paper, the solution to the impulse control problem is computed at each time step by solving
a linear partial differential equation and a maximization problem. Computational results are
provided to illustrate characteristics of optimal trading strategies. In the presence of market
impact and quadratic transaction costs, the portfolio space is again divided into trading region
and no-transaction region. But in the presence of quadratic transaction costs, in contrast to
optimal strategies that result from fixed and/or proportional transaction costs alone, portfolios
in the selling region can neither be rebalanced into the no-transaction region nor into the sell
and no-transaction interface.

The presentation of the paper is organized as follows. In Section 2, a numerical method 1s
developed for the dynamic liquidation problem when the portfolio consists of a risk-free asset,
and a risky asset whose price dynamics is modeled by a geometric Brownian motion. At every
point of the transaction regions, necessary conditions satisfied by the value function are derived.
In Section 3, a computational algorithm is presented. At each time, the problem is reduced to
solving a constrained maximization problem and a degenerate linear partial differential equation.
A monotone upwind finite difference scheme is developed to discretize the partial differential
equation (PDE) so that the discrete system leads to an M-matrix that guarantees the discrete



maximum principle. In Section 4, we present computational results for the optimal trading
strategies when the utility function for the terminal wealth is a power-law function. Section 5
concludes the paper.

2 A Computational Approach by Solving a Linear Partial
Differential Equation and Maximization

Counsider the problem of liquidating a large number of shares in a stock before time T' to
maximize some expected utility of the terminal wealth. We assume that the dynamics of the
stock is characterized by

dS(t) = a S(t) dt + o S(t) dB, (1)

where S(t) denotes the price of one share of the stock at time ¢, and dB; is the increment of
a Brownian motion. In (1), « is the instantaneous conditional expected return and o? is the
instantaneous conditional variance of the return. We also assume that there exists a risk-free
asset whose dynamics is characterized by

dSo(t) = r So(t) dt

where So(t) denotes the price of one unit of the risk-free asset at time ¢, and r is the instantaneous
rate of return from the risk-free asset, which is assumed to be constant. Let x(t) = N(¢)S(t)
denote the value of holdings in the stock, where N(t) is the number of shares of the asset held.
Its dynamics, when there is no trading, is given by

de(t) = a x(t) dt + o x(t) dB;. (2)
Similarly if y(¢) denotes the value of the holdings in the risk-free asset, its dynamics is given by
dylt) = r y(t) . )

Thus, for a small value of At > 0, equations (2) and (3) lead to

Ax(t) Y 2t + At) — 2(t)
Ay(t) = y(t+ At) — y(t)

ax(t) At+ o x(t) AB + o( At)

y (4)
ry(t) At 4 o(At),

where o( At) refers to higher-order terms.

Let 0 < g(x,y,t) < = denote the amount of risky asset sold at time ¢ in state (x,y) so that
the maximum amount of liquidation is x. The investor pays C(q¢) as transaction costs on the sale
of the risky asset, which includes a positive fixed transaction cost ($F > 0) on each selling of
the risky asset. The transaction cost function is given by

Clq) = Aq) + Xeq + Ag¢” (5)



where the impulse function A(q) is defined by

| F it g>0
A(Q)_{o, if ¢=0.

In (5), As and A, are non-negative parameters that characterize the temporary market impact.
One would not trade if ¢ — C(q) is negative. We assume that the liquidation region and the
parameters A, and A, are such that ¢ —C(¢) remains nonnegative, and in all our numerical exper-
iments, this condition is satisfied automatically. Also we assume that trading is instantaneous,
and the value of the holdings in the equity is reduced by a factor of (1 — pg) whenever selling
takes place. The parameter u specifies the permanent effect of selling on the price dynamics of
the equity. Similar market impact functions have been considered by Ly Vath et al. (2007).

Let W(T) denote the net terminal wealth as the amount of money in the risk-free asset
resulting from the liquidation of the risky asset in [0, T]. The investor’s objective is to maximize
the expected value of the discounted utility ¢ (W (T')) of the terminal wealth. Assume that
p > 01is a constant discount factor. The utility function of the terminal wealth is assumed to be
monotonically increasing and concave in its argument to represent a risk-averse investor.

