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Abstract. When liquidating a portfolio of large blocks of risky assets, an institutional investor
wants to minimize the cost as well as the risk of execution. An optimal execution strategy minimizes
a weighted combination of the expected value and the variance of the execution cost, where the
weight is given by a nonnegative risk aversion parameter. The execution cost is determined from
price impact functions. In particular, a linear price impact model is defined by the temporary
impact matrix Ω and the permanent impact matrix Γ, which represent the expected price depression
caused by trading assets at a unit rate. In this paper, we analyze the sensitivity of the optimal
execution strategy to estimation errors in the impact matrices under a linear price impact model.
We show that, instead of depending on Ω and Γ individually, the optimal execution strategy is
determined by the combined impact matrix Θ = 1

τ

(
Ω + ΩT

) − Γ, where τ is the time length
between consecutive trades. We prove that the minimum expected execution cost strategy is the
naive execution strategy, independent of perturbations, when the permanent impact matrix Γ is
symmetric and the combined impact matrix Θ is positive definite. We provide upper bounds on the
size of change in the optimal execution strategy in a general setting. These upper bounds are in terms
of the changes in the impact matrices, the eigenvalues of a block tridiagonal matrix defined by Θ,
the risk aversion parameter, and the covariance matrix. These upper bounds indicate that, when the
covariance matrix is positive definite, a large risk aversion parameter reduces the sensitivity of the
optimal execution strategy. Moreover, when the permanent impact matrix Γ and its perturbation are
symmetric, the optimal execution strategy is asymptotically not sensitive to estimation errors when
either the minimum eigenvalue of the covariance matrix or the minimum eigenvalue of Θ is large.
In addition, our computational results confirm that the sensitivity of the optimal execution strategy
to the perturbations decreases when Γ and the perturbed permanent impact matrix are symmetric.
Moreover, the change in the efficient frontier increases as the risk aversion parameter decreases for
asymmetric perturbations. We consistently observe that imposing short selling constraints reduces
the sensitivity of the optimal execution strategy and the efficient frontier to the perturbations.
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1. Introduction. Portfolio management of large trades is one of the most im-
portant problems in modern market microstructure theory (O’Hara (1998)). When
an investor trades in large volumes, in addition to explicit costs such as brokerage,
he faces some implicit execution costs. These costs mainly consist of liquidity costs
and information effects transmitted by the size of the investor’s own trade. Liquidity
costs include the additional prices an investor pays for immediate execution of the
trade (Focardi and Fabozzi (2004)); this is often called the temporary price impact
and affects only the execution price at the moment of trading. Furthermore, the im-
balance between supply and demand, due to the investor’s trade, usually transmits
some information to the market which can move the future market price. For example,
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selling a large block of some asset may suggest that the seller believes that the asset is
overvalued. The effect of this information is often referred to as the permanent price
impact. The total price impact is the accumulation of the temporary and permanent
price impacts.

The distinction between temporary and permanent price impacts associated with
large trades and their characteristics have been addressed broadly in the literature;
e.g., see Huberman and Stanzl (2004) and the references therein. A common result in
all of these studies is that the magnitude of a price impact is a function of the trading
rate. This function is usually called the price impact function and has been widely
used in the microstructure literature since the work of Kyle (1985). The expected
price impact function is typically estimated through a linear or nonlinear regression
based on the available historical data; e.g., see Almgren et al. (2005) and Huberman
and Stanzl (2004).

Because of the dependence of the price impact on the trading volume, portfolio
managers usually split a large trade into some smaller partial orders, i.e., packages.
They then submit these partial orders over several periods during a finite time horizon.
Such a sequence of orders submitted during a number of periods is called an execution
strategy. There are many possible execution strategies to complete a desired trade.
Note that the execution cost associated with an execution strategy is typically random
since the future execution price is uncertain. In this paper, we consider the execution
cost problem which, for a given price impact function, yields an execution strategy
which minimizes a weighted linear combination of the mean and the variance of the
execution cost.

The execution cost problem shares a similar mathematical structure with the
traditional multiperiod mean-variance portfolio optimization problem when a trans-
action cost is associated with rebalancing the portfolio. In both problems, given some
fixed number of investment periods and the initial state of the portfolio, the goal is
to produce a sequence of trades that maximizes some expected utility of the final
wealth. However, in the multiperiod mean-variance portfolio optimization problem,
the permanent price impact of the trade at each period on the subsequent prices is
typically not considered. Moreover, the execution cost problem includes a specific
constraint on the investor’s position at the end of the time horizon; i.e., the investor’s
position in each asset at the end of the time horizon must be zero.

The similarity of the execution cost problem to the mean-variance portfolio op-
timization problem motivates the notion of an efficient frontier in the context of the
execution cost problem. A feasible execution strategy is efficient if it has the least
expected execution cost among all execution strategies with the same variance of
the execution cost. The collection of efficient execution strategies form the efficient
frontier of the execution strategy universe.

The sensitivity of mean-variance efficient portfolios to estimation errors in the
expected returns and the covariance matrix has been widely noted in the literature;
e.g., see Jobson and Korkie (1980), Kallberg and Ziemba (1984), Frost and Savarino
(1988), Michaud (1989), Best and Grauer (1991), Broadie (1993), Chopra and Ziemba
(1993), and Chen and Zhao (2003). However, to the best of our knowledge, the sen-
sitivity of the optimal execution strategy and efficient frontier to estimation errors in
the permanent and temporary price impact functions has not been addressed yet. For
the mean-variance portfolio optimization, the difficulty in accurate estimation of the
expected rate of returns is well known. Moreover, it is commonly accepted that, unless
the number of assets under consideration is large, estimation errors in expected returns
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are much larger than that incurred when estimating the covariance matrix of asset re-
turns; e.g., see Merton (1980), and TerHorst, Roon, and Werker (2006). Simultane-
ous estimation of the expected temporary and permanent price impacts of concurrent
trades is more complex (Torre (1997)) and likely to be less accurate than the estima-
tion of the expected returns. In addition, data limitations, price-dependent strategies
and canceled orders also make estimating the price impact functions very challenging
(Obizhaeva (2008)). Because of these challenges, literature on improving the estima-
tion of price impact functions is scarce. Therefore, it is important to understand the
sensitivity of an optimal execution strategy and the efficient frontier to any error in pa-
rameters of the price impact functions. Recognizing the effect of estimation errors may
provide more realistic expectations about the future performance of a chosen execution
strategy.

A common approach to investigate the effect of estimation errors is to interpret
the errors as perturbations to the data and to perform a sensitivity analysis on the
optimal solution; e.g., see Bank et al. (1983). Sensitivity discussions are essential in
model validation. In this paper, we carry out sensitivity analysis to study the effect of
estimation errors in parameters of the price impact functions. Our main goals here are
to explore how different an optimal execution strategy obtained from the estimated
price impact functions is from the true optimal execution strategy, and how far away
the obtained efficient frontier is from the true efficient frontier.

In this paper, we consider linear time-independent price impact functions in which
price impacts are assumed to be proportional to the trading volume. Linear price
impact functions are defined by the temporary impact matrix Ω and the permanent
impact matrix Γ. These impact matrices are the expected price depression caused by
trading assets at a unit rate. Linear price impact functions have been well-studied in
the market microstructure literature; e.g., see Kyle (1985), Bertsimas and Lo (1998),
Bertsimas, Lo, and Hummel (1999), Almgren and Chriss (2000), and Huberman and
Stanzl (2004). Huberman and Stanzl (2004) demonstrate that nonlinear permanent
price impact functions can give rise to the availability of a sequence of trades that
generates infinite expected profits per unit of risk. In addition, although the type and
size of the price impacts are different for buys and sells, and there is an asymmetry
in the overall impact of buys and sells (e.g., see Holthausen, Leftwich, and Mayers
(1987) and Chan and Lakonishok (1993)), their mathematical models are similar.
Hence, without loss of generality, our presentation in this paper assumes that the
investor’s goal is to liquidate blocks of assets. Our discussion is based on the price
impact model in Almgren and Chriss (2000).

In addition to the impact matrices, the structure of the execution cost problem in
the mean-variance setting depends on the covariancematrix of asset prices. Estimation
errors can also occur in the covariance matrix. However, in contrast to the impact ma-
trices, there is an extensive literature on techniques to improve the estimation of the co-
variancematrix; e.g., see Disatnik and Benninga (2007) and the references therein. Fur-
thermore, some recent literature on addressing estimation risks in the mean-variance
portfolio optimization tends to focus exclusively on the impact of the estimation errors
in the mean returns by assuming the covariance matrix as known; e.g., see TerHorst,
Roon, and Werker (2006), Garlappi, Uppal, and Wang (2007), and Antoine (2008).
Other recent work gives up on estimating expected returns and focuses on estimating
the covariance matrix more accurately; e.g., see Jagannathan and Ma (2003), Ledoit
and Wolf (2004), and DeMiguel et al. (2009). Therefore, in this study, we assume that
the covariance matrix is given, and we mainly focus on the sensitivity of the optimal
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execution strategy and the efficient frontier to perturbations in the impact matrices.
We first show that, under the assumed linear price impact model, the optimal execu-
tion strategy depends on the combined impact matrix Θ = 1

τ

(
Ω+ ΩT

) − Γ, rather
than Ω and Γ individually. Here τ is the time length between consecutive trades. This
suggests that one may want to estimate Θ directly in order to determine an optimal
execution strategy. In addition, we prove that when the permanent impact matrix is
symmetric and the combined impact matrix is positive definite, a unique optimal exe-
cution strategy exists for any positive risk aversion parameter.

We discuss some cases in which the optimal execution strategy is insensitive to
perturbations in the impact matrices. In particular, we prove that, for any symmetric
permanent impact matrix and positive definite matrix Θ, the naive execution strategy
of liquidating an equal amount in each period minimizes the expected execution cost.
Therefore, as long as the symmetry of the permanent impact matrix Γ is maintained,
the minimum expected execution cost strategy is not sensitive to perturbations.

We then analyze the sensitivity of the optimal execution strategy when the risk
aversion parameter is positive or the permanent impact matrix is asymmetric. Since
the impact matrices appear both in the Hessian matrix and the linear coefficient of
the quadratic objective function for the execution cost problem, the optimal execution
strategy in general may be quite sensitive to their perturbations. We show that the
optimal execution strategy is Lipschitz continuous in the impact matrices and provide
upper bounds on the size of the change in the optimal execution strategy. These
upper bounds are represented in terms of the change in the impact matrices and
a magnification factor, which is essentially the Lipschitz constant. We also present
upper bounds for the magnification factors. These upper bounds explicitly specify
which factors may magnify the effect of estimation errors on the optimal execution
strategy. For example, following the established upper bounds, it can be easily seen
that the change in the optimal execution strategy decreases when a large risk aversion
parameter is chosen. In general, upper bounds for the magnification factors depend
on the eigenvalues of the block tridiagonal Hessian matrix defined by the covariance
matrix, the impact matrices, and the risk aversion parameter. The upper bounds can
be simplified when the permanent impact matrix and its perturbation are symmetric.
Under these assumptions and the additional assumption of a positive risk aversion
parameter, the magnification factor becomes small, for small perturbations, when the
minimum eigenvalue of either the covariance matrix or the combined impact matrix
Θ is large. When both of these minimum eigenvalues are small, the optimal execution
strategy may be very sensitive to the estimation errors. These results implicitly evince
that the optimal execution strategy for trading a single asset is expected to be less
sensitive than the optimal execution strategy for trading portfolios.

We also illustrate the sensitivity of the efficient frontier to perturbations in the
impact matrices through simulations. Our computational results demonstrate that,
when short selling is prohibited, the optimal execution strategy and efficient frontier
are less sensitive than the case when short selling is permitted. Indeed, when short
selling is allowed, the efficient frontier can be quite sensitive to perturbations in the
impact matrices. In particular, when the permanent impact matrix is symmetric,
changes in the efficient frontier can become very large for a small risk aversion pa-
rameter if perturbations in the permanent impact matrix are asymmetric. Finally,
we compare the effect of estimation errors in the covariance matrix on the optimal
execution strategy and the efficient frontier with their sensitivity to perturbations
in the impact matrices. Our simulations indicate that perturbations in the impact
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matrices affect both the optimal execution strategy and the efficient frontier more
prominently than perturbations in the covariance matrix, particularly when the risk
aversion parameter is small. Our sensitivity analysis is restricted to the execution
cost problems and perturbations for which both the original problem and perturbed
problems have unique optimal solutions.

The presentation of the paper is as follows. The mathematical formulation of
the execution cost problem is described in section 2. We discuss, in section 3, the
sensitivity of the optimal execution strategy to perturbations in the impact matrices
and provide upper bounds on the size of its change. Simulations are carried out in
section 4 to illustrate the effect of perturbations in the impact matrices on the efficient
frontier and optimal execution strategy. Concluding remarks are given in section 5.

