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Abstract. We propose a new (interior) approach for the general quadratic programming problem. We establish
that the new method has strong convergence properties: the generated sequence converges globally to a point
satisfying the second-order necessary optimality conditions, and the rate of convergence is 2-step quadratic
if the limit point is a strong local minimizer. Published alternative interior approaches do not share such
strong convergence properties for the nonconvex case. We also report on the results of preliminary numerical
experiments: the results indicate that the proposed method has considerable practical potential.
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1. Introduction

Consider a quadratic program in the standard form:

1
mxin {q(x) = ExTHx + ch} )]
subjectto Ax =b and x > 0,

where H € R"*" is symmetric and, in general, indefinite; c € R", A € R™*" and
b € R™. When H is indefinite, we are interested in locating a local minimizer and call
such a minimizer a solution to (1).

Problem (1) has been studied intensively due to its importance in optimization: many
real world problems are posed in the form (1). In addition, many algorithms for general
nonlinear programming require successively solving subproblems of this form (e.g.,
“SQP” methods).

There are basically two kinds of existing approaches for solving (1). The most
popular strategies follow an active-set or gradient projection philosophy: a piecewise
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linear path is generated, following faces of the polytope defined by the constraints in (1),
e.g., [3], [5], 161, [11], [14], [16], [20], [29]. These methods usually generate a finite
sequence of intermediate “approximations”. An alternative philosophy is to generate
an infinite sequence of strictly feasible (or interior) points, converging in the limit to
a local solution. One such method, the affine-scaling method, was proposed over twenty
years ago [13]. Following the publication of Karmarkar’s interior-point method [23],
there has been a resurgence of interest in such methods for linear programming, linear
complementarity problem, and to some degree quadratic programming, especially the
convex case: see for example, [1], [2], [8], [21], [22], [24], [26], [27], [30], [31], [35],
[36], [38], and [39].

Most recently, Ye [37] proposes an interior algorithm for problem (1). Ye’s method
uses the solution of a projected trust region subproblem as the search direction in
each iteration and generates a sequence of points converging, in the limit, to a point
satisfying the second-order necessary-conditions. The convergence rate of Ye’s algorithm
is believed to be linear. (For references on trust region methods, see for example, [15],
[28], [33], and [34].)

We propose a new interior Newton method for problem (1). In our algorithm,
each step involves two directions: the solution to a projected trust region subproblem
and a projected steepest descent direction. We show that our new method has strong
convergence properties: the generated sequence converges globally to a point satisfying
the second-order necessary conditions, and the rate of convergence is 2-step quadratic if
the limit point is a strong local minimizer. Published alternative interior approaches do
not share such strong convergence properties for the nonconvex case. As a byproduct,
we show that for general QP, the projected steepest descent directions yield a procedure
converging globally to a point satisfying the first-order necessary conditions (KKT
conditions). Finally, we describe a modification of this algorithm using a new scaling
strategy which dramatically improves computational performance while maintaining
strong convergence properties.

Another feature of our method is that the underlying linear system in the limit is
well-conditioned, in contrast to certain formulations of alternative interior methods.
Our preliminary numerical experiments indicate that the new algorithm is promising.
A related work for box-constrained minimization problems is given in [8].

This paper is organized as follows. In Sect. 2, we motivate and present the basic
algorithm. In Sects. 3 and 4, we discuss its strong convergence properties. In Sect. 5, we
describe modifications of the basic method, and discuss results of preliminary numerical
experiments. (In the Appendix we show that an efficient modified version of the basic
algorithm maintains the theoretical convergence properties of the basic method.) Finally,
in Sect. 6, we have concluding remarks and observations.

We use superscripts to denote the iteration counts and use subscripts to indicate the
indices of vector components. We occasionally drop the superscripts when there is no
confusion. We use “:=" to denote the phrase “is defined to be”. The norm {| - || used in
this paper is the [ norm unless otherwise specified. Sets will be denoted by calligraphic
capital letters. Given a vector x € R", the notation x > 0 means x; > 0 for every
1 <i<nandx > O0Omeans x; > 0forevery 1 <i < n. We call x a feasible point if
Ax = b and x > 0. We call x an interior point if x is feasible and x > 0, and we call x
a boundary point if x is feasible and x; = 0 for some 1 <i < n. When M € R"*" is



a square matrix, the notation M > 0 indicates that M is positive definite and the notation
M > 0 indicates that M is positive semidefinite. If x denotes a vector, X = diag(x)
will denote the diagonal matrix whose entries are the components of x. Finally, if
x =[x, x2, -+, x,]" and M = (m;;) € R, then |x| = [|x1], Ix2], -+, |xn]]7
and |M| = (Im;;]) € R™".