Variational inequality, which consists of equations and inequalities that characterize the sell-
ing and no-transaction regions separately, has been considered as the basic building block to
characterize and analyze dynamic portfolio selection problems with fixed and proportional trans-
action costs, see, e.g., (Oksendal and Sulem, 2002; Zakamouline, 2005). Chen and Forsyth (2007)
also solve a guaranteed minimum withdraw benefit problem based on the variational inequality
formulation. Based on Bellman’s principle (Bellman and Dreyfus, 1962), Ly Vath et al. (2007)
recently formulate the optimal execution problem under the market impact and fixed cost as
the unique viscosity solution to a quasi variational inequality problem. Assume that J(z,y,t)
denotes the value function which is the maximum conditional expected value of the discounted
utility of the terminal wealth at T'. The quasi variational inequality problem has the form of

max{MJ(x,y,t)— J(x,y,t), LJ(x,y,t)—pJ(x,y,t)} =0, (6)
where L is the associated differential operator defined by

aet O aJ aJ o2 L]
,CJ(J},y,t) - a(xvyvt) + axa_x(xvyvt) + rya_y(xvyvt) + ?l‘ w(xvyvt)

and the intervention operator defined by

MJ(x,y,t) = sup {J(f(‘rv(.Z)vn(%Q)vt)}

0<g<z

where {(z,q) = (v — q(,y,1))(1 — pa(z,y,1)), n(y, ¢) = y + q(,y,t) = C(q(z,y, 1),

The above formulation and its mathematical proof are quite complex and the quasi variational
inequality problem can only be solved numerically. For further details, one may refer to Ly Vath
et al. (2007). In Chen and Forsyth (2007), this type of quasi variational inequality problem is



solved by finite difference discretization scheme which involves solving a sequence of maximization
based on

J(x,y,t) = sup {J((z —q)(1 —pq),y+q—C(q), 1)}

0<g<z

and an implicit, stable, monotone, consistent, finite difference method derived from
LI =pJ

along with the boundary conditions.

Using the intuitive notion ¢+ to denote time ¢ immediately after trading, we provide below,
based on Bellman’s principle, an informal derivation for a different characterization which leads
to the same computational scheme. Note that the explanation is based on the observation that,
under the assumption of a positive fixed cost F' > 0, at any z,y, t, there exists At > 0 such that
it is optimal not to trade in (¢,t + At).

Let t+ denote immediately after trading time ¢ and x(¢+) and y(¢+) denote the investor’s
holdings in the risky and risk-free assets, immediately after selling takes place at time ¢ in state

(x,y), Le.,
l’(t—l—) = (l‘ - q(x,y,t))(l—uq(x,y,t))
y(t+) = y + qlz,y,t) = Clq(x,y,1)).

Since the fixed cost F > 0, there exists At > 0 such that it is optimal not to trade in
(t,t + At). Using equations in (4), holdings in the assets at time ¢ + At can be written as

w(t+ At) = z(t+)+ax(t+) At+ o x(t+) AB: + o( At)

= 2(t+) + Az(t), (7)
Yt A1) = y(t) +ry(tt) A+ o)

= y(t+) + Dy(t). (8)

Let J(x,y,t) denote the value function which is the maximum conditional expected value of
the discounted utility of the terminal wealth at T, i.e.,

J(x,y,t) = sup E {0 g[W(T)]}. (9)
1
Here E; denotes the conditional expectation operator at time ¢ in state x(t) = , y(¢t) = y. In
(9), 2y is the set of all integrable non-anticipative processes 0 < ¢(z,y,s) < z, t < s < T,
(x,y) € D, where D is the liquidation region defined by
D={(z,y) €R*|2>0,y>0,W >0} (10)

Assume that @ > 0 and 0 < ¢ < T. Since there is no trading in (¢,t + At), Bellman’s principle
of optimality implies

T,y t) ™ = sup By {Jlalt+ A1), ylt+ A1), 1+ Ot
Q

7



where
Q= {q(z,y.)[0 < g(z,y,t) < z,(z,y) € D,0 <t < T}

Using equations (7) and (8), the above equation can be stated as

J(x,y,t) ePht — sup By {J[x(t+) + Az, y(t+) + Ay, t + At] }.
Q

SinceAx — 0 as At | 0, taking the limit At | 0 in (11), we get

J(x,y,t) = sup { J(x(t+),y(t+),t+)}

(11)