Throughout the paper, we use the following notations. Vectors and matrices are
denoted, respectively, by lower and uppercase letters. We use Ik to represent a k × k
identity matrix. We denote the matrix of all zeros with the appropriate dimension by
0. Throughout, ek denotes a column vector with the appropriate dimension which is
zero everywhere except that, at the kth entry, the value equals one. The subscripts of
matrices show their dimensions. We use A � 0 and A � 0 to denote (not necessarily
symmetric) positive semidefiniteness and positive definiteness, respectively. Moreover,
for a given vector x, we use x ≥ 0 to mean x has nonnegative elements. By ‖A‖2
and κ2(A), we mean the Euclidean norm and the condition number with respect to
the Euclidean norm of the matrix A. For a symmetric matrix A, λi(A) denotes the
ith eigenvalue of A when the eigenvalues are numbered in a nondecreasing order.
Moreover, λmax(A) and λmin(A) stand for the maximum and minimum eigenvalues of
A, respectively. The Kronecker product of two matrices Am×n and Bp×q is denoted
by the mp× nq matrix A⊗B. For the properties of the Kronecker product, a reader
is referred to section 4.5.5 in Golub and Van Loan (1996).

2. The portfolio execution cost problem. Assume that an investor plans to
liquidate his holdings in m assets during N periods in the time horizon T , t0 = 0 <

t1 < · · · < tN = T , where τ
def
= tk − tk−1 = T

N for k = 1, 2, . . . , N . The investor’s

position at time tk is denoted by the m-vector xk = (x1k, x2k, . . . , xmk)
T
, where xik

is the investor’s holding in the ith asset at period k. The investor’s initial position is
x0 = S̄, and his final position xN equals 0, which guarantees complete liquidation by
time T . The difference between the positions of two successive periods k − 1 and k
is denoted by an m-vector nk = xk−1 − xk for k = 1, 2, . . . , N . Negative nik implies
that the ith asset is bought between tk−1 and tk. We refer to a sequence {nk}Nk=1

satisfying
∑N

k=1 nk = S̄ as an execution strategy. Similarly, {xk}Nk=0 with xN = 0 is
referred to as an execution position.

Let P̃k be the execution price of one unit of assets at time tk for k = 1, 2, . . . , N .
The deterministic initial market price, before the trade begins, is denoted by P0.
Because of the price volatility, P̃k is not deterministic over the execution horizon. In
this paper, we assume that the execution price P̃k is given by

P̃k = Pk−1 − h
(nk

τ

)
, k = 1, 2, . . . , N,(1)

where the market price Pk evolves according to the discrete arithmetic random walk,

Pk = Pk−1 + τ1/2Σξk − τg
(nk

τ

)
.(2)

Here ξk = (ξ1k, ξ2k, . . . , ξlk)
T represents an l-vector of independent standard normals

and Σ is an m × l volatility matrix of the asset prices. The functions g(.) and h(.)
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measure the expected permanent price impact and temporary price impact, respec-
tively. In each interval (tk−1, tk], let price impacts be proportional to the trading rate
v = nk

τ . Then we have the following price impact model:

(3)
g(v) = Γv,

h(v) = Ωv,

where the m-by-m matrix Γ is the permanent impact matrix and Ω is the temporary
impact matrix. The temporary impact matrix Ω is not necessarily symmetric but
needs to be positive semidefinite in order to exclude arbitrage opportunities. Other-
wise the existence of a vector v �= 0 with vTΩv < 0 suggests that trading at the rate
v makes a net profit from instantaneous market impact; e.g., see Almgren and Chriss
(2000).

The execution cost of the trade is often defined as PT
0 S̄ −∑N

k=1 n
T
k P̃k. Hence,

the mean-variance formulation of the execution cost problem with the risk aversion
parameter μ ≥ 0 is

min
n1,n2,...,nN

E

(
PT
0 S̄ −

N∑
k=1

nT
k P̃k

)
+ μ ·Var

(
PT
0 S̄ −

N∑
k=1

nT
k P̃k

)
(4)

s.t.
N∑

k=1

nk = S̄,

nk ≥ 0, k = 1, 2, . . . , N,

where E(·) and Var(·) denote the expectation and the variance of a random variable,
respectively. In terms of the execution positions {xk}Nk=0, the portfolio execution cost
problem becomes

min
x0,...,xN

E

(
P T
0 S̄ −

N∑
k=1

(xk−1 − xk)
T P̃k

)
+ μ ·Var

(
P T
0 S̄ −

N∑
k=1

(xk−1 − xk)
T P̃k

)
(5)

s.t. x0 = S̄,

xN = 0,

xk−1 ≥ xk, k = 1, 2, . . . , N.

A large value of μ corresponds to the investor’s small tolerance to risk. These problems
can be modified to reflect regulation constraints or the investor’s preferences on the
trading volumes. We refer to an optimal solution of problem (4) and problem (5) as
an optimal execution strategy and optimal execution position, respectively. In both of
the aforementioned problems, the inequality constraints rule out short sales.

For any execution strategy {nk}Nk=1 and its associated execution position {xk}Nk=0,
applying the price impact model (3) and the execution price dynamic model (1), we
obtain

N∑
k=1

nT
k P̃k = S̄TP0 +

N∑
k=1

τ
1
2xT

k Σξk − τ

N∑
k=1

xT
k g
(nk

τ

)
−

N∑
k=1

nT
k h
(nk

τ

)
.(6)

Thus the variance of the execution cost equals

Var

(
PT
0 S̄ −

N∑
k=1

nT
k P̃k

)
= τ

N∑
k=1

xT
k Cxk,
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where the m×m symmetric positive semidefinite matrix C is the covariance matrix
of asset prices, i.e., C = ΣΣT .

From (6), the expected execution cost can be expressed as below:

E

(
PT
0 S̄ −

N∑
k=1

nT
k P̃k

)
=

N∑
k=1

xT
k Γnk +

N∑
k=1

nT
kΩ

nk

τ

=

N∑
k=1

xT
k Γ(xk−1 − xk) +

N∑
k=1

1

τ
(xk − xk−1)

T
Ω (xk − xk−1)

=

N∑
k=1

xT
k

(
Ω

τ
− Γ

)
xk +

N∑
k=1

xT
k

(
Γ− Ω

τ

)
xk−1

−
N∑

k=1

xT
k−1

Ω

τ
xk +

N∑
k=2

xT
k−1

Ω

τ
xk−1 + xT

0

Ω

τ
x0

=
1

τ
S̄TΩS̄ − 1

τ
xT
NΩxN +

N∑
k=1

xT
k

(
2

τ
Ω− Γ

)
xk

+
N∑

k=1

xT
k

(
Γ− 1

τ

(
Ω+ ΩT

))
xk−1.(7)

Define

(8) L
def
=

2

τ
Ω− Γ + μτC and Θ

def
=

1

τ

(
Ω+ ΩT

)− Γ.

Subsequently, we refer to Θ as the combined impact matrix. Clearly,

L+ LT =
2

τ
(Ω + ΩT )− (Γ + ΓT ) + 2μτC = (Θ +ΘT ) + 2μτC.

Using these notations, we obtain

E

(
PT
0 S̄ −

N∑
k=1

(xk−1 − xk)
T P̃k

)
+ μ ·Var

(
PT
0 S̄ −

N∑
k=1

(xk−1 − xk)
T P̃k

)

=
1

τ
S̄TΩS̄ − 1

τ
xT
NΩxN +

N∑
k=1

xT
k Lxk −

N∑
k=1

xT
kΘxk−1

=
1

τ
S̄TΩS̄ − 1

τ
xT
NΩxN +

N∑
k=1

1

2

(
xT
k Lxk + xT

k L
Txk

)

−
N∑

k=1

1

2

(
xT
k Θxk−1 + xT

k−1Θ
Txk

)

=
1

τ
S̄TΩS̄ − 1

τ
xT
NΩxN +

N∑
k=1

1

2
xT
k

(
L+ LT

)
xk

−
N∑

k=1

1

2

(
xT
k Θxk−1 + xT

k−1Θ
Txk

)
.(9)
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To simplify the representation of the constraints in problem (5), we introduce the
sequence of square matrices {Gk}+∞

k=1, where G1 = (1) and

G2 =

(
1 −1
0 1

)
, Gk =

⎛
⎜⎜⎜⎜⎝

Gk−1

⎛
⎜⎜⎝

0
· · ·
0
−1

⎞
⎟⎟⎠

0 1

⎞
⎟⎟⎟⎟⎠ for k ≥ 2.(10)

Using the Kronecker product, eliminating the constant term 1
τ S̄

TΩS̄ from the objec-
tive function, and explicitly imposing xN = 0 and x0 = S̄, problem (5) is reduced to
the following problem:

min
z∈Rm(N−1)

1

2
zTW (Ω,Γ, μ)z + bT (Ω,Γ)z,(11)

s.t. (−eT1 ⊗ Im)z ≥ −S̄,

(GN−1 ⊗ Im)z ≥ 0,

where z
def
= (xT

1 , x
T
2 , . . . , x

T
N−1)

T . The m(N − 1) ×m(N − 1) symmetric tridiagonal
block matrix W (Ω,Γ, μ) and the m(N − 1)-vector b(Ω,Γ) are defined as follows:

W (Ω,Γ, μ)
def
=

⎛
⎜⎜⎜⎜⎜⎝

L+ LT −ΘT 0 . . . 0
−Θ L+ LT −ΘT . . . 0

0 −Θ L+ LT 0
...

...
...

...
0 0 0 . . . L+ LT

⎞
⎟⎟⎟⎟⎟⎠, b(Ω,Γ)

def
=

⎛
⎜⎜⎜⎝

−ΘS̄
0
...
0

⎞
⎟⎟⎟⎠.(12)

Similar to the mean-variance portfolio optimization problem, the execution cost
problem (11) is a quadratic programming problem. However, in contrast to the mean-
variance portfolio optimization problem in which the expected return appears only
in the linear term of the quadratic objective, in the execution cost problem (11)
the impact matrices appear in both the quadratic term and the linear term of the
objective function in a structured fashion. Therefore sensitivity analysis restricted to
perturbations in the linear term of the quadratic objective function (e.g., see Best and
Grauer (1991)) is not applicable in this context. It is necessary to explicitly analyze
the effect of estimation errors in the impact matrices for the execution cost problem.

The quadratic programming problem (11) is convex if and only if W (Ω,Γ, μ) � 0.
When the variance of the execution cost is not considered, the minimum expected
execution cost problem corresponds to problem (11) with μ = 0. In problem (11),
constraints appear only when short selling is not permitted, which implies 0 ≤ xN−1 ≤
· · · ≤ x2 ≤ x1 ≤ S̄. When short selling is allowed, the execution cost problem is
reduced to the following unconstrained quadratic minimization problem:

(13) min
z∈Rm(N−1)

1

2
zTW (Ω,Γ, μ)z + bT (Ω,Γ)z.

When W (Ω,Γ, μ) is not positive semidefinite, problem (13) has no local minima. If
W (Ω,Γ, μ) is positive semidefinite but singular, problem (13) has either no solution
or infinitely many solutions. problem (13) has a unique minimizer if and only if
W (Ω,Γ, μ) � 0. The unique minimizer in this case is z∗ = −W−1(Ω,Γ, μ)b(Ω,Γ).
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When short selling is prohibited, the set of feasible solutions of problem (11),{
(xT

1 , . . . , x
T
N )T : S̄ ≥ x1, xk−1 ≥ xk for k = 2, 3, . . . , N − 1, xN−1 ≥ 0

}
,

is compact. Therefore, the Weierstrass theorem along with the continuity of the
objective function of problem (11), implies that problem (11) has a global minimizer.
Moreover, positive definiteness of W (Ω,Γ, μ) guarantees that the global minimizer is
unique.

Since one expects a unique optimal execution strategy under a reasonable price
impact model (whether short selling is permitted or not), assuming W (Ω,Γ, μ) is pos-
itive definite seems appropriate for a linear price impact model (3). This assumption
guarantees that both problems (11) and (13) have unique optimal solutions.

The representation of problem (11) indicates that the optimal execution strategy
depends only on the combined impact matrix Θ = 1

τ (Ω+ΩT )−Γ rather than matrices
Ω and Γ individually. This suggests that, in order to decrease estimation errors, one
may want to estimate Θ directly. In particular, the estimation method in Almgren et
al. (2005) can be modified to directly estimate Θ.

In the following lemma, we show that when the permanent impact matrix Γ
is symmetric, positive definiteness of Θ is a necessary and sufficient condition for
the positive definiteness of W (Ω,Γ, 0). Symmetric permanent impact matrices, e.g.,
diagonal matrices, have been used in the literature on the execution cost problem;
e.g., see Almgren et al. (2005) and Almgren and Chriss (2000).

Lemma 2.1. Let the permanent impact matrix Γ be symmetric. Then the matrix
W (Ω,Γ, 0) � 0 (W (Ω,Γ, 0) � 0) if and only if Θ � 0 (Θ � 0).