2. The basic algorithm

In this section, we first introduce the optimality conditions for (1). Then we describe
how to compute the search directions and the motivation. Finally, we give the basic
algorithm.

Conditions for a point x € R" to be a local minimizer of (1) are well-known and a set
of numerically verifiable conditions can be phrased as follows (see for example [19]):
if x* is a solution to (1), then there exists w* € R™ such that

feasibility: Ax* = b and x* > 0, )
complementarity: X*(Hx* +c + AT w*) = 0, ?3)

sign condition: x} = 0 = (Hx* +c+ ATw*); > 0
(i=12,---,n), “4
positive semidefiniteness: p? H p = 0 forevery p € N(x*), (5)

where for a given feasible point x,
Nx):={pe®R" : Ap=0; p; =0foreveryi € A(x)},
and
AXx) :={i : x; =0}.

Conditions (2) — (4) are first-order necessary conditions and are known as the
Karush-Kuhn-Tucker (KKT) conditions. Conditions (2) — (5) are called the second-order
necessary conditions. Second-order sufficiency conditions are obtained by replacing “>"
with “>""in (4) and (5). A point x* is called a strong local minimizer if x* satisfies these
second-order sufficiency conditions.

The two equations in the KKT conditions form a nonlinear system

(6)

Flx, w) i= [X(Hx+c+ATw)] —0

Ax—b>b

which will be useful in the proof of quadratic convergence.



'.1. Projected trust region subproblem and projected steepest descent direction

(e’s method [37] uses the solution of the following projected trust region subproblem
s the search direction:

1
min {EAXTHAx+AxT(Hx+c) L AAx =0, [XAx|| < a}.
X

In our algorithm, each step involves two directions: the solution of a projected trust
egion subproblem and a projected steepest descent direction. The projected trust region
ubproblem is motivated by the Newton system of (6): its solution is ultimately the
Jewton direction (with respect to x) of (6) (see Sect. 4). More specifically, for given x
nd w, we define

g=gx,w)y:=Hx+c+ATw, M=Mxw):=H+X'|G|,

ind solve
1
min {1//(Ax) = 305" MAx + AxT(Hx +0) : AAx =0, IX~2Ax| < a}, )
X

vhere 8 € [8;, 8,] for some given 0 < §; < §,,.

Let Ax;, denote the solution of (7) (the subscript tr stands for trust region). Due to
he choices of M and the scaling in (7), the solution Ax;, has two important properties.
iirst, it is a feasible descent direction for g subject to the constraints (i.e., AAx, = 0
ind Vq(x)TAx,, < 0, see next section for the proof). This is important for global
:onvergence. Second, Ax, is ultimately the Newton direction (with respect to x) of
iystem (6). Therefore, local quadratic convergence can be expected.

We emphasize that Ax; is used as part of the search direction. A line search is
yerformed to maintain feasibility (see next subsection). Hence the parameter § in (7)
1eed not be updated in theory for convergence (this will be made clear in the next
iection), though it may affect computational performance.

Problem (7) can be described in a different way. Let

D:= X2, A:=AD, M:=DMD, and g := Dg.
Ne may write Ax; as
Axn' == DZA;”-, (8)

vhere Z = Z(x) is a matrix whose columns form an orthonormal basis for the null
ipace of A and AXx, denotes the solution to

min {¢(AX) := L ASTZT Mz A% +ax7ZTg : |ax| <8 9
i * 2 g * " " — . ( )
;‘]early,

V(Axy) = Y(AXy). (10)




From the results in [15] and [34], there exists A, > 0 such that

(ZTMZ + Ay DAXy = —Z7 3, (11)
Z"TMZ + a1 > 0, (12)
Aer(8 — [[AXy ) =0, (13)
and
Ay < ”‘;;” + M. (14)

By the definition of Z, there exists Awy such that
(M + Ao DZAZy + 2+ AT Awyy = 0. (15)
Or equivalently,
M+ 2, X DYAxy + g+ ATAw, =0 and AAx, = 0. (16)
When AAT is nonsingular,
Awy = —(AATYTA (M + 7y DZAT, + ). a7

In our algorithm, Aw, will not be computed but it will be useful in the convergence
analysis.

We do not specify the matrix Z in (9). It turns out that global convergence to a point
satisfying the KKT conditions holds for any choice of Z. But continuity of Z is required
for convergence to a point which satisfies the second-order conditions. See Sect. 3 for
more discussion on this.