(12)

where J(x(t+),y(t+),t+) is the utility associated with selling an amount ¢(x,y,t) at time ¢ in

state x(t) = x, and y(t) = y.
Using Taylor’s expansion and properties of the Brownian motion,

E, { J[x(t+) + Az, y(t+) + Dy, t + At]

= It )+ AL (), () 1)

£ At o) ) ) )+ y(t) G (el (). 1)

o? , 0% 9
4 2 a7 Tyl 4 of(A01).
From Bellman’s principle and the fact that it is optimal not to trade in (¢,¢ + At),
J(@(t4),y(t+), t4) e = B { J[a(t+) + Az, y(t+) + Dy, t + At]}
From (13) and (14), letting At | 0, we have

p J(w(t+), y(t+). t+) = S (x(t+), y(t+), t+) + o x(t+) Z(x(t+), y(t+), 1+)

+ o y(tt) Z(t4), y(t) 1) + G w(t+)? T (@(t+), y(t+), t+).

Let gopt solves (12) and

x(t—l_)opt = (l‘ - qut(xvyvt)) (1 - /“qupt(xvyvt))
Y(t+H)opt =Y + Qopt(®, 4, 1) = C (qope(, y, 1)) .

(13)

(14)

(15)

Thus the value function J(z,y,t) and gop(x,y,t), which solve the stochastic optimal control

problem, satisfy

pJ(z oy t+) = L(x,y.t+) + ax P(x,y,t+)
+ ry S(ayt4) + G 2 Sa(v,y, i)

J(x,y,t) = supg { J(x(t+), y(t+), 1+)}.

8



The terminal condition is given by

J(w,y,t=T)= ¢(w) (17)

where w = y + max(x — C(x),0) is the cash after liquidation of the risky asset.
At 2(t) =0,0 < t < T, there is nothing to sell. Thus

2(s) =0, qlz,y,s) =0, x(s) =a(s+) t<s<T

in which case equation (11) takes the form

aJ aJ
J(z,y,t) = —(z,y,t) + ry —(x,y,t), x = 0. 18
pJ(x,y,t) = 2 (2,y.7) yay(y) (18)

To get the optimal control ¢(x,y,t) and the associated value function J(x,y,t) we have to
solve (16) subject to the terminal condition (17) and the boundary condition (18), and there are
no analytical solutions.

3 Computational Implementation

In this section we present a computational algorithm to determine the optimal execution
strategy and the value function by iterating backwards in time based on finite difference approx-
imations.

The characterization (16) suggests that the value function J(x,y,t) and the liquidation strat-
egy ¢(x,y,t) can be computed numerically backwards in time by solving a linear partial differ-
ential equation followed by a maximization problem at each time step. More specifically, let

J(x,y,t+) denote the numerical approximation of the value function J(x,y,t+). At each time
step, we determine the value function and the associated optimal controls as follows:

1. In the liquidation region D, solve the linear PDE

. a.J a.J a.J o222 92J
P J(l’,y,t—l—) = a(xvyvt—l_)—I_axa_x(xvyvt—l_)—l_rya_y(xvyvt—l_)—l_ 2 w(xvyvt—l_) (19)

along with the terminal and boundary conditions. For any x,y and ¢(x,y,t), J(x,y,t+)
can be obtained from linear interpolation using a triangular element. The triangular el-
ements are obtained from the rectangular elements with coordinates (a1, y1), (22,y2 =
y1), (x5 = 22,y3), (¥4 = x1,ys4 = y3), by dividing into two triangular elements with co-
ordinates (x1,y1), (€2,Y2), (¥4, y4), and (22, y2), (23, Y3), (T4, Ya).

2. At (x,y,t), solve the optimization problem
J(x,y,t) = sup { J(x(t+),y(t+),1+)} (20)
Q
using J in (19) to obtain the optimal control gup(x,y,1).

9



3. At (x,y,t), using the calculated optimal control guu(x,y,t), calculate
J(l‘, Y, t) = J(x(t—l_)optv y(t—l_)optv t—l_)

We note again that the above computational scheme is same as the finite difference com-
putational scheme in Chen and Forsyth (2007), which is based on the variational inequality
formulation (6).