Proof. When Γ is symmetric, Θ = ΘT . For any real m(N − 1)-vector h =
(hT

1 , h
T
2 , . . . , h

T
N−1)

T ,

hTW (Ω,Γ, 0)h = −
N−2∑
i=1

hT
i+1Θhi +

N−1∑
i=1

hT
i Θhi +

N−1∑
i=1

hT
i Θhi −

N−2∑
i=1

hT
i Θhi+1

= hT
1 Θh1 −

N−2∑
i=1

hT
i+1Θ(hi − hi+1) +

N−2∑
i=1

hT
i Θ(hi − hi+1) + hT

N−1ΘhN−1

= hT
1 Θh1 +

N−2∑
i=1

(hi+1 − hi)
TΘ(hi+1 − hi) + hT

N−1ΘhN−1.(14)

If Θ � 0, each term in (14) is nonnegative. Thus hTW (Ω,Γ, 0)h ≥ 0 and consequently
W (Ω,Γ, 0) � 0. The other direction of the statement follows from the fact that
2Θ is a leading principle submatrix of W (Ω,Γ, 0). Therefore (symmetric) positive
semidefiniteness of W (Ω,Γ, 0) implies Θ � 0.

For any μ ≥ 0, W (Ω,Γ, μ) = 2μτIN−1 ⊗ C + W (Ω,Γ, 0). Hence, when the
permanent impact matrix Γ is symmetric and Θ � 0, Lemma 2.1 implies that the
matrix W (Ω,Γ, μ) � 0 for any μ ≥ 0.

Thus whether short selling is permitted or not, the uniqueness of the optimal
execution strategy for any risk aversion parameter μ ≥ 0 is guaranteed when Θ � 0
and Γ = ΓT . In the next proposition, we show that under these assumptions, the
execution strategy that minimizes the expected execution cost (μ = 0) can be found
explicitly. Surprisingly, it is independent of the values of the impact matrices.

Proposition 2.1. Let the permanent impact matrix Γ be symmetric. Then,
whether short selling is allowed or not, the naive execution strategy n∗

k = S̄
N , k =

1, 2, . . . , N , is the unique execution strategy that minimizes the expected execution
cost if and only if Θ � 0.
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Proof. The assumption ΓT = Γ implies ΘT = Θ. Consequently W (Ω,Γ, 0) =
(GN−1 + GT

N−1) ⊗ Θ. First we consider the situation when short selling is allowed,
i.e., problem (13) with μ = 0. A direct use of Lemma 2.1 implies that problem (13)
with μ = 0 has a unique optimal solution if and only if Θ � 0. Applying properties
of the Kronecker product, this unique solution equals

z∗ = −W−1(Ω,Γ, 0)b(Ω,Γ) =
((

GN−1 +GT
N−1

)−1 ⊗Θ−1
) (

e1 ⊗ΘS̄
)

=
((

GN−1 +GT
N−1

)−1
e1

)
⊗ S̄.

Recall that e1 = (1, 0, . . . , 0)T . Applying the explicit representation of the inverse of
the tridiagonal matrix GN−1 +GT

N−1 (e.g., see Fonseca (2007)), we have

(
GN−1 +GT

N−1

)−1
e1 =

(
N − 1

N
,
N − 2

N
, . . . ,

1

N

)T

.

Hence, the minimum expected execution cost position is {x∗
k}Nk=0 = { (N−k)

N S̄}Nk=0,

which corresponds to the naive execution strategy n∗
k = S̄

N , k = 1, . . . , N . Since
this solution satisfies the constraints of problem (11), it is also the unique minimum
expected execution strategy when short selling is prohibited.

Therefore, the minimum expected execution cost strategy is always the naive
execution strategy of trading a constant number of shares per period, under the as-
sumptions that the permanent impact matrix Γ is symmetric and Θ is positive definite.
Thus, the minimum expected execution cost strategy is insensitive to any change in
the impact matrices as long as the perturbation maintains the strict convexity of the
objective function and the symmetry in the permanent impact matrix.

When short selling is permitted, the optimal execution strategy is the solution to
a linear system with the coefficient matrixW (Ω,Γ, μ). Thus it is important to analyze
the condition number of this matrix. Moreover, as we show subsequently in section 3,
sensitivity of the optimal execution strategy to perturbations in the impact matrices
depends on the eigenvalues of W (Ω,Γ, μ). In the rest of this section, we analyze the
condition number and the minimum eigenvalue of the matrix W (Ω,Γ, μ). We apply
the following result from Kulkarni, Schmidt, and Tsui (1999) in our discussion.

Lemma 2.2. Let N ≥ 2. Then the eigenvalues of the matrix (GN−1 + GT
N−1)

satisfy

λi

(
GN−1 +GT

N−1

)
= 2

(
1− cos

(
iπ

N

))
, i = 1, 2, . . . , N − 1.

A direct consequence of Lemma 2.2 is

κ2

(
GN−1 +GT

N−1

)
=

λmax

(
GN−1 +GT

N−1

)
λmin

(
GN−1 +GT

N−1

) =
1− cos

(
(N−1)π

N

)
1− cos

(
π
N

) = cot2
( π

2N

)
.

Since W (Ω,Γ, μ) = 2μτIN−1⊗C+W (Ω,Γ, 0) and the matrices C and W (Ω,Γ, 0) are
symmetric, the Courant–Fischer theorem (e.g., see Theorem 8.1.2 in Golub and Van
Loan (1996)) implies that

λmin(W (Ω,Γ, μ)) ≥ 2μτλmin(C) + λmin(W (Ω,Γ, 0)).(15)

When Γ is symmetric, this lower bound can be stated explicitly in terms of the
combined impact matrix Θ.
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Corollary 2.1. Let N ≥ 2 and the permanent impact matrix Γ be symmetric.
Then

λmin (W (Ω,Γ, μ)) ≥ 2μτλmin(C) + 4 sin2
( π

2N

)
λmin(Θ).

In addition, the equality holds when μ = 0.
Proof. When Γ is symmetric, W (Ω,Γ, 0) can be represented as the Kronecker

product of the matrices
(
GN−1 +GT

N−1

)
and Θ. Thus

λmin(W (Ω,Γ, 0)) = λmin

(
GN−1 +GT

N−1

)
λmin(Θ) = 2

(
1− cos

( π

N

))
λmin(Θ).

This result, along with inequality (15), completes the proof.
In the next proposition, we investigate how κ2(W (Ω,Γ, μ)) depends on the con-

dition number of the covariance matrix and the combined impact matrix Θ.
Proposition 2.2. Let W (Ω,Γ, 0) � 0 and N ≥ 2. Then
(a) κ2(W (Ω,Γ, 0)) ≥ cot2

(
π
2N

)
κ2(Θ + ΘT ).

(b) If, in addition, Γ is symmetric, then

κ2(W (Ω,Γ, 0)) = cot2
( π

2N

)
κ2(Θ).(16)

(c) Assume C � 0. Then κ2(W (Ω,Γ, μ)) ≤ κ2(C) + κ2(W (Ω,Γ, 0)) for any
μ ≥ 0.

Proof. (a) To prove part (a), we use the fact that the matrices W (Ω,Γ, 0)
and W (Ω,ΓT , 0) have identical eigenvalues. More precisely, (rT1 , r

T
2 , . . . , r

T
N−1)

T

is an eigenvector of W (Ω,Γ, 0) associated with the eigenvalue λ if and only if
(rTN−1, r

T
N−2, . . . , r

T
1 )

T is an eigenvector of W (Ω,ΓT , 0) for the same eigenvalue. In
particular, we have

λmax (W (Ω,Γ, 0)) = λmax

(
W (Ω,ΓT , 0)

)
, λmin (W (Ω,Γ, 0)) = λmin

(
W (Ω,ΓT , 0)

)
.

Now the corollary of the Courant–Fischer theorem (e.g., see Theorem 8.1.5 in Golub
and Van Loan (1996)), along with the assumption W (Ω,Γ, 0) � 0, results in

λmax

(
W (Ω,Γ, 0) +W (Ω,ΓT , 0)

)
λmin (W (Ω,Γ, 0) +W (Ω,ΓT , 0))

≤ 2λmax (W (Ω,Γ, 0))

2λmin (W (Ω,Γ, 0))
= κ2 (W (Ω,Γ, 0)) .

Consequently κ2

(
W (Ω,Γ, 0) +W (Ω,ΓT , 0)

) ≤ κ2 (W (Ω,Γ, 0)). This inequality,

along with the expression of W (Ω,Γ, 0) + W (Ω,ΓT , 0) as the Kronecker product of
the matrices

(
GN−1 +GT

N−1

)
and (Θ + ΘT ), yields

κ2 (W (Ω,Γ, 0))≥ κ2

(
W (Ω,Γ, 0) +W (Ω,ΓT , 0)

)
(17)

= κ2

((
GN−1 +GT

N−1

)
⊗
(
Θ+ΘT

))
.

Thus

κ2(W (Ω,Γ, 0)) ≥ κ2

(
GN−1 +GT

N−1

)
κ2

(
Θ+ΘT

)
= cot2

( π

2N

)
κ2(Θ + ΘT ),(18)

which completes the proof of part (a).
(b) When Θ is symmetric, W (Ω,Γ, μ) = W (Ω,ΓT , μ). Therefore

κ2

(
W (Ω,Γ, 0) +W (Ω,ΓT , 0)

)
= κ2 (2W (Ω,Γ, 0)) = κ2(W (Ω,Γ, 0)).
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Hence, equality holds in (17) and (18), which completes the proof of part (b).
(c) To prove part (c), let μ ≥ 0 be given. Using W (Ω,Γ, μ) = 2μτIN−1 ⊗ C +

W (Ω,Γ, 0), we have

κ2 (W (Ω,Γ, μ)) =
λmax (W (Ω,Γ, 0) + 2μτIN−1 ⊗ C)

λmin (W (Ω,Γ, 0) + 2μτIN−1 ⊗ C)

≤ λmax (W (Ω,Γ, 0))

λmin (W (Ω,Γ, 0))
+

λmax(2μτIN−1 ⊗ C)

λmin(2μτIN−1 ⊗ C)
(19)

= κ2(W (Ω,Γ, 0)) + κ2(C),

where inequality (19) comes from the fact that both λmin(W (Ω,Γ, 0)) > 0 and
λmin(2μτIN−1 ⊗ C) > 0.

Proposition 2.2 shows that the condition number of the matrix W (Ω,Γ, μ) can
be large when the condition number of either the covariance matrix C or the Hessian
matrix W (Ω,Γ, 0) is large. However, κ2(W (Ω,Γ, 0)) is at least as large as cot2

(
π
2N

)
times the condition number of the matrix (Θ + ΘT ). Proposition 2.2 also implies that,
in the single asset trading, the condition number of the obtained matrix W (Ω,Γ, 0)
depends only on the number of periods N .

In the next section, we investigate the sensitivity of optimal execution strategies
to perturbations in the impact matrices Ω and Γ.

3. The sensitivity of the optimal execution strategy. In this section, we
show that the optimal execution strategy is Lipschitz continuous in a given pair of
impact matrices Ω and Γ with respect to the Euclidean norm. We then use an esti-
mation of the Lipschitz constant to derive some upper bounds for the change in the
optimal execution strategy due to perturbations in the impact matrices. These upper
bounds are represented in terms of changes in the impact matrices and eigenvalues of
the Hessian of the objective function. Such analysis indicates under what conditions
the optimal execution strategy is insensitive to perturbations and when it may become
very sensitive. Throughout, we denote perturbations in the temporary and permanent
impact matrices as ΔΩ and ΔΓ, respectively. In subsequent discussions, we assume
that W (Ω,Γ, μ) � 0. Therefore, for sufficiently small perturbations of ΔΩ and ΔΓ,
the matrix W (Ω + ΔΩ,Γ + ΔΓ, μ) is symmetric positive definite. Consequently the
optimal execution strategy after perturbation remains unique.

Given the perturbed impact matrices Ω + ΔΩ and Γ + ΔΓ, the perturbed exe-
cution cost problem (11) is

min
z∈Rm(N−1)

1

2
zTW (Ω +ΔΩ,Γ +ΔΓ, μ)z + bT (Ω +ΔΩ,Γ +ΔΓ)z,(20)

s.t. (−eT1 ⊗ Im)z ≥ −S̄,

(GN−1 ⊗ Im)z ≥ 0,

where the matrix GN−1 is defined in (10). problems (11) and (20) have the same set
of feasible solutions. Applying the properties

b(Ω +ΔΩ,Γ +ΔΓ) = b(Ω,Γ) + Δb, Δb
def
= b(ΔΩ,ΔΓ),

W (Ω +ΔΩ,Γ +ΔΓ, μ) = W (Ω,Γ, μ) + ΔW, ΔW
def
= W (ΔΩ,ΔΓ, 0),(21)

we may restate the objective function of problem (20),

1

2
zTW (Ω,Γ, μ)z + bT (Ω,Γ)z +

1

2
zTΔWz +ΔbT z.(22)
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Quantities ΔW and Δb are determined by ΔΘ = 1
τ (ΔΩ + ΔΩT ) − ΔΓ. Thus the

optimal solution of problem (20) and consequently the optimal execution strategy
depends on the perturbation in the combined impact matrix ΔΘ rather than ΔΩ
or ΔΓ individually. Therefore, all of the perturbations in the impact matrices that
produce the same ΔΘ affect the optimal execution strategy identically. In particular,
when ΔΘ = 0, we have ΔW = 0 and Δb = 0. Therefore, problem (20) is equivalent to
problem (11) and their optimal solutions are identical. Hence the optimal execution
strategy is insensitive to this special perturbation of the impact matrices ΔΩ and ΔΓ,
when ΔΘ = 0.