We prefer to compute Ax,, by (8) and (9) instead of (7) since some entries of the
matrix M may approach infinity as some diagonal components of X go to zero. The
matrix M does not have this disturbing property.

In order to ensure that Ax; converges to the Newton step (with respect to x) of

system (6), we need to update w appropriately. A reasonable way to update w is based
on condition (3), i.e., at a local minimizer

X (Hx+c+ ATw) =0.
Therefore, if AXAT is nonsingular, we may compute w by
w=—(AXAT)"TAX(Hx + o) (18)
for every given x, which solves the least square problem
min [|(AD)" w + D(Hx +¢)||. (19)

If w is so chosen, then g and M will only depend on x.

Trust region methods have strong convergence properties and have exhibited robust
performance in unconstrained minimization (see [15], [28], [33], and [34]). In our case,
however, Ax;,, may not always be a good choice for the search direction due to the
constraints. Similar to the dogleg method [32] and the algorithm in [8], we follow




a hybrid strategy. We choose the step by combining Ax, with a projected steepest
descent direction

8

Axp i= o D——, (20
ST )
where ug is defined as the solution to the following problem:
2 ST = 5T
) n-g - 8 8 -
mln{w wm)y=——M—=—+u—g: |[Ll§5}. 21
W e )
It is easy to verify that if w is defined by (18) then
W(Axg) = Yg(ug), Alxg =0, (22)

and Ax, is a projection of Vg(x) = Hx + c onto the null space of A. Moreover, Ax,
is a feasible descent direction for g subject to the constraints (i.e., AAx, = 0 and
Vq(x)TAxg < 0), and, similar to (11) — (13), there exists );g > 0 such that

& & _ &
(IléllM el T Ae! )“8 =~ Taé (23)
& a8
Mz +2e 20, (24)
Ag(8 — |ugl) =0, (25)
and
N y
¢ = —5 M| (26)

The direction Ax, is similar to the affine-scaling direction introduced in [1], [13],
and [35] but differs in that the affine-scaling direction is more tangential to the near
active constraints.

We describe in Sect. 2.3 how to combine Ax;, and Ax, to form the updating step.

2.2. Maintaining feasibility

Let x* be the current iterate, an interior point, and let Ax be a feasible descent direction

of ¢ at x* subject to the constraints, i.e., AAx = 0 and Vg(x*)T Ax < 0. When moving

in the direction Ax starting from x*, a variable may reach abound, i.e., x*+aAx); =0

for some 1 < i < n and for some o > 0. Therefore, to maintain strict feasibility and

yet allow the solution (which may have some of the variables at their bounds) to be

approached asymptotically and sufficiently fast, we define the step length as follows.
For each k, let

ok . _IX 8 I + vk axh))
1+ IXkg|| + [y*(axg)|

27)




where for given (x, w), x = X(x, w) € R" is a function of (x, w) defined as

s | % if gi=(Hx+c+ATw)y; >0, o _.
Hie= { -1 otherwise (I=i=n). (28)
It is clear that Xg = 0 if and only if the KKT conditions are satisfied with (x, w). Even
though X; might be discontinuous when g; = 0, the product Xg will be continuous at
a solution of (1).

Let
k
Bk = min {— al >0],
T asisn o (Axk);
(so that (x* + ,B,k,Axf,)i = 0forsome 1 <i <n) (29)
pfr = max(tp, 1 — 9") for some given t, € (0, 1), 30)
af‘, = min (1, pf‘,ﬂf,) for some given 1, € (1, 2), 31
and
g = min | - X > 0] (32)
 oasisml o (Axb), ’ ‘
k _ k—1 sr 0
Pg = max(zy, 1 —0°77), (with pg =1) 33)
oy = min (ta, pfBY). (34)

The step lengths for Ax,, and Ax will be O‘tr and a , respectively. In Theorem 5, we
show that 6% > 0 unless x* satlsﬁes the second- order necessary condmons (2) - (5)
Therefore 1f xk is aninterior feasible point not satisfying (2) — (5), then both x* +atr Ax,r
and x* + o, Ax are interior feasible points. In addition, Theorem 5 shows that 6% will
not be very sma]] unless x¥ is sufficiently close to optimality. Hence the iterates x* will
be prevented from prematurely getting too c]ose to the lower bounds. Moreover we
will show that 6¥ — 0 (Theorem 5) and @k — 1 (Lemma 11) as x* converges to

a solution of (1), thus the iterates x* will be allowed to approach a solution sufficiently
fast.