We develop an upwind finite difference scheme to discretize the PDE (19), or equivalently,

aJ aJ
P J(l’,y,t) = a(xvyvt) + al(xvyvt) 6_x(x’y’t)

2

aJ 1
—|—Cl2($,y,t) a_y(xvyvt) + §b§($,y,t) @(xvyvt)v (21)

where
ar(x,y,t) = ax, ay(z,y,t) =ry, bi(x,y,t) =0 x.

Assume that the value function at the time step ¢t + At, J(x,y,t+ At), is known, where At
is the step size in time. At the first time step, t = T — At, J(x,y,t + At) is the utility from
terminal wealth.

The objective of the upwind discretization is that the resulting difference equations satisfy
a modified partial differential equation whose solution j(:z;,y,t) is twice differentiable in the
liquidation region and differs from the original partial differential equation by truncation error.
The determination of the modified partial differential equation, and in particular, the leading
order truncation error provides essential information as to the behaviour of the numerical solution
(Hirsch, 1988).

For computational purposes the PDE (21) needs to be augmented with the physical bound-
ary conditions to get the unique solution in a localized computational domain. The localized
liquidation region, D, is defined as

D ={(z,y) € R?|0 £ 2 < Zmas,0 < ¥ < Ypmaw, W > 0}

where 4, and Yma, are given parameters. The PDE (21) is parabolic in @ and ¢t and degenerate
in y. The boundary conditions should be selected to replicate this behavior.

The PDE (21) itself is applied on y = 0,0 < & < Zyae. When ypmq, is large, if the value
function and its derivatives are bounded, the PDE (21) leads to, on ¥ = ¥masz, 0 < @ < Timaa,

9J — 0. (22)
dy

Since ¥ = Ymaz, 0 < & < Tpnag, 18 an artificial boundary, in consistent with the PDE (21),
boundary condition (22), where ¥ = Ymaz, 0 < & < Typas, 0 < t < T, may be replaced by

9%

da?

. o.J dJ 1
P J(l’,y,t) = —(l’,y,t) + Cl1($,y,t) —(l’,y,t) + 5 b%(l’,y,t)

- - CHRINNC)

10



When @4, is large, if the value function and its derivatives are bounded, the PDE (21) leads
to
o.J T
— — ) 24
i 0, 922 — 0 (24)
In consistent with the PDE (21), boundary condition (24), where & = #m4z,0 < ¥ < Ymaz, 0 <
t < T, leads to
. oJ oJ
P J(l’,y,t) = a(xvyvt) + az(:z;,y,t) a_y(xvyvt)' (25)

The PDE (21) is discretized on a rectangular grid of the liquidation region D. The left and
right neighborhood nodes of any interior node (7, j) are indicated by the indices (i — 1,7) and
(1 +1,7), respectively. The lower and upper neighborhood nodes are identified by the indices
(1,j—1)and (¢,5+1), respectively. Let (x;,y;) denote the co-ordinates of the interior node (¢, j),
and let

Tip1 — @ = hgr, v, — i1 =hg, yjy1—y; =ko and y; —y;1 = kp.

The subscript denoting time is not shown and it is understood that J(x;, y;,t) = J; ;. Thus the
numerical scheme below is fully implicit. For brevity, we use ay(x;,y;,t) = a1, az(xi, y;,t) = az,
and by(x;,y;,t) = by.

Using standard techniques in finite difference method equation (21), along with the boundary
conditions, is discretized by

Ciovj Jicrg + Cijor Jijor + Cijyn iy + Cigrj Jigaj

7 1 7 J(xivijt—l_At)
— Ch] le] + (,0 + E ) Jz,] — N ) (26)

where

a1 — |Cl1| 2 ]_ ]_
s = — b — | = , 2
Cicsy 2hy, ! { (hr + hg) (hL (27)

oy — |Cl2|

Cijo1 = Ty (28)
—dgy — |d
Cign = 2l (29)
—a; — |a,| 2 1 1
L = A el
Citig 2hr ! { (hr + hr) (hR (30)
Cij = Ciciy + Cijor + Cijpr + Cigayye (31)

The boundary conditions (18), (23), and (25) are particular cases of the PDE (15), and hence,
can be discretized exactly as in the case of an interior node.