Furthermore, as we discussed in Proposition 2.1, the minimum expected execution
cost strategy is also insensitive to any perturbations in the impact matrices as long
as the perturbed permanent impact matrix Γ + ΔΓ remains symmetric and W (Ω +
ΔΩ,Γ +ΔΓ, 0) � 0. Specifically, when trading a single asset and μ = 0, the optimal
execution strategy is not sensitive to any changes in the impact matrices, assuming
that the minimum expected execution cost problem has a unique optimal solution.

Therefore, in the aforementioned cases the optimal execution strategy and the
variance of the execution cost remain the same. However, in both cases, the expected
value of the corresponding execution cost changes as the impact matrices are per-
turbed. When ΔΘ = 0, the change in the mean of the execution cost is 1

τ S̄
TΔΩS̄.

In the second case, in which μ = 0, Θ = ΘT , and ΔΘ = ΔΘT are considered, the
variation in the mean of the execution cost equals 1

2z
TΔWz + ΔbT z + 1

τ S̄
TΔΩS̄,

where z is the solution of problem (11) corresponding to the naive execution strategy.
However, when ΔΓ is asymmetric, our simulation study in section 4 shows that the
changes in the mean and particularly the variance of the execution cost become very
significant for small values of μ, especially when μ = 0.

In the rest of this section, we analyze the sensitivity of the optimal execution
strategy to more general perturbations in the impact matrices. First, we note that
the Euclidean distance between any two execution strategies n∗ = {n∗

k}Nk=1 and n̄ =
{n̄k}Nk=1 is related to the change between corresponding execution positions x∗ =
{x∗

k}Nk=0 and x̄ = {x̄k}Nk=0:

‖n∗ − n̄‖22 =

N∑
k=1

‖n∗
k − n̄k‖22 =

N∑
k=1

∥∥x∗
k−1 − x∗

k − (x̄k−1 − x̄k)
∥∥2
2

=

N∑
k=1

∥∥x∗
k−1 − x̄k−1

∥∥2
2
+

N∑
k=1

‖x∗
k − x̄k‖22 − 2

N∑
k=1

(x∗
k−1 − x̄k−1)

T (x∗
k − x̄k)

≤ 2

N∑
k=1

∥∥x∗
k−1 − x̄k−1

∥∥2
2
+ 2

N∑
k=1

‖x∗
k − x̄k‖22 = 4

N−1∑
k=1

‖x∗
k − x̄k‖22 .

This result can be summarized as

‖n∗ − n̄‖2 ≤ 2 ‖x∗ − x̄‖2 .(23)

We start our sensitivity discussion with the strategy in which short selling is permitted.
In the following theorem, we exploit the explicit representation of the optimal solution
of problem (13) to determine the exact change in the optimal execution strategy. For
notational simplicity, abbreviate W (Ω,Γ, μ) as W when there is no confusion.

Theorem 3.1. Consider the execution cost problem (13) when short selling is
allowed. Assume W (Ω,Γ, μ) � 0 and W (Ω + ΔΩ,Γ + ΔΓ, μ) � 0. Denote the
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unique optimal solutions of problem (13) before and after perturbation with z∗ and z̄,
respectively. Then

z∗ − z̄ = W−1(Ω +ΔΩ,Γ +ΔΓ, μ)
(
Δb−ΔWW−1(Ω,Γ, μ)b(Ω,Γ)

)
.(24)

Furthermore, let n∗ = {n∗
k}Nk=1 and n̄ = {n̄k}Nk=1 be the optimal execution strategies

corresponding to the optimal solutions z∗ and z̄, respectively. Then, there exists a
magnification factor ϑ > 0 such that

‖n∗ − n̄‖2 ≤ 2‖z∗ − z̄‖2 ≤ 2ϑ‖S̄‖2
(
1 + 4

√
mϑ‖Θ‖2

) ‖ΔΘ‖2,(25)

where ϑ ≤ 1
min{λmin(W ),λmin(W+ΔW )} .

Proof. Positive definiteness of W guarantees problem (13) has the unique optimal
solution z∗ = −W−1b(Ω,Γ). Similarly, under the assumption W +ΔW � 0, problem
(13), with the perturbed impact matrices Ω +ΔΩ and Γ+ΔΓ, has a unique optimal
solution, namely z̄ = −(W +ΔW )−1(b(Ω,Γ) + Δb). Therefore

(W +ΔW )(z∗ − z̄) = (W +ΔW )[−W−1b(Ω,Γ)− (−(W +ΔW )−1(b(Ω,Γ) + Δb))]

= −b(Ω,Γ)−ΔWW−1b(Ω,Γ) + b(Ω,Γ) + Δb

= −ΔWW−1b(Ω,Γ) + Δb,

which proves (24). Thus

‖z∗ − z̄‖2 =
∥∥(W +ΔW )−1

(
Δb −ΔWW−1b(Ω,Γ)

)∥∥
2

≤ ‖(W +ΔW )−1‖2
(‖Δb‖2 + ‖ΔW‖2‖W−1‖2‖b(Ω,Γ)‖2

)
.

Since W + ΔW and W are symmetric positive definite, the above inequality is re-
duced to

‖z∗ − z̄‖2 ≤ 1

λmin(W +ΔW )

(
‖Δb‖2 + ‖ΔW‖2

λmin(W )
‖b(Ω,Γ)‖2

)
(26)

≤ 1

λmin(W +ΔW )

(
‖ΔΘ‖2 + ‖ΔW‖2

λmin(W )
‖Θ‖2

)
‖S̄‖2.(27)

Since ΔW is symmetric, ‖ΔW‖1 = ‖ΔW‖∞ and ‖ΔW‖2 ≤ √‖ΔW‖1‖ΔW‖∞ =
‖ΔW‖1. Thus

‖ΔW‖2 ≤ ‖ΔΘ‖1 + ‖ΔΘ+ΔΘT ‖1 + ‖ΔΘT‖1
≤ 2‖ΔΘ‖1 + 2‖ΔΘT‖1
= 2‖ΔΘ‖1 + 2‖ΔΘ‖∞
≤ 4

√
m‖ΔΘ‖2.(28)

Substituting inequality (28) in (27) and using inequality (23) complete the proof
of (25).

Inequality (26) is valid for any unconstrained quadratic minimization problem
with the Hessian matrix W and the linear coefficient b(Ω,Γ). If the perturbation
of the Hessian matrix ΔW is sufficiently small, relative to the change in the linear
coefficient Δb, the upper bound is dominated by ϑ‖Δb‖, which is linear in ϑ. This
is particularly the case in the traditional mean-variance portfolio optimization since
the covariance (Hessian) matrix can in general be estimated more accurately than
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the mean rate of return (linear coefficient). However, in the execution cost problem,
the change in the combined impact matrix ΔΘ appears in both the linear coefficient
b(Ω,Γ) and the Hessian matrix W . Therefore, when the magnification factor ϑ is
sufficiently large, the upper bound is dominated by the term ϑ2‖ΔW‖2, which is
quadratic in ϑ. Thus, the effect of estimation errors in the impact matrices can
potentially be more significant than the effect of perturbations in the mean rate of
return in the traditional mean-variance portfolio optimization.

The upper bound in (25) illustrates the main factors which can magnify the effect
of estimation errors in the impact matrices on the optimal execution strategy. This
effect is described through the magnification factor ϑ. When the upper bound of ϑ
is small, the optimal execution strategy is not so sensitive to perturbations in the
impact matrices. On the other hand, the optimal execution strategy may be sensitive
to the perturbation ΔΘ when this upper bound is large.

The provided upper bound for ϑ in Theorem 3.1 depends only on the minimum
eigenvalues of W and W + ΔW . When both of these eigenvalues are large, the
magnification factor becomes small. Consequently the optimal execution strategy does
not change significantly due to perturbations in the impact matrices. When μ > 0
and C � 0, according to inequality (15), λmin(W ) (and similarly λmin(W + ΔW ))
increases as μλmin(C) increases, which implies that the magnification factor ϑ becomes
small. This result indicates that, when the risk aversion parameter is nonzero and
λmin(C) is large (or equivalently κ2(C) is small), the optimal execution strategy is
not very sensitive to the perturbations. Furthermore, assuming C � 0, the variation
in the optimal execution strategy due to the perturbations diminishes as μ → +∞.
This result is entirely expected; since as μ → +∞ the objective function of problem
(13) is dominated by the variance of the execution cost which depends only on the
covariance matrix C. In these two cases the investor may not need to be concerned
about the effect of estimation errors in the impact matrices.

On the other hand, when the minimum eigenvalue of C � 0 is small, the influence
of estimation errors on the optimal execution strategy may become more prominent
for a small risk aversion parameter. This dependence of the effect of estimation errors
on the risk aversion parameter is analogous to the traditional mean-variance portfolio
optimization; e.g., see Chopra and Ziemba (1993).

When the permanent impact matrices Γ and Γ+ΔΓ are symmetric, using Corol-
lary 2.1, the upper bound for ϑ presented in Theorem 3.1 can be stated in terms of
the minimum eigenvalues of Θ and Θ +ΔΘ.

Corollary 3.1. Let the assumptions in Theorem 3.1 hold. In addition, assume
that Γ and ΔΓ are symmetric, λmin(Θ) ≥ 0 and λmin(Θ+ΔΘ) ≥ 0. Then there exists
a magnification factor ϑ0 > 0 such that

‖n∗ − n̄‖2 ≤ 2‖z∗ − z̄‖2 ≤ ϑ0‖S̄‖2
(
1 + 2

√
mϑ0‖Θ‖2

) ‖ΔΘ‖2,
where

ϑ0 ≤ 1

μτλmin(C) + 2 sin2
(

π
2N

)
min{λmin(Θ), λmin(Θ +ΔΘ)} .(29)

For sufficiently small perturbations, the upper bound of ϑ0 in (29) becomes small
if and only if either μλmin(C) or λmin(Θ) is large. Either case results in a small sensi-
tivity of the optimal execution strategy to perturbations. However, for a given positive
risk aversion parameter, when both λmin(C) and λmin(Θ) are small, the change in the
optimal execution strategy can potentially be large relative to the perturbation ΔΘ.
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Note that, based on Proposition 2.1, the minimum expected execution cost strategy
is insensitive to perturbations when matrices Γ and Γ+ΔΓ are symmetric and Θ and
Θ +ΔΘ are positive definite.

Now consider the execution cost problem when short selling is not permitted.
Denote the coefficient matrix of the short selling constraints in problem (11) with A;
i.e., A = Y ⊗ Im, where

Y
def
=

( −eT1
GN−1

)
.(30)

The following property of the bidiagonal matrix GN−1 is proved in Fonseca (2007).
Proposition 3.1. For every integer k ≥ 1, λi(GkG

T
k ) = 2(1 − cos( 2i−1

2k+1π))

for i = 1, 2, . . . , k. Particularly, λmin(GkG
T
k ) = 2(1 − cos( π

2k+1 )) = 4 sin2( π
4k+2 ).

Therefore, λmin(GkG
T
k ) is a decreasing function of k, i.e., for k ≥ 1, λmin(GkG

T
k ) ≥

λmin(Gk+1G
T
k+1). Moreover, 1 ≥ λmin(GkG

T
k ) > 0, and consequently the matrix

GkG
T
k is symmetric positive definite.
Next, we present a property of the coefficient matrix of the binding constraints

in problem (11) at a feasible solution. Throughout, for a given subset J of the row
indices of A, we let AJ denote the submatrix of A consisting of the rows with indices
in J . Similarly, the submatrix of A consisting of those columns with indices in a
subset J of column indices is denoted by AJ .

Lemma 3.1. Consider the coefficient matrix A of the constraints in problem (11);
i.e., A = Y ⊗ Im, where Y is defined in (30). Let z∗ be a feasible solution of problem
(11) and J be the set of indices of the binding constraints at z∗. Then

λmin

(
AJA

T
J

) ≥ λmin

(
GN−1G

T
N−1

)
= 4 sin2

(
π

4N − 2

)
.(31)

Proof. Applying properties of the Kronecker product, we have

AJA
T
J = (Y ⊗ Im)J (Y ⊗ Im)

T
J =

(
(Y ⊗ Im) (Y ⊗ Im)

T
)J
J
=
((
Y Y T

)⊗ Im
)J
J
.(32)

Let M be the permutation matrix such that

[1, 2, . . . , N, 1, 2, . . . , N, . . . , 1, 2, . . . , N ]MT = [1, . . . , 1, 2, . . . , 2, . . . , N, . . . , N ].

Therefore, corresponding to the index set J , we can find an index set J
′
such that

M
(((

Y Y T
)⊗ Im

)J
J

)
MT =

(
Im ⊗ (Y Y T

))J′

J′ .

Thus

λmin

(((
Y Y T

)⊗ Im
)J
J

)
= λmin

(
M
(((

Y Y T
)⊗ Im

)J
J

)
MT

)
= λmin

((
Im ⊗ (Y Y T

))J′

J′

)
≥ min

i=1,2,...,m
λmin

(
Y(i)Y

T
(i)

)
.