In (33), 0¥ 1 is used (instead of 6%) because Ax,, may not be available when
computing Ax e.g., in the algorithm presented in Sect. 5.

2.3. The algorithm

We compute the updating step s* as follows:

sk = ok a Ax,, + @1 - ak)a Ax 35)

where for some given y € (0, 1),

K { 1, if y*(apAxf) < y y* @t axb), 36)

g = .
0, otherwise.



We can now state our basic algorithm.

Algorithm Interior-Newton
Let x° be an interior feasible point.
Fork=0,1,2,---
1. Solve (19) for w* and let gk = Hx* 4+ ¢ + ATwk;
Compute Axi‘, and a’g, by (20) and (34).
2. Solve (9) for Ax ; Compute AxX and af by (8) and (31).
3. Determine s* by (35); Update x**1 = x* 4 s*.

Note that because of the choice of w in the algorithm, g and M will be functions of
only x (instead of functions of both x and w). In the next two sections, we consider the
convergence properties of Algorithm Interior-Newton.

3. Convergence of Algorithm Interior-Newton

[n this section we establish global convergence properties of Algorithm Interior-Newton.
We first show that every limit point of the sequence {x*} generated by Algorithm
[nterior-Newton satisfies the complementarity condition (3). We then prove that {x*}
converges. Finally, we show that the limit point of {x*} satisfies the second-order
necessary conditions (2) — (5).

These convergence properties are proved under the following assumptions:

(A1) Thelevel set £ := {x : x is feasible and g(x) < q(xo)} is compact.

(A2) AXAT is nonsingular for every x € L.

(A3) For every feasible point x satisfying X (Hx + ¢ + AT w) = 0 for some w € ®"™,
xi=0= (Hx+c+ ATw); #0 (1 <i <n).

Assumption (A2) is known as primal nondegeneracy. Assumption (A3) says that for
zvery feasible point satisfying the complementarity condition, strict complementarity
holds. Note that assumptions (A2) and (A3) are different from the primal and dual
nondegeneracy assumptions for linear programming in that (A2) and (A3) do not restrict
a feasible point x satisfying the complementarity condition to be a vertex. That is
important since for a QP problem, solutions are not necessarily vertices.

By (A1) and (A2), there exists C; > 0 such that

WAXAT)™ Y <, forevery x € L. 37
Recall that in each iteration,

sk € 181, 8.1, (38)

where 0 < §; < §, < oo are two given scalars.

The following lemma defines a few basic equalities used throughout the remainder
of this paper.



N YTy 4y

Lemma 1. Let each s*, Ax* and Ax be defined by (35), (8) and (20). Then

q(*) — g + 5% = —y*h + %(s")T<X")‘“.G"|s"; (39)
vE@ axk) = y* @ axk) (40)
2
= —t(1= ) Q)@ I 2+ nash - T ok 1Az <o

vt € [0, min(2, gX)1;
Yt Axk) = vk k) “n

(gk)T gk k) - 2 ¢ ke
=-1{1-3 M*2 4 _F, 0
( ) ( gkl gk e (kee) 5“8 (ng)™ =<

Vi € {0, min(2, B})].

Proof. The relation (39) is a direct consequence of the definitions of ¥* and g(x),
while (40) and (41) are true by (11), (12), (23), and (24).

a4

Theorem 1. Let {x*} be generated by Algorithm Interior-Newton. Then {q(x*)} con-
verges and

ék = D*(Hx* + ¢ + ATwh) — 0. 42)
Proof. Since x*+1 = xk + sk by (39), (35), and (36),
g(x") — g(**t) > —y yF ek axk) > 0. 43)

So {g(x")} is monotonically decreasing T herefore {g(x")} converges by (Al). To

show (42), using (43), (41), and letting yk = = 1s k" we have
ak
o (1 ~ —;) (OMT My + 25 (up)* — 0. (44)
From (23),
(O MY+ 25k = —18*). (45)

So if (42) is false, then there exists € > 0 and a subsequence {k i} such that
1241 > . (46)

Applying (45), we see that ((y*))T M*iyki + Al;j )(11%)? is bounded away from zero.
Hence (44) and (34) imply (remembering 7, < 2)

ad —s 0. @7)



herefore, (34) yields ﬁ? — 0. Since 7 is finite, from the definition -of ,6;, we may

i

vithout loss of generality) assume that - L Thenb (20,
) ’
Axg )

-1 k;
I xy

ki ki — kj
I'ng‘glj (‘Axgj)l

— 0. (48)

herefore, we must have |g% || —> O since |y | < 8, for every k; and by (A1) ey}
.bounded above. This contradicts (46).
O

‘orollary 1. Let {x*} be generated by Algorithm Interior-Newton. Suppose x* is any
mit point of {x*}. Then

X*g* =0, : (49)
here
g=Hx*+c+ATw* and w* = —(AX*AT)TAX*(Hx*+¢).  (50)
1 other words, every limit point x* satisfies the complementarity condition.