11



Equations (26)-(31) constitute the required discrete equations at every node in the liquidation
region. In each row associated with a node, all off-diagonal entries C;_y ;, Ciy1 5, C; j—1, and C; j11
are non-positive and the diagonal entry is positive. Also, the sum of all the entries of each row
corresponding to every interior node is positive. All these conditions satisfy the requirements
for an M-matrix, which ensures the discrete maximum principle. The numerical solution cannot
have oscillation at any time (Strang, 1986; Ciarlet, 1970).

It can be shown that as hy, hg, kp, kv, and At — 0, the finite difference equation (26)
converges to the equation (21) defined on any interior node (¢, j) at time ¢, and hence, the scheme
is consistent. If the order of h?, hp hr, h%, k¥, kukp, k%, At? and other higher order terms
are neglected, equation (26) reduces to

aJ aJ
pJ(xivijt) = a(xhijt) + al(xivijt) a_x(xivijt)

a.J b 9%J
+ as(i,y;5,t) a—y(l’uyg‘,t) + %(mivijt) @(l‘uyg‘at)
b;? 9*J
+ 7( ivijt) a—yz(xivijt) (32)
where
h h
b (e t) = Wlent) + 5 (ot lal) = 5 (a0 lal)
2 2
b (e t) = 5 (art o) — (a2~ laa] ).

From equation (32), we infer that if the linear terms involving hp, hgr, kp and ky are
included, we have some additional terms in the coefficients of %(mi,yj,t) and %(mi,yj,t).

Equation (32) says that the numerical scheme (26) introduces numerical viscosity (Hirsch, 1988),

"R (ay +|ai| ) =& (‘ay —|a1| ), along with the existing diffusion term, M

of the z-axis; and ¥ ( @y + |as] ) — 22 ( ay — |ag| ), in the direction of the y-axis. These

additional numerical diffusion terms tend to zero as the step sizes tend to zero. The numerical

, in the direction

scheme adds artificial viscosity ensuring that the value function (numerical) behaves smoothly
at any point in the liquidation region where the value function (exact) may not be smooth in the
classical sense. That is, a possible discontinuity in derivatives of .J are automatically smoothened
by the numerical scheme. As the step sizes go to zero, the numerical solution J tends to the
solution to the original stochastic optimal control problem. The upwind discretization procedure
is widely used to solve convection dominated problems in computational fluid dynamics (Hirsch,
1988) to smooth the flow variables whose gradients change abruptly. The value function may
not be differentiable in y at all points of the liquidation region. This difficulty is overcome by
the ‘vanishing viscosity’ method, whereby the PDE is modified by adding a small diffusion term
through the upwind finite-difference method. Barles and Souganidis (1991), Barles (1997)
and Bardi and Capuzzo-Dolcetta (1997) have shown that it is possible to compute the solution
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of a Hamilton-Jacobi-Bellman equation in a robust manner by using a scheme as long as it is
consistent, monotone and stable.

4 Computational Results

To illustrate, we present numerical results using the following data

a=0.09 (1/year), p=r=0.05(1/year), o =0.40 (1/,/year),
T =0.02 (year), A\s =0, F =250 (%).

The optimal liquidation problem is solved in the computational domain
D:{(:z:,y)ERz|0§:1;§:1;max:108, Ogygymmzmg}

subject to the terminal and boundary conditions. The computational domain is discretized into
rectangular elements, and the number of discrete nodes on both axes is 101. The maximization
problem (20) is solved by a simple grid search. Numerical experiments were performed with
different sets of values for ,,4, and y,,q4.. Larger values for «,,4, and yq. have been used, and
these values have negligible effects on the optimal controls and the associated value function.

The liquidation period T is approximately five days. The step-size along time axis is At =
0.002 (year) so that NAt = T. This corresponds to selling the asset twice in a trading day. The
utility function for the terminal wealth is

w”

qb(w): 77 07&7<17

where w = y + max(x — C(x),0). There may be a small region in the neighborhood of (z,y) =
(0,0) where there will be no trading. Considering the size of (Zmazs Ymaz), this region falls
practically within a rectangular element, and it does not affect the discreization in any way.
~ = 1 corresponds to maximizing the net liquidated value of wealth at terminal time 7. For
a given v, the optimal liquidation strategy, gope(2,y,t), is obtained at discrete trading times
t; = jAt,0 < 57 < (N —1), where tg = 0, and ty = T are the initial and terminal times
respectively.