Here Y(i) is the submatrix of Y with the row indices equal to j −N(i− 1) where

j ∈
(
J

′ ∩ {N(i− 1) + 1, . . . , N(i− 1) +N}
)
.
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This result, along with equality (32), yields

λmin

(
AJA

T
J

) ≥ min
i=1,2,...,m

λmin

(
Y(i)Y

T
(i)

)
.(33)

In the rest of the proof, we show that for every i = 1, 2, . . . ,m,

λmin

(
Y(i)Y

T
(i)

)
≥ λmin

(
GN−1G

T
N−1

)
.(34)

Denote the execution position associated with the feasible solution z∗ with
{x∗

k}Nk=0. Note that, for each asset i, a positive number of shares must be sold in
at least one of the periods. Thus, for every asset i = 1, 2, . . . ,m, there is at least
some j ∈ {1, 2, . . . , N} so that the constraint corresponding to the jth row of Y is not
active. For any asset i, there are two cases to consider: either S̄i > x∗

i1 or S̄i = x∗
i1.

In the first case, S̄i > x∗
i1, the rows of Y(i) are a subset of the rows of GN−1. Let Y(−i)

denote the submatrix consisting of rows of GN−1 that are not in Y(i). We then have

(35)

λmin

(
GN−1G

T
N−1

)
= min

z �=0

zT
(
GN−1G

T
N−1

)
z

zT z

= min
(z1,z2) �=0

zT1 Y(i)Y
T
(i)

z1 + zT2 Y(−i)Y
T
(i)

z1 + zT1 Y(i)Y
T
(−i)

z2 + zT2 Y(−i)Y
T
(−i)

z2

zT1 z1 + zT2 z2

≤ min
(z1,0) �=0

zT1

(
Y(i)Y

T
(i)

)
z1

zT1 z1
= λmin

(
Y(i)Y

T
(i)

)
,

which proves inequality (34).
Now consider the case S̄i = x∗

i1. In this case, there must be at least some j in
{2, 3, . . . , N}, such that x∗

i(j−1) > x∗
ij . When N = 2, the second constraint must be

inactive, which implies that the only row of Y(i) is the first row of Y . Therefore,
λmin(Y(i)Y

T
(i)) = λmin(GN−1G

T
N−1).

When N ≥ 3, at least one of the rows of GN−1 corresponds to an inactive con-
straint. Let this row be the jth row of GN−1 where j ∈ {1, 2, . . . , N − 1}. When
j = N − 1, Y(i) does not include the last row of GN−1. Since the matrix Y after
eliminating its last row equals −GT

N−1, Y(i) is a submatrix of −GT
N−1. Thus similar

to (35), we can show that

λmin

(
Y(i)Y

T
(i)

)
≥ λmin

(
GT

N−1GN−1

)
= λmin

(
GN−1G

T
N−1

)
,

where the last equality comes from the fact that GT
N−1GN−1 and GN−1G

T
N−1 have

identical eigenvalues. This result proves inequality (34) for this case.
When j ∈ {1, 2, . . . , N − 2}, the rows of Y(i) are a subset of the rows of the

following matrix: ( −GT
j 0

0 GN−j−1

)
.

Note that( −GT
j 0

0 GN−j−1

)( −Gj 0
0 GT

N−j−1

)
=

(
GT

j Gj 0
0 GN−j−1G

T
N−j−1

)
.

Therefore

λmin

(
Y(i)Y

T
(i)

)
≥ min

{
λmin

(
GT

j Gj

)
, λmin

(
GN−j−1G

T
N−j−1

)} ≥ λmin

(
GN−1G

T
N−1

)
,
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where the last inequality comes from the facts that λmin

(
GT

j Gj

)
= λmin

(
GjG

T
j

)
and

λmin

(
GjG

T
j

)
is a decreasing function of j. Thus, for every i = 1, 2, . . . ,m, inequality

(34) holds. Applying inequalities (33) and (34) and Proposition 3.1 completes the
proof.

Our analysis for the sensitivity of the optimal execution strategy, when short
selling is prohibited, is based on a result of Hager (1979). He proves that for a
linearly constrained quadratic programming problem, under some conditions on the
Hessian of the objective function and the Jacobian matrix of the binding constraints,
both the optimal solution and the dual multipliers are Lipschitz continuous functions
of the problem data. An estimate for the Lipschitz constant is discussed in section 3
of Hager (1979); this result is summarized in the following theorem. Note that the
upper bound presented in the following theorem is slightly tighter than the bound in
Lemma 3.2 of Hager (1979); but the result essentially follows from the same proof.

Theorem 3.2. Consider the following quadratic programming problem with the
data d = (Q, b,A, c):

min
x∈Rn

1

2
xTQx+ bTx(36)

s.t. Ax+ c ≤ 0.

Let D be a convex set of data so that for every d ∈ D, the above problem has a unique
optimal solution, denoted by x(d), and a unique dual multiplier, denoted by u(d). Let
J(d) be the set of indices corresponding to the binding constraints at x(d). Assume
that there exist some parameters v1 < +∞, v2 < +∞, β > 0, and α > 0 so that for
every d = (Q, b,A, c) in D:

(a) ‖Q‖2 ≤ v1,
(b) ‖AT

J(d)‖2 ≤ v2,

(c) ‖AT
J(d)u(d)‖2 ≥ β‖u(d)‖2,

(d) xTQx ≥ α‖x‖22, for every x such that AJ(d)x = 0.
Then there exists a positive constant 
 < +∞ such that for every d1, d2 ∈ D
‖x(d1)− x(d2)‖2 ≤ �

(‖b(d1)− b(d2)‖2 + ‖c(d1)− c(d2)‖2
)
+ �2

(
max

i∈{1,2}
(‖b(di)‖2 + ‖c(di)‖2)

)

×
(
‖Q(d1)−Q(d2)‖2 + ‖A(d1)−A(d2)‖2 +

∥∥∥AT (d1)− AT (d2)
∥∥∥
2

)
,

where 
 ≤ 1
α + 1

β (
v1
α + 1)(v2 +

v2v1
β + 1).

In the execution cost problem, the impact matrices appear only in the objective
function. Therefore, perturbations in the impact matrices do not affect the constraints
of problem (11). When the constraints in problem (36) do not change for any d ∈ D,
a tighter upper bound for 
 can be obtained as in the following corollary.

Corollary 3.2. Let the assumptions in Theorem 3.2 hold. In addition, assume
that A(d) and c(d) are constant on D; i.e., A(d) = A and c(d) = c for every d ∈ D.
Let d1 ∈ D be given. Then there exists a positive constant 
0 < +∞ such that for
every d2 ∈ D

‖x(d1)− x(d2)‖2 ≤ 
0 ‖b(d1)− b(d2)‖2
+ 
20

(
max

i∈{1,2}
‖b(di)‖2 +max {1, ‖Q(d1)‖2} ‖c‖2

)
‖Q(d1)−Q(d2)‖2 ,

where 
0 ≤ 1
α + 1

βmax{1,‖Q(d1)‖2}
(
v1
α + 1

)
(v2 +

v2v1
βmax{1,‖Q(d1)‖2} + 1).
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Proof. Consider problem (36) with the input data d = (Q, b,A, c) with the corre-
sponding parameters v1, v2, β, and α given. Clearly, for any d ∈ D, problem (36) and
the following problem have the identical optimal solution:

min
x∈Rn

1

2
xT Q̄x+ b̄Tx(37)

s.t. Ax+ c ≤ 0,

where Q̄ = rQ, b̄ = rb, and r = 1
max{1,‖Q(d1)‖2} . Applying Theorem 3.2 to problem

(37) and using the fact that A(d) and c(d) are constant on D, there exists a positive
constant 
̂ < +∞ such that for every d2 ∈ D:

‖x(d1)− x(d2)‖2 ≤ �̂
(∥∥b̄(d1)−b̄(d2)

∥∥
2
+‖c(d1)−c(d2)‖2

)
+ �̂2

(
max

i∈{1,2}
(‖b̄(di)‖2 + ‖c(di)‖2)

)

×
(∥∥Q̄(d1)− Q̄(d2)

∥∥
2
+ ‖A(d1)− A(d2)‖2 +

∥∥∥AT (d1)− AT (d2)
∥∥∥
2

)
= �̂ ‖rb(d1)− rb(d2)‖2 + �̂2

(
max

i∈{1,2}
‖rb(di)‖2 + ‖c‖2

)
‖rQ(d1)− rQ(d2)‖2

= r�̂ ‖b(d1)− b(d2)‖2 + r2�̂2
(

max
i∈{1,2}

‖b(di)‖2 + 1

r
‖c‖2

)
‖Q(d1)−Q(d2)‖2 ,

where 
̂ ≤ 1
rα + 1

β

(
rv1
rα + 1

)
(v2 +

rv2v1
β + 1) or equivalently

r
̂ ≤ 1

α
+

r

β

(v1
α

+ 1
)(

v2 +
rv2v1
β

+ 1

)
.

The result follows by defining 
0 = r
̂ and substituting r = 1
max{1,‖Q(d1)‖2} into the

above inequality. This completes the proof.
The following theorem establishes an upper bound on the size of the change in

the optimal execution strategy, due to perturbations in the impact matrices, when
short selling is not permitted.

Theorem 3.3. Assume for the given risk aversion parameter μ ≥ 0,
W (Ω,Γ, μ) � 0 and W (Ω + ΔΩ,Γ + ΔΓ, μ) � 0. Denote the unique optimal so-
lutions of problems (11) and (20) with z∗ and z̄, respectively. Then there exists some
ς > 0 such that

‖n∗ − n̄‖2 ≤ 2 ‖z∗ − z̄‖2(38)

≤ 2ς
∥∥S̄∥∥

2

(
1 + 4ς

√
m (max{1, ‖W‖2}+ ‖Θ‖2 + ‖ΔΘ‖2)

) ‖ΔΘ‖2,

where n∗ = {n∗
k}Nk=1 and n̄ = {n̄k}Nk=1 are the optimal execution strategies associated

with z∗ and z̄, respectively, and

(39)

ς ≤ 1

λ

⎛
⎝1 +

1

2 sin2
(

π
4N−2

)
(

λ̄+ λ

max{1, λmax(W )}
)(

λ̄

max{1, λmax(W )} + 3 sin

(
π

4N − 2

))⎞
⎠ ,

with λ̄ = maxη∈[0,1] λmax(W + ηΔW ) and λ = minη∈[0,1] λmin(W + ηΔW ).
Proof. For the given perturbations ΔΓ and ΔΩ of the impact matrices, define

D def
= {d(η) = (Ω + ηΔΩ,Γ + ηΔΓ) : η ∈ [0, 1]} .
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Clearly, D is a convex set. Since W (Ω,Γ, μ) � 0 and W (Ω +ΔΩ,Γ + ΔΓ, μ) � 0 for
any η ∈ [0, 1], we have

W + ηΔW = W (Ω + ηΔΩ,Γ + ηΔΓ, μ)

= (1− η)W (Ω,Γ, μ) + ηW (Ω +ΔΩ,Γ +ΔΓ, μ) � 0.

Therefore, for any η ∈ [0, 1], problem (11) with the impact matrices Ω + ηΔΩ and
Γ + ηΔΓ has a unique optimal solution, denoted as z(η). For a given η ∈ [0, 1], let
J(η) denote the set of indices corresponding to the binding constraints of problem (11)
at z(η). Lemma 3.1 implies that λmin(AJ(η)A

T
J(η)) > 0 and consequently AJ(d)A

T
J(d)

is invertible. Thus the rows of AJ(d) are linearly independent and problem (11) has a
unique dual multiplier u(η).

Define

λ̄
def
= max {λmax(W + ηΔW ) : η ∈ [0, 1]} , λ

def
= min {λmin(W + ηΔW ) : η ∈ [0, 1]} .

Since for any η ∈ [0, 1], W +ηΔW is symmetric positive definite, λ̄ and λ are positive.
In addition,

‖W + ηΔW‖2 = λmax(W + ηΔW ) ≤ λ̄ ∀η ∈ [0, 1].(40)

Using the corollary of the Courant–Fischer theorem, we have λmax(W + ηΔW ) ≤
λmax(W ) + ηλmax(ΔW ), which implies λ̄ < +∞. Furthermore, for any η ∈ [0, 1],
W + ηΔW is symmetric. The Courant–Fischer theorem yields

zT (W + ηΔW )z ≥ λmin(W + ηΔW )‖z‖22 ≥ λ‖z‖22 ∀η ∈ [0, 1].(41)

Applying the definitions of 1-norm, ‖.‖1, and ∞-norm, ‖.‖∞, for the matrix AT
J(η),

we get

∥∥∥AT
J(η)

∥∥∥
1
= max

i∈J(η)

N−1∑
j=1

|aij | ≤ max
i=1,2,...,N

N−1∑
j=1

|aij | = ‖A‖∞ ∀η ∈ [0, 1]

∥∥∥AT
J(η)

∥∥∥
∞

= max
j=1,2,...,N−1

∑
i∈J(η)

|aij | ≤ max
j=1,2,...,N−1

N∑
i=1

|aij | = ‖A‖1 ∀η ∈ [0, 1],

where aij is the entry of A in the ith row and jth column. Hence

∥∥∥AT
J(η)

∥∥∥
2
≤
√∥∥∥AT

J(η)

∥∥∥
1

∥∥∥AT
J(η)

∥∥∥
∞

≤
√

‖A‖1 ‖A‖∞ ≤
√

‖(Y ⊗ Im)‖1 ‖(Y ⊗ Im)‖∞ ≤ 2,

where the last inequality follows from ‖Y ⊗ Im‖∞ = 2 and ‖Y ⊗ Im‖1 = 2. Therefore,∥∥∥AT
J(η)

∥∥∥
2
≤ 2 ∀η ∈ [0, 1].(42)

For any η ∈ [0, 1] and the associated unique optimal dual multiplier u(η), the Courant–
Fischer theorem yields∥∥∥AT

J(η)u(η)
∥∥∥2
2
= u(η)TAJ(η)A

T
J(η)u(η) ≥ λmin

(
AJ(η)A

T
J(η)

)
‖u(η)‖22

≥ λmin

(
GN−1G

T
N−1

) ‖u(η)‖22 ,
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where the last inequality comes from Lemma 3.1. Hence∥∥∥AT
J(η)u(η)

∥∥∥
2
≥ 2 sin

(
π

4N − 2

)
‖u(η)‖2 ∀η ∈ [0, 1].(43)

Inequalities (40), (41), (42), and (43) show that the assumptions of Theorem 3.2 are
satisfied on the convex data set D for

v1
def
= λ̄, v2

def
= 2, β

def
= 2 sin

(
π

4N − 2

)
> 0, α

def
= λ > 0.