Next we show that {x*} actually converges. We first state the following two technical
:sults without proofs. Readers may find the proofs in [9].

emma 2. Suppose that x* € L satisfies the complementarity condition. If x € L is
ny point satisfying the complementarity condition and

xi =0 ifandonly if i € Ax*) (1 <i <n),
len x = x*.
emma 3. The number of limit points of {x*} is finite. If x* is a limit point of {x*}
atisfying
A(x*)| = max{|.A(x)| : x is any limit point of {x*}}, (51
here | A(x)| denotes the number of elements in the set A(x), then there is no other limit

oint x of {x*} satisfying x; = 0 for every i € A(x*).

heorem 2. The sequence {x*} generated by Algorithm Interior-Newton converges to
* satisfying (51).




~ < EeAV DY

Proof. If A(x*) is an empty set, then any limit point of {x*} would be interior. By
Lemma 2, x* is the only limit point and the theorem is clearly true. Now we assume
that A(x*) is not empty.
If {x*} does not converge to x™, then there exists another limit point, say, x # x*.
By Lemma 3, there exists € € (0, 1) sufficiently small such that for every limit point
x # x*, there is an index i € A(x*) such that x; > €. In particular,

x; > € forsome i € A(x*). (52)

Therefore, there exists k1 > 0 such that for every k > k;,
either (xf)% < WJ:Z—«S.,) for every i € A(x*), or x!‘ > %e forsomei € A(x*). (53)
(In other words, x* will be either sufficiently close to x*, or sufficiently close to another

limit point.) Noting that for every k, ||(D¥)1Axk || < &, ||(Dk)-1Ax§ I < 8,0k <2,
and a§ < 2, we have

I(D*)~1s*|| < 25, forevery k, (54)
which implies that
Isfc | <238, (x,l‘)% for every i and for every k. (55)

Since x* is a limit point, there exists ko > k; such that

@2 < —°  forevery i € AGxY) (56)
! 3(1 +26,) )
Then by (55) and (56),
ot < (14 26,)()1 < § for every i € A(x™). (57)
Therefore, by (53),
(x:‘”])% < 3(T+€—26_,J forevery i € A(x™). (58)

By induction, we have that for every k > &,

€

kohd o€
Y= < 3o

< —;— forevery i € A(x*). (59)
This is a contradiction to (52).
O
The next result gives a sufficient condition for x* to satisfy the KKT conditions.

Lemma 4. The limit point x* of {x*} satisfies the KKT conditions (2) — (4) if for every
k sufficiently large and for every i € A(x*), s!‘ and g} have opposite sign.




'roof. We need only to show that g > 0 for every i € A(x*). In fact, if g7 < O for
>me i € A(x*), we would have sf‘ > 0 for every k sufficiently large. Then xf.‘“ > x{‘
nd lim xl{‘ > 0, which is a contradiction to lim xf‘ =x; =0.

a

The condition in Lemma 4 is crucial to the convergence to a point satisfying the
KT conditions. Therefore, it is important to realize that this condition can be satisfied
sith {s*}. This we prove next by several lemmas.

emma 5. Let x* be the limit point of {x*}. Then for every k sufficiently large and for
veryi € A(x*), (Axé,),- and g} have opposite sign.

'roof. Let i € A(x*). By (A3), gf # 0. So when k is sufficiently large, —gf.‘ and g; have
1e same sign, and, by (24) and (45), u’;, < 0. Therefore, by (20), (Axfg‘,),- and -gf.‘ have
pposite sign, and the lemma follows.

O

'‘emark. One implication of the previous two results is that Algorithm Interior-Newton
uarantees convergence to a point satisfying the KKT conditions if s* is replaced with
1e truncated projected steepest descent step a;‘ Ax;f for every k sufficiently large. In
ther words, the new projected steepest descent directions yield a procedure converging
lobally to a point satisfying the KKT conditions, even in the nonconvex case.

.emma 6. There exists a > 0 such that af, > o for every k.

'roof. If the lemma is false, then there exists a subsequence {kj} such that

k.
a, — 0.

‘herefore, by