In order to test the accuracy of the computational method, the algorithm is first implemented
to numerically solve the dynamic portfolio selection problem, commonly known as the Merton
problem. This problem becomes a particular case of the dynamic liquidation problem when the
frictional parameters are set to zero, and the liquidation constraint «(7") = 0 and the constraints
g > 0 on the optimal amounts liquidated are eliminated.

Table 1 shows the optimal amounts sold at ¢ = 0 for different time-zero portfolio compositions
(Zinit, Yinit = 0). For the given market data with the exponent of the power-law utility function
~v = 0.3, the Merton line on which no rebalancing takes place is

y=1,
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Tint | DNx =4.0x10° | Az =2.0x10° | Az =1.0 x 10° exact
(107) Gopt (107) Gopt (107) Gopt (107) Gopt (107)
4.0 2.0 2.0 2.0 2.0
4.4 2.4 2.2 2.2 2.2
4.8 2.4 2.4 2.4 2.4
5.2 2.8 2.6 2.6 2.6
5.6 2.8 2.8 2.8 2.8
6.0 3.2 3.0 3.0 3.0
6.4 3.2 3.2 3.2 3.2
6.8 3.6 3.4 3.4 3.4
7.2 3.6 3.6 3.6 3.6

(As= Ag= F'= p=0)

Table 1: Optimal amounts sold for different @,n;: (yinie = 0) at t = 0 for different step lengths
Az = Ay for the Merton problem.

and the Merton number, which quantifies the proportional investment in the risky asset, is 0.5.
If the time-zero composition of the portfolio is not on the Merton line y = =z, it is optimal to
rebalance so that the amounts invested in the risky and risk-free assets are the same. Table 1
shows exact optimal amounts sold at the initial time ¢ = 0 and the corresponding computed
optimal amounts for different values of step size Ax = Ay. Table 1 shows that the error in the
optimal amount sold is of the order of %, and it is independent of the portfolio composition.
Since linear interpolation function is used on a triangular element the maximum value of the
value function occurs on the nodal points. As the optimization problem is solved by grid search,
Gopt 15 @ multiple of Az, the step size along x-direction. This is the reason there are no additional
non-zero digits in gy (Table 1).

Next we illustrate the characteristics of the dynamic optimal liquidating strategy based on
Monte Carlo simulations. We graph the curve of the expected terminal wealth against the
standard deviation of the terminal wealth. Assume that the value function J and the amount of
optimal trading amount g have been computed for a given distribution. For each sample price
path, the terminal liquidation value, W(T'), of any initial portfolio (2;nit, Yinit) at time t = 0 can
be calculated as follows:

1. Starting from the initial time to = 0, let x(¢g) = i and y(to) = Yini. Calculate the
optimal control qo (2(t0),y(t0),to) by linear interpolation.
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2. For j=0:N—1
v(t+) = (x(t;) — q;) (1 — pg;) , y(ti+) = y(t;) + ¢ — Clg5)
2(t; + Dt) = 2(t;+) exp{(a — 5)At + 0 Bar}
y(t; + Ot) = y(t;+) exp{rAt}.
determine ¢;41 by linear interpolation.

3. Calculate W(T') = y(tn) + z(tn) — Clgn).

4.952

4.951- 4

4.948 B

4.946 B

4.944 B

4.942 - 4

Expected terminal wealth

4.94 - 4

4,938 q

4.936 I I I I I
12 13 14 15 1.6 17 18

Standard deviation of terminal wealth 6

A =2.0x1072 =101
q s 1

Figure 2: The expected terminal wealth vs standard deviation of wealth curve: for the portfolio
with initial holdings ;n;; = 5.0 X 107, Yini = 0

Using 10,000 sample paths, we compute the expected optimal amount liquidated at any
trading time ¢t = ¢;, and the expected value of the terminal portfolio value and its standard
deviation.

Figure 2 plots the simulated expected value of the portfolio value versus the standard deviation
of the portfolio value. The initial portfolio has the time-zero initial holdings in the risky and
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risk-free assets given by
Linit = 5.0 % 107 ($), Yinit — 0 ($)

The values of the quadratic transaction cost and market impact parameters are
A =2.0x 1077 (1/$), =107 (1/9).