Applying Corollary 3.2 to problem (11), there exists some ς such that

‖z∗ − z̄‖2 ≤ ς‖Δb‖2 + ς2‖ΔW‖2(max{‖b(Ω,Γ)‖2, ‖b(Ω +ΔΩ,Γ +ΔΓ)‖2}
+max{1, ‖W‖2}‖S̄‖2)

≤ ς‖ΔΘS̄‖2 + ς2‖ΔW‖2
(‖ΘS̄‖2 + ‖ΔΘS̄‖2 +max{1, ‖W‖2}‖S̄‖2

)
≤ ς‖S̄‖2 (‖ΔΘ‖2 + ς‖ΔW‖2 (‖Θ‖2 + ‖ΔΘ‖2 +max{1, ‖W‖2})) ,

where ς ≤ 1
λ(1+

1
2 sin2( π

4N−2 )
( λ̄+λ
max{1,λmax(W )} )(

λ̄
max{1,λmax(W )}+3 sin( π

4N−2 ))). Applying

inequality (28), i.e., ‖ΔW‖2 ≤ 4
√
m‖ΔΘ‖2, and inequality (23) completes the proof.

Theorem 3.3 provides an upper bound for the size of the change in the optimal
execution strategy, when short selling is not permitted. For a given N , the upper
bound of the magnification factor ς depends, at least asymptotically (as ΔW → 0),
only on the eigenvalues of the Hessian matrix W .

Similar to Theorem 3.1, a small value of ς guarantees that the optimal execution
strategy is not very sensitive to the perturbation in the combined impact matrix ΔΘ.
As ΔW → 0, the term⎛

⎝1+
1

2 sin2
(

π
4N−2

) ( λ̄+λ

max{1, λmax(W )}
)(

λ̄

max{1, λmax(W )} + 3 sin

(
π

4N − 2

))⎞⎠(44)

is bounded by a constant which depends only on N . Therefore, for the fixed number
of periods N , asymptotically (as ΔW → 0), the upper bound for the magnification
factor ς is small when λmin(W ) is large.

The eigenvalues λmax(W ), λ, and λ̄ increase with the same rate as the risk aversion
parameter μ increases, and consequently, all the terms in (44) are bounded as μ →
+∞. However, when C � 0, 1

λ approaches zero as μ → +∞. Therefore, as the risk

aversion parameter μ increases, the upper bound for ς becomes small. Hence, when
the covariance matrix is positive definite, ‖z∗ − z̄‖2 → 0 as μ → +∞. This result
indicates that, similar to the case that short selling is allowed, the sensitivity of the
optimal execution strategy to perturbations in the impact matrices diminishes as the
risk aversion parameter μ increases. Furthermore, when the risk aversion parameter
is positive and λmin(C) is large (or equivalently κ2(C) is small), the optimal execution
strategy is not very sensitive to the perturbations.

We can express the upper bound for the magnification factor ς provided in The-
orem 3.3 in terms of the eigenvalues of C and Θ, when the permanent impact matrix
Γ and its perturbation ΔΓ are symmetric. Under these assumptions, the Courant–
Fischer theorem can be applied, and we have

λ = min
η∈[0,1]

λmin(W + ηΔW ) ≥ 2μτλmin(C) + λmin(GN−1 +GT
N−1) min

η∈[0,1]
λmin(Θ + ηΔΘ),

λ̄ = max
η∈[0,1]

λmax(W + ηΔW ) ≤ 2μτλmax(C) + λmax(GN−1 +GT
N−1) max

η∈[0,1]
λmax(Θ + ηΔΘ).
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Applying these inequalities, the upper bound in (39) can be simplified as follows.
Corollary 3.3. Let the assumptions in Theorem 3.3 hold. In addition, assume

that the matrices Γ and ΔΓ are symmetric. Then there exists a magnification factor
ς0 such that

‖n∗ − n̄‖2 ≤ 2‖z∗ − z̄‖2 ≤ ς0‖S̄‖2
(
1 + 2ς0

√
m (max{1, ‖W ‖2}+ ‖Θ‖2 + ‖ΔΘ‖2)

) ‖ΔΘ‖2,
where

(45)

ς0 ≤
⎛
⎝ 1

μτλmin(C) + 2 sin2
(

π
2N

)
min

η∈[0,1]
λmin(Θ + ηΔΘ)

⎞
⎠

×
⎛
⎝1+

1

2 sin2
(

π
4N−2

) ( λ̄+ λ

max{1, λmax(W )}
)(

λ̄

max{1, λmax(W )} + 3 sin

(
π

4N − 2

))⎞⎠.

Inequality (45) indicates that when the permanent impact matrices Γ and Γ + ΔΓ
are symmetric, the magnification factor ς0 asymptotically (as ΔW → 0) depends
on μτλmin(C) + 2 sin2( π

2N )λmin(Θ). In this case, for a given positive risk aversion
parameter, ς0 becomes small when either the minimum eigenvalue of the covariance
matrix or the minimum eigenvalue of the combined impact matrix Θ is large. However,
when both μλmin(C) and λmin(Θ) are small, the upper bound for ς0 in (45) becomes
large, which suggests pronounced sensitivity of the optimal execution strategy to
estimation errors in the impact matrices.

Theorems 3.1 and 3.3 imply that for a given risk aversion parameter μ ≥ 0 and
for every given pair of impact matrices Ω and Γ, where W (Ω,Γ, μ) � 0, the unique
optimal execution strategy is Lipschitz continuous at Ω and Γ with respect to the
Euclidean norm.

Both upper bounds in inequalities (24) and (38) indicate that the change in the
optimal execution strategy increases proportionally with respect to the size of the
initial portfolio holding S̄. Next, we precisely analyze the dependence of the optimal
execution strategy on the initial portfolio holding.

Lemma 3.2. Consider the execution cost problem (11) with the impact matrices
Ω and Γ where W (Ω,Γ, μ) � 0. Let z∗ be the optimal solution with the initial portfolio
holding S̄. Then, for every α ≥ 0, αz∗ is the optimal solution of problem (11) with
the initial portfolio holding αS̄.

Proof. First note that z is a feasible solution of problem (11) with the initial
portfolio holding S̄ if and only if αz is a feasible solution of problem (11) with the
initial portfolio holding αS̄. Since z∗ is the optimal solution, for every feasible solution
z of problem (11), we have

1

2
(z∗)TW (Ω,Γ, μ)z∗ − (ΘS̄)Tx∗

1 ≤ 1

2
zTW (Ω,Γ, μ)z − (ΘS̄)Tx1,

where x∗
1 and x1 are execution positions in the first period corresponding to z∗ and

z, respectively. Therefore, multiplying the above inequality by α2, we get

1

2
(αz∗)TW (Ω,Γ, μ)(αz∗)− (αΘS̄)T (αx∗

1) ≤
1

2
(αz)TW (Ω,Γ, μ)(αz)− (αΘS̄)T (αx1).

This result yields αz∗ as the optimal solution of problem (11) with the initial portfolio
holding αS̄.
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A similar result holds for problem (13). Proposition 3.2 yields that, when S̄ is
multiplied by some nonnegative scalar α, the change in the optimal execution strategy
is also multiplied by α. However, the coordinates (variance, mean) of the efficient
frontier are multiplied by α2. This illustrates the significant effect of estimation errors
in the impact matrices on trades with large volumes.

In the next section, we use simulation to illustrate the sensitivity of the optimal
execution strategy and the efficient frontier to perturbations in the impact matrices.

4. Computational investigation. In this section, we use simulations to com-
putationally investigate the influence of perturbations in the impact matrices on the
optimal execution strategy and efficient frontier. Throughout, except in section 4.3,
we assume that the covariance matrix is accurately given. The simulations are done
using MATLAB Version 6.5.

Consider an investor who holds a portfolio of three different assets with the initial
holding S̄i = 105, i = 1, 2, 3. The goal is to liquidate the holdings in five days by
trading daily, i.e., T = 5, N = 5, and τ = 1. Let the true daily asset price covariance
matrix be1

C =

⎛
⎝ 0.3246 0.0230 0.4204

0.0230 0.0499 0.0192
0.4204 0.0192 0.7641

⎞
⎠× 1%.(46)

Note that λmin(C) = 0.0005. The price impact model (3) assumes that the price
impacts are proportional to the trading rate. Assume that the median daily trading
volume of each asset is one million shares. For the temporary impact matrix, we
suppose that for each 10% of the daily volume traded, the price impact equals the
daily variance. In addition, we assume that selling 20% of the daily volume incurs a
permanent price depression equal to the daily variance. In other words,

Ω =
C

0.10× 106
= 10−5C $/share2,(47)

Γ =
C

0.20× 106
= (0.5× 10−5)C ($/share)/(share/day).

Note that W (Ω,Γ, 0) � 0 and λmin(W (Ω,Γ, 0)) = 2.5960 × 10−9. Throughout this
section, we refer to Ω and Γ as the true impact matrices, and to the corresponding
optimal execution strategy as the true optimal execution strategy.

In our simulation investigation, we assume that perturbations in the impact ma-
trices have independent normal distributions. Specifically,

ΔΩ = ρmax {‖Ωei‖∞ , i = 1, 2, 3}Φ, ΔΓ = ρmax {‖Γei‖∞ , i = 1, 2, 3}Ψ,(48)

where Φ and Ψ are 3 × 3 random matrices whose elements are independent zero-
mean Gaussian random variables with unit variance. We use the randn command in
MATLAB to generate Φ and Ψ. The parameter ρ ∈ [0, 1] indicates the size of the
relative perturbation.

In order to ensure that the optimal execution strategy corresponding to the per-
turbed impact matrices, Ω + ΔΩ and Γ + ΔΓ, is unique, we consider only pertur-
bations with W (Ω +ΔΩ,Γ +ΔΓ, 0) � 0. We refer to the optimal execution strategy
determined from a pair of perturbed impact matrices as the estimated optimal ex-
ecution strategy. We use the convex quadratic optimization solver mskqpopt in the

1This is the covariance matrix of three risky assets used in Rockafellar and Uryasev (2000).
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software package MOSEK Version 4.0 to compute the optimal execution strategies,
in both the presence and the absence of short selling constraints.

In section 4.1, we illustrate the sensitivity of the optimal execution strategy to per-
turbations in the impact matrices and present some typical plots of true and estimated
optimal execution strategies. The sensitivity of the efficient frontier is demonstrated
in section 4.2. In section 4.3, the effect of estimation errors in the covariance matrix
C on the optimal execution strategy and the efficient frontier is compared with the
effect of perturbations in the impact matrices.

4.1. The sensitivity of the optimal execution strategy. In this section, we
investigate the effect of the risk aversion parameter μ and no short selling constraints
on the sensitivity of the optimal execution strategy. For illustration, we focus on the
cases when the risk aversion parameter μ = 0, which corresponds to minimizing the
expected execution cost, and μ = 10−5. Following Proposition 2.1, the true optimal
execution strategy, which minimizes the expected execution cost, is the naive execu-
tion strategy nk = 1

5 S̄ for k = 1, . . . , 5, since in our assumed setting Γ is symmetric
and Θ � 0. On the other hand, the perturbed impact matrices Ω +ΔΩ and Γ + ΔΓ
from (48) are typically asymmetric. For each simulation study, a relative perturbation
ρ = 0.05 is assumed.

Figure 1 plots the true optimal execution strategy when μ = 0 (the naive exe-
cution strategy) against optimal execution strategies corresponding to 50 simulated
perturbed impact matrices. The left plots are generated under the assumption that
short selling is allowed. For the plots on the right, it is assumed that short selling is
not permitted. Graphs in Figure 1 demonstrate that the optimal execution strategy
in this case is quite sensitive to perturbations in the impact matrices. In addition,
these plots illustrate that imposing short selling constraints on the problem signif-
icantly decreases the sensitivity of the optimal execution strategy to perturbations.
Note that the range in the number of shares traded (vertical axis), when short selling
is allowed, is much larger than the range after imposing short selling constraints.