The data, expected portfolio value and its standard deviation, in Figure 2 is generated by Monte-
Carlo simulations for different values of v ranging from -60 to 1.0. As expected, the marginal
rate of change in expected value of terminal liquidation value decreases as risk, quantified by the
standard deviation of the terminal liquidation value, increases.
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Figure 3: Expected Optimal Amount Liquidated for Different Values of ~

Figure 3 shows the expected optimal amounts liquidated as a function of time for different
values of the risk-aversion parameter v. Figure 3 (a) corresponds to the time-zero portfolio
(@inits Yinit) = (5.0 x 107,0) and Figure 3 (b) is for the initial portfolio (i, Yinie) = (107,0).
Individuals with a high risk-aversion (e.g., the parameter v = —30), liquidate more at time t = 0
than the individuals with a lower risk-aversion parameter ( e.g., ¥ = —8). In Figure 3 (a), the
initial holding in the risky asset is relatively larger than the initial risky asset holding in Figure 3
(b), the individuals who are risk-neutral (i.e., v = 1.0) liquidate the risky asset almost uniformly
over time. This is not the case for Figure 3 (b) for which the holding in the risky asset is smaller.
This is in contrast to the static framework of optimal liquidation in Almgren and Chriss (2000) in
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which the optimal number of shares liquidated, for an individual who is risk-neutral, is uniform
in time and is independent of the frictional parameters. Note that the corresponding variation in
the trading amount due to asset price change should be visually negligible since the time length
is very small. From Figure 3 (b), we see that, for the dynamic liquidation strategy, the optimal
liquidation, for an individual with zero risk-aversion, is parameter dependent. This point will be
further illustrated later.
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Figure 4: Expected Optimal Amount Liquidated for Different Time-zero Holdings in the Risk-free
Asset

Figure 4 shows different time-zero holdings in the risk-free asset lead to different expected
optimal amounts liquidated at each trading time. The time-zero holdings in the asset to be
liquidated is ;n;; = 107($), and the holdings in the risky asset vary from 0 to 4.0 x 107($).
The risk aversion parameter in the power-law utility function ~ i1s -5.0. Figure 4 shows that
individuals with relatively large initial holdings in the risk-free asset (yn;) liquidate less at time
t = 0 compared to an individual with zero holdings in the risk-free asset. That suggests that
relatively large holding in the risk-free asset acts as a risk-tolerance parameter. This is due to the
additional utility that comes from the cash, which is also observed in the Merton model (Merton,
1969).

For a fixed value of the quadratic transaction parameter A\, = 2.0 x 107%(1/$), and v = 1.0,
Figure 5 shows the expected optimal amounts liquidated at different times, for different values
of the market-impact parameter, ;. Subgraphs (a) and (b) correspond to the time-zero portfolio
(@inits Yinit) = (5.0 x 107,0) and (@inir, Yinie) = (107, 0) respectively. As the value of the market-
impact parameter increases, the expected optimal amount liquidated at the terminal time T
increases. It is optimal to liquidate more at the terminal time as the liquidation at the terminal
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Figure 5: Expected Optimal Amount Liquidated for Different Values of Market Impact Parameter
[

time does not affect the net portfolio value, W (T'). Though the risk-aversion parameter ~ is unity
(representing a zero risk aversion individual), the optimal strategy is not parameter independent
as in the case of Almgren and Chriss (2000). Also, for the time-zero portfolio (init, Yinit) =
(107,0), there is no liquidation of the asset at time t = 0 when the market-impact parameter
exceeds u = 2.5 x 107?(1/$). The expected optimal amount liquidated in the first five trading
times is zero for g > 4.0 x 107?(1/$). This behavior is due to the existence of the no-transaction
region, which is entirely absent in the static framework in Almgren and Chriss (2000).

For a fixed value of the market-impact parameter g = 4.5 x 107?(1/$) and v = 1.0, Figure
6 shows the expected optimal amounts liquidated as a function of time for different values of
the quadratic transaction cost parameter, A,. Subplots (a) and (b) correspond to the time-
zero portfolio (Tinit, Yinit) = (5.0 X 107,0) and (@i, Yinie) = (107,0) respectively. As the value
of the quadratic transaction cost parameter increases, the expected optimal amount liquidated
at trading times tend to be uniform. Again, though the risk-aversion parameter 7 is unity,
representing a zero risk aversion individual, the optimal strategy is not parameter independent
as in the case of Almgren and Chriss (2000).

Figure 7 illustrates the optimal amount liquidated as a function of holdings in the assets at
t = 0.000, ¢t = 0.010, and ¢t = 0.018, respectively. The risk-aversion parameter of the power-law
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Figure 6: Expected Optimal Amount Liquidated for Different Values of Quadratic Transaction
cost Parameter A,

utility function, the quadratic transaction cost, and market-impact parameters are
v =10, A\, =20x107(1/$), p=4.5x107"(1/9).

The portfolios with initial holdings in the risky asset less than z,; = 2.5 x 107 liquidate only
at the terminal time. Due to the existence of the no-transaction region, the expected optimal
amount liquidated is not parameter independent for an individual with zero risk-aversion, quan-
tified by v = 1.0 (see Figures 7 and 8). In addition, Figure 7 shows that, at any trading time,
the optimal liquidation strategy is dependent on the holdings of the assets. This is due to the
existence of the no-transaction region, which is absent in the static framework in Almgren and
Chriss (2000). Many portfolios (for example, = 5.0 x 107, y > 0) in the selling region are
neither rebalanced into the no-transaction region nor into the sell and no-transaction interface,
see Figure 7. This is the consequence of quadratic transaction costs, and this is in contrast to
optimal strategies that result from fixed and/or proportional transactions alone.

To further illustrate the effect of the quadratic transaction cost and the market impact pa-
rameters, we consider larger values for A, and p as follows,

Ag = 4.0 x 107°(1/8), p=4.5x1077(1/9).
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(b) t = 0.01

(c) t =0.018

(v=1.0, 0, =2.0x 1072, =45 x 1079)

Figure 7: Optimal Amounts Liquidated
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As in Figure 7, the risk-aversion parameter of the power-law utility function is v = 1.0. Figure 8
shows the optimal amounts liquidated as a function of holdings in the assets at ¢ = 0.000(year),
t = 0.010(year), and t = 0.018(year), respectively. The no-transaction region shrinks as the
quadratic transaction cost increases (for a fixed market-impact parameter). Due to the reduction
of the no-transaction region, the expected optimal amount liquidated is almost uniform in time,
and is parameter dependent for an individual with zero risk-aversion, quantified by v = 1.0.
Figure 8 also shows that at any trading time the optimal liquidation strategy depends on the
holdings of the assets. Again, portfolios that are far away from the sell and no-transaction
interface are neither rebalanced into the no-transaction region nor into the sell and no-transaction
interface.

5 Conclusion

The optimal liquidation problem with transaction costs, which includes a positive fixed cost,
and market impact costs, is studied in this paper as a constrained stochastic optimal control
problem. We assume that trading is instantaneous and the dynamics of the stock to be lig-
uidated follows a geometric Brownian motion. The solution to the impulse control problem is
computed at each time step by solving a linear partial differential equation and a maximization
problem. Our computational results indicate that the optimal liquidation strategy, corresponding
to a risk-neutral individual with the power-law utility coefficient v = 1, is dependent on frictional
parameters, such as the quadratic transaction cost and market-impact parameters. This is in
contrast to results obtained from the static framework of optimal liquidation in Almgren and
Chriss (2000). There exists a no-transaction region in the continuous stochastic control frame-
work; the no-transaction region is absent in the static setup in Almgren and Chriss (2000). Due
to the existence of no-transaction region, it may not be optimal for some individuals to sell their
assets on some trading dates. The no-transaction region affects the trading pattern more on
individuals with relatively less holdings of the asset to be liquidated than on the individuals with
relatively large holdings of the asset. The relatively large holdings in the risk-free asset, other
things remain unchanged, acts as a risk-tolerance parameter. As the value of the market-impact
parameter increases, the expected optimal amount liquidated at the terminal time increases. As
the value of the quadratic transaction cost parameter increases, the expected optimal amount
liquidated at trading times tend to be uniform and the no-transaction region shrinks. In the
presence of the quadratic transaction cost, in contrast to optimal strategies that result from
fixed and/or proportional transaction costs alone, portfolios in the selling region are neither re-
balanced into the no-transaction region nor into the sell and no-transaction interface. The above
differences in results are due to differences in two different model characterizations, in particular
due to the nature of the resulting trading strategies (static vs dynamic).
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