For the risk aversion parameter μ = 10−5, the true optimal execution strategy
and estimated optimal execution strategies associated with the same set of perturbed
impact matrices are plotted in Figure 2. Similar to the previous case, the left plots
are generated under the assumption that short selling is allowed. For the plots on the
right, it is assumed that short selling is not permitted. Comparing Figure 2 with Fig-
ure 1, it is clear that the sensitivity of the optimal execution strategy to perturbations
in the impact matrices is decreased when the risk aversion parameter μ = 10−5. More-
over, in Figure 2, there is little difference in the sensitivity of the optimal execution
strategy to perturbations whether short selling constraints are imposed or not.

In addition, for each asset i, we compute the ratio of the average difference,
between the true optimal execution strategy n∗

i and the estimated optimal execution
strategies, to the initial holding, i.e.,

εi(μ)
def
=

1

MS̄i

M∑
�=1

∥∥∥n(�)
i − n∗

i

∥∥∥
1
, i = 1, 2, 3,(49)

where the vector n
(�)
i is the estimated optimal execution strategy of the ith asset in

the �th simulation. Here M is the number of simulations. Table 1 presents the values
of εi(μ) for various choices of μ for M = 5000 simulations. From Table 1, we observe
that, whether short selling is allowed or not, the relative average error εi(μ) decreases
as the risk aversion parameter μ increases. For example, while the relative average
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Fig. 1. Optimal execution strategies for μ = 0 with 5% relative perturbations (ρ = 0.05) in the
impact matrices for 50 simulations. For plots on the left, short selling is allowed. Short selling is
prohibited for plots on the right.

error in asset 2 is 37.3619% for μ = 10−5, it becomes less than 0.1% for μ ≥ 0.05.
This observation is consistent with our analytical result that the change in the optimal
execution strategy decreases as the risk aversion parameter increases. Table 1 also
confirms that the optimal execution strategy when short selling is prohibited is less
sensitive than the one obtained when short selling is allowed. This difference is more
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Fig. 2. Optimal execution strategies for μ = 10−5 with 5% relative perturbations (ρ = 0.05) in
the impact matrices for 50 simulations. For plots on the left, short selling is allowed. Short selling
is prohibited for plots on the right.

striking for small values of μ. As μ increases, the difference between the two cases
almost diminishes.

Given Γ = ΓT in our example, Proposition 2.1 implies that, when perturbation
in the permanent impact matrix satisfies ΔΓT = ΔΓ, the unique minimum expected
execution cost strategy is the naive execution strategy. In our computation setting,
the only possible violation is the asymmetric perturbation in the permanent impact
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Table 1

Relative average error εi(μ) (percentage) with 5% relative perturbations in the impact matri-
ces, with general (likely asymmetric) perturbations in the permanent impact matrix, based on 5000
simulations.

μ Short selling is allowed Short selling is prohibited

0
10−8

10−5

0.05
0.5
1

Asset 1 Asset 2 Asset 3
154.3614 229.6044 229.6111
122.0550 169.4105 74.2133
24.0294 37.3619 14.1912
0.0196 0.0349 0.0115
0.0020 0.0035 0.0012
0.0010 0.0017 0.0006

Asset 1 Asset 2 Asset 3
43.7554 53.4204 53.4303
43.6052 53.2656 26.8415
22.7091 34.4506 13.5175
0.0177 0.0317 0.0105
0.0018 0.0032 0.0011
0.0009 0.0016 0.0005

Table 2

Relative average error εi(μ) (percentage) with 5% relative perturbations in the impact matrices,
with symmetric perturbations in the permanent impact matrix, based on 5000 simulations.

μ Short selling is allowed Short selling is prohibited

0
10−8

10−5

0.05
0.5
1

Asset 1 Asset 2 Asset 3
0 0 0

0.9364 1.3388 0.5476
21.3055 34.2984 12.5860
0.0187 0.0339 0.0111
0.0019 0.0034 0.0011
0.0009 0.0017 0.0006

Asset 1 Asset 2 Asset 3
0 0 0

0.9181 1.3250 0.5382
20.6919 32.2731 12.2386
0.0173 0.0311 0.0103
0.0017 0.0031 0.0010
0.0009 0.0016 0.0005

matrix. This evinces the importance of maintaining symmetry in estimating the per-
manent impact matrix if it is known or assumed to be symmetric. To illustrate how
restricting to symmetric perturbations affects the sensitivity of the optimal execu-
tion strategy, we compute εi(μ) for estimated optimal execution strategies with the
perturbed impact matrices Ω + ΔΩ and Γ + 1

2 (ΔΓ + ΔΓT ), where ΔΩ and ΔΓ are
determined according to (48). Table 2 presents these values.

Comparing Table 2 with Table 1, we observe that the relative average error εi(μ),
with symmetric perturbations in the permanent impact matrix, is smaller than the
relative average error εi(μ) in Table 1 with asymmetric perturbations. This difference
is more significant for small values of μ, particularly μ < 10−5. For μ ≥ 10−5 there is
little difference in the relative average errors in Table 2 with those in Table 1. Thus,
when the permanent impact matrix Γ is known to be symmetric and this property
is maintained with its estimate, an investor who wants to minimize the expected
execution cost need not worry about the effect of estimation errors in the impact
matrices on the optimal execution strategy.

4.2. The sensitivity of the efficient frontier. In this section, we illustrate
the effect of perturbations in the impact matrices on the efficient frontier in the space
of the variance and the expected execution cost. For a given pair of perturbed impact
matrices Ω + ΔΩ and Γ + ΔΓ, we compute the following three efficient frontiers for
μ ∈ [0, 10−5]:

• The true (efficient) frontier is the efficient frontier computed from the true
values of the impact matrices Ω and Γ.

• The actual (efficient) frontier is the curve of the true mean and variance
of the execution cost of the optimal execution strategy determined from the
perturbed impact matrices Ω +ΔΩ and Γ+ΔΓ. The actual frontier depicts
the true performance of estimated optimal execution strategies for various
values of μ.
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(a) Actual Frontiers versus the True Frontier

Variance

E
xp

ec
te

d
V

al
u

e
o

fE
xe

cu
tio

n
C

o
st

1E+08 2E+08 3E+08 4E+08

600

700

800

900

1000

1100

1200

1300

True Efficient Frontier

Estimated Efficient Frontier

Variance

E
xp

ec
te

d
V

al
u

e
o

fE
xe

cu
tio

n
C

o
st

0 1E+08 2E+08

700

800

900

1000

1100

1200

1300

1400
True Efficient Frontier
Estimated Efficient Frontier

(b) Estimated Frontiers versus the True Frontier

Fig. 3. Actual and estimated frontiers with 5% relative perturbations in the impact matrices,
with general (likely asymmetric) perturbations in the permanent impact matrix, for 50 simulations.
Short selling is allowed for plots on the left. Short selling is prohibited for plots on the right.

• The estimated (efficient) frontier is the efficient frontier based on the per-
turbed impact matrices Ω +ΔΩ and Γ +ΔΓ.

The notions of the actual frontier and estimated frontier have been used in Broadie
(1993) to investigate the effect of estimation errors in mean returns and the covari-
ance matrix in the traditional mean-variance portfolio optimization. As mentioned
in Broadie (1993), the estimated frontier is what appears to be the case based on
estimated input data, but the actual frontier is what really occurs based on the true
values of the data. Since the true values of the data are unknown, the true and actual
frontiers are unobservable in practice. Note that actual frontiers can never be below
the true efficient frontier as the execution cost problem is a minimization problem.
However, estimated frontiers can be either above or below the true and actual frontiers.

Figure 3 demonstrates the effect of perturbations in the impact matrices on the
efficient frontier when perturbation matrices are given in (48). Figure 3(a) illustrates
deviations of actual frontiers from the true efficient frontier for μ ∈ [0, 10−5]. From
the plot on the left, generated under the assumption that short selling is allowed, it
can be observed that large deviations of actual frontiers can occur, particularly when
the risk aversion parameter is very small. Moreover, the lengths of the actual frontiers
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from different simulations vary drastically; the lengths of some actual frontiers largely
differ from the length of the true frontier. Figure 3(a) also demonstrates that, similar
to the sensitivity of the optimal execution strategy, the change in the efficient frontier
decreases as μ increases. Therefore, an execution strategy that minimizes the variance
of the execution cost can be estimated more accurately than the one that minimizes
the mean of the execution cost. This is consistent with our theoretical results.

Comparing the right plot to the left plot in Figure 3(a), we observe that deviations
of actual frontiers from the true frontier are significantly reduced in the right plot in
which short selling is prohibited. There is also less variation in the length of actual
frontiers. Thus, imposing no short selling constraints significantly decreases the effect
of estimation errors in impact matrices. Similar phenomena have been reported in
the mean-variance portfolio optimization; e.g., see Frost and Savarino (1988), Best
and Grauer (1991), and Jagannathan and Ma (2003).

Figure 3(b) depicts deviations of estimated frontiers from the true frontier. Com-
paring to plots in Figure 3(a), there seems to be less difference in the deviations for
different risk aversion parameters, whether short selling constraints are imposed or
not. In addition, for a large risk aversion parameter, we observe larger deviations in
the estimated frontiers than in the actual frontiers. On the other hand, deviations of
estimated frontiers are smaller than those of actual frontiers for a small risk aversion
parameter.

Let perturbed impact matrices be Ω+ΔΩ and Γ+ 1
2 (ΔΓ+ΔΓT ) where ΔΩ and

ΔΓ are defined as in (48); thus the permanent impact matrix perturbation is sym-
metric. For these symmetric perturbations in the permanent impact matrix, Figure 4
illustrates that the differences between actual frontiers and the true efficient frontier
are significantly reduced when the risk aversion parameter is small. In particular,
when the risk aversion parameter is near zero, actual frontiers are very close to the
true frontier. Maintaining symmetry does not seem to affect the sensitivity at the left
end of the frontier for a large value of μ. In addition, we note that the assumption of
symmetry in the permanent impact matrix has little effect on estimated frontiers.

We now compare the sensitivity of the mean of the execution cost with the sensi-
tivity of the variance of the execution cost. Figure 5 displays (mean, variance) points
on the actual frontiers for μ = 0 and μ = 10−5. The left plots are generated when
short selling is permitted. For the plots on the right, short selling is prohibited. This
figure suggests that, when μ = 0, variation in the variance of the execution cost is
relatively larger than the variation in the mean of the execution cost. For μ = 10−5,
on the other hand, the relative variation in the mean is larger than the variance of
the execution cost.

To summarize the discussions in sections 4.1 and 4.2, our simulation results sug-
gest that the effect of estimation errors in impact matrices on the optimal execution
strategy and efficient frontiers can be quite large in general. Moreover, the effect of
these errors varies with the risk aversion parameter. For a large risk aversion pa-
rameter, the difference between the true frontier and the actual frontier is small. In
addition, we consistently observe that imposing short selling constraints decreases
the effect of estimation errors on both the optimal execution strategy and the effi-
cient frontier. Moreover, when appropriate, maintaining symmetry in the permanent
impact matrix decreases the effect of estimation errors.

In our simulations, we have also noticed that it is possible for a small pertur-
bation in impact matrices to make the Hessian matrix indefinite. As the number of
assets grows, this issue becomes even more pronounced. When the Hessian matrix is
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(a) Actual Frontiers versus the True Frontier
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(b) Estimated Frontiers versus the True Frontier

Fig. 4. Actual and estimated frontiers with 5% relative perturbations in the impact matrices,
with symmetric perturbations in the permanent impact matrix, for 50 simulations. Short selling is
allowed for plots on the left. Short selling is prohibited for plots on the right.

indefinite, the execution cost problem (13), in which short selling is permitted, no
longer has an optimal solution since the objective function becomes unbounded be-
low. This is another evidence of potentially large sensitivity of the optimal execution
strategy to perturbations in the impact matrices.

4.3. The sensitivity to perturbations in the covariance matrix. Similar
to some recent work on addressing estimation risks in the mean-variance portfolio
optimization (e.g., see TerHorst, Roon, and Werker (2006), Garlappi, Uppal, and
Wang (2007), and Antoine (2008)), so far we have ignored estimation errors in the
covariance matrix by assuming that the covariance matrix is known. In our theoretical
and computational analysis, we have considered only the effect of perturbations in the
impact matrices. This assumption is reasonable when the number of assets is small.
For the purpose of completeness, in this section, we computationally compare the
effect of estimation errors in the covariance matrix on the optimal execution strategy
and the efficient frontier with the effect of perturbations in the impact matrices. In
the sequel, we refer to the covariance matrix C, defined in (46), as the true covariance
matrix. To simulate estimated covariance matrices, we use the perturbed matrix
C+ 1

2

(
ΔC +ΔCT

)
, where perturbations ΔC have independent normal distributions.
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(a) Risk Aversion Parameter μ = 0
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(b) Risk Aversion Parameter μ = 10−5

Fig. 5. Points on the actual frontier for μ = 0 and μ = 10−5 with 5% relative perturbations in
the impact matrices, with general (likely asymmetric) perturbations in the permanent impact matrix,
for 50 simulations. Short selling is allowed for plots on the left. For plots on the right, short selling
is prohibited.

Specifically,

ΔC = ρmax {‖Cei‖∞, i = 1, 2, 3}Φ,
where Φ is a 3× 3 randommatrix whose elements are independent zero-mean Gaussian
random variables with unit variance. The parameter ρ indicates the size of the rela-
tive perturbation. To ensure that the perturbed matrix simulates a valid covariance
matrix, we consider only perturbations with C + 1

2

(
ΔC +ΔCT

) � 0. Throughout
section 4.3, we assume that accurate values of the impact matrices are given, and the
true impact matrices defined in (47) are used.

When the risk aversion parameter satisfies μ = 0, any perturbation in the covari-
ance matrix has no effect on the optimal execution strategy. However, when μ > 0,
perturbations in the covariance matrix might be influential. To investigate the effect
of perturbations in the covariance matrix on the efficient frontier, we use the notions
of true, estimated, and actual frontiers in a similar sense as defined in section 4.2.
Here perturbations in the impact matrix ΔΩ and ΔΓ are zero and the covariance
matrix C is perturbed.
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(a) Actual Frontiers versus the True Frontier
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(b) Estimated Frontiers versus the True Frontier

Fig. 6. Actual and estimated frontiers with 5% relative perturbations in the covariance matrix
for 50 simulations. Short selling is allowed for plots on the left. Short selling is prohibited for plots
on the right.

Figure 6(a) depicts the effect of perturbations in the covariance matrix on the
actual frontiers. Comparing Figure 6(a) with Figure 4(a), we observe that the dif-
ference between actual frontiers and the true frontier in Figure 6(a) is less than the
corresponding change illustrated in Figure 4(a). This suggests that 5% perturbation
in the impact matrices, even when symmetry is maintained, has a larger effect on the
actual efficient frontier than perturbations of the same magnitude in the covariance
matrix. Similar to Figure 4(a), Figure 6(a) demonstrates that differences between
actual frontiers and the true efficient frontier are significantly reduced when the risk
aversion parameter μ is small. Particularly, when the risk aversion parameter ap-
proaches zero, at the right end of the frontiers, actual frontiers converge to the true
frontier. This behavior is expected, as for μ = 0 the variance of the execution cost
and consequently the covariance matrix do not play any significant role in finding the
optimal execution strategy. Deviations of the actual frontiers from the true frontier
at the left end are almost similar to Figure 4(a).

Deviations of estimated frontiers from the true frontier are depicted in Figure 6(b).
Comparing to plots in Figure 4(b), there is less difference in the deviations of the
estimated frontier in Figure 6(b) from the true frontier for different risk aversion
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Table 3

Relative average error εi(μ) (percentage) with 5% relative perturbations in the covariance matrix
based on 5000 simulations.

μ Short selling is allowed Short selling is prohibited

0
10−8

10−5

0.05
0.5
1

Asset 1 Asset 2 Asset 3
0 0 0

0.1985 0.3519 0.1166
17.8344 29.5192 10.5162
0.0582 0.1008 0.0336
0.0071 0.0129 0.0041
0.0037 0.0067 0.0021

Asset 1 Asset 2 Asset 3
0 0 0

0.1985 0.3519 0.1166
16.8851 28.2712 9.9655
0.0184 0.0413 0.0109
0.0018 0.0041 0.0011
0.0009 0.0021 0.0005

parameters. Similar to Figure 4, for a large risk aversion parameter, we observe
larger deviations in the estimated frontiers than in the actual frontiers. When the risk
aversion parameter satisfies μ = 0, the optimal execution strategy for all perturbed
matrices C + 1

2

(
ΔC +ΔCT

)
is identical. Since the impact matrices are fixed in this

case, the optimal expected execution cost is unchanged for all of the perturbations
ΔC, while they incur different estimations for the variance of the execution cost. This
explains the behavior of the right end of the estimated frontiers in Figure 6(b).

To assess the effect of perturbations in the covariance matrix on the optimal
execution strategy, for every asset i, we compute the ratio of the average difference
εi(μ), defined in (49), between the optimal execution strategy n∗

i corresponding to

the true covariance matrix C and the optimal execution strategy n
(�)
i obtained from

the perturbed covariance matrix C + 1
2

(
ΔC +ΔCT

)
in the �th simulation. Table 3

illustrates these values for various choices of μ for M = 5000 simulations with ρ = 5%
relative perturbations in the covariance matrix C. Similar to the perturbations in the
impact matrices, Table 3 suggests that the effect of estimation errors in the covariance
matrix on the optimal execution strategy depends on the choice of the risk aversion
parameter μ. Table 3 maintains the same trend as in Table 2 when μ varies. However,
for smaller values of μ (0 < μ ≤ 10−5), the relative average error εi(μ) in Table 3 is
notably smaller than those in Table 2. In both Tables 2 and 3, as μ increases, the
optimal execution strategy approaches the same strategy of selling the entire holdings
in the first period; therefore the effect of estimation errors from both the covariance
matrix and impact matrices becomes very small.

5. Concluding remarks. Specification and estimation of the price impact func-
tion in the execution cost problem inevitably have errors. Therefore it is important
to analyze how sensitive the optimal execution strategy and the efficient frontier are
to these estimation errors. In this paper, we consider linear price impact functions
and study the effect of perturbations in the parameters of the price impact function.

We first show that the optimal execution strategy is determined from the com-
bined impact matrix Θ = 1

τ

(
Ω + ΩT

) − Γ. Therefore one may want to estimate the
combined impact Θ directly, rather than estimating the temporary and permanent
impact matrices individually.

We discuss some cases in which the optimal execution strategy is insensitive to
the estimation errors in the impact matrices. For example, the optimal execution
strategy, which minimizes the expected execution cost, is the naive execution strategy
as long as the permanent impact matrix and its perturbation are symmetric and the
combined impact matrices Θ and Θ+ΔΘ are positive definite. In other words, when
symmetry is maintained for the permanent impact matrices and positive definiteness
is maintained for the combined impact matrices, the minimum expected execution
cost strategy is not sensitive to changes in the impact matrices.
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We prove that the optimal execution strategy is Lipschitz continuous in the impact
matrices Ω and Γ with respect to the Euclidean norm. We provide upper bounds for
the size of the change in the optimal execution strategy in terms of the change in the
impact matrices and some magnification factor. In general, the magnification factor is
defined by the minimum eigenvalue of the block tridiagonal Hessian matrix W . This
matrix W is determined by the covariance matrix C, the combined impact matrix
Θ, and the risk aversion parameter μ. From the established upper bounds, it can be
concluded that the change in the optimal execution strategy diminishes as the risk
aversion parameter increases. However, for a small risk aversion parameter, estimation
errors may significantly affect the optimal execution strategy and efficient frontiers.

When the permanent impact matrix and its perturbation are symmetric, magni-
fication factors can be explicitly expressed in terms of minimum eigenvalues of the
covariance matrix C and Θ. Specifically, the magnification factor becomes small when
either λmin(C) or λmin(Θ) is large, assuming that μ > 0 is fixed. In this case, the
sensitivity of the optimal execution strategy to perturbations in the impact matrices
is not as pronounced.

Our computational investigation confirms the importance of accurate specification
of the impact matrices. We demonstrate that, in addition, maintaining symmetry of
the permanent impact matrix also reduces the effect of estimation errors. Moreover,
our simulations suggest that adding appropriate constraints, such as short selling
constraints, can significantly alleviate the effect of estimation errors in the impact
matrices. Consistent with our theoretical results, the computational investigation
shows large sensitivity of the optimal execution strategy and the efficient frontier for
a small risk aversion parameter μ, when the permanent impact matrix is asymmet-
ric. Specifically, this change becomes more significant in the absence of short selling
constraints. This result also coincides with the observation that, for the traditional
mean-variance portfolio optimization, the effect of estimation errors in the mean and
covariance matrix reduces when short selling constraints are imposed on the problem.

In summary, our theoretical and computational results indicate that the optimal
execution strategy can potentially be very sensitive to estimation errors in the impact
matrices. This is particularly the case if the permanent impact matrix is asymmetric,
the risk aversion parameter is small, and short selling is permitted.
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Optimization, Birkhäuser-Verlag, Basel, Switzerland.
D. Bertsimas, A. W. Lo, and P. Hummel (1999), Optimal control of execution costs for portfolios,

Comput. Sci. Eng., 1, pp. 40–53.
D. Bertsimas and A. W. Lo (1998), Optimal control of execution costs, J. Financ. Markets, 1,

pp. 1–50.
M. J. Best and R. R. Grauer (1991), On the sensitivity of mean-variance-efficient portfolios to

changes in asset means: Some analytical and computational results, Rev. Financ. Stud., 4,
pp. 315–342.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1654 SOMAYEH MOAZENI, THOMAS F. COLEMAN, AND YUYING LI

M. Broadie (1993), Computing efficient frontiers using estimated parameters, Ann. Oper. Res., 45,
pp. 21–58.

L. K. Chan and J. Lakonishok (1993), Institutional trades and intraday stock price behavior, J.
Financ. Econom., 33, pp. 173–199.

Z. P. Chen and C. E. Zhao (2003), Sensitivity to estimation errors in mean-variance models, Acta
Math. Appl. Sin., 19, pp. 255–266.

V. K. Chopra and W. T. Ziemba (1993), The effect of errors in means, variances, and covariances
on optimal portfolio choice, J. Portfolio Management, 19, pp. 6–11.

V. DeMiguel, L. Garlappi, F. Nogales, and R. Uppal (2009), A generalized approach to port-
folio optimization: Improving performance by constraining portfolio norms, Manage. Sci., 55,
pp. 798–812.

D. J. Disatnik and S. Benninga (2007), Shrinking the covariance matrix, J. Portfolio Management,
33, pp. 55–64.

S. M. Focardi and F. J. Fabozzi (March 2004), The Mathematics of Financial Modeling and
Investment Management, Wiley, New York.

C. M Fonseca (2007), On the eigenvalues of some tridiagonal matrices, J. Comput. Appl. Math.,
200, pp. 283–286.

P. A. Frost and J. E. Savarino (1988), For better performance: Constrain portfolio weights, J.
Portfolio Management, 15, pp. 29–33.

L. Garlappi, R. Uppal, and T. Wang (2007), Portfolio selection with parameter and model uncer-
tainty: A multi-prior approach, Rev. Financ. Stud., 20, pp. 41–81.

G. H. Golub and C. F. Van Loan (1996), Matrix Computation, Hopkins Fulfillment Service, 3rd ed.
W. W. Hager (1979), Lipschitz continuity for constrained processes, SIAM J. Control Optim., 17,

pp. 321–338.
R. W. Holthausen, R. W. Leftwich, and D. Mayers (1987), The effect of large block transactions

on security prices, a cross-sectional analysis, J. Financ. Econom., 19, pp. 237–267.
G. Huberman and W. Stanzl (2004), Price manipulation and quasi-arbitrage, Econometrica, 72,

pp. 1247–1275.
R. Jagannathan and T. Ma (2003), Risk reduction in large portfolios: Why imposing the wrong

constraints helps, J. Finance, 58, pp. 1651–1684.
J. D. Jobson and B. Korkie (1980), Estimation for Markowitz efficient portfolios, J. Amer. Statist.

Assoc., 75, pp. 544–554.
J. G. Kallberg and W. T. Ziemba (1984), Mis-specification in portfolio selection problems, in

Risk and Capital: Lecture Notes in Economics and Mathematical Systems, G. Bamberg and
K. Spremann, eds., Springer-Verlag, Berlin, pp. 74–87.

D. Kulkarni, D. Schmidt, and S. Tsui (1999), Eigenvalues of tridiagonal pseudo-Toeplitz matrices,
Linear Algebra Appl., 297, pp. 63–80.

A. S. Kyle (1985), Continuous auctions and insider trading, Econometrica, 53, pp. 1315–1336.
O. Ledoit and M. Wolf (2004), Honey, I shrank the sample covariance matrix, J. Portfolio Man-

agement, 31, pp. 110–117.
R. C. Merton (1980), On estimating the expected return on the market: An exploratory investiga-

tion, J. Financ. Econom., 8, pp. 323–361.
R. O. Michaud (1989), The markowitz optimization enigma: Is optimized optimal?, Financ. Anal.

J., 45, pp. 31–42.
A. Obizhaeva (2008), Price impact and spread: Application of bias-free estimation methodology to

portfolio transitions, working paper, pp. 1–39.
M. O’Hara (January 1998), Market Microstructure Theory, Blackwell Publishing, Oxford.
R. T. Rockafellar and S. Uryasev (2000), Optimization of conditional value-at-risk, J. Risk, 2,

pp. 21–41.
J. R. TerHorst, F. Roon, and B. J. M. Werker (2006), Incorporating estimation risk in opti-

mal portfolios, in Advances in Corporate Finance and Asset Pricing, L. D. R. Renneboog, ed.,
Elsevier, New York, pp. 449–472.

N. G. Torre (1997), Market Impact Model Handbook, BARRA Inc, Berkeley, CA.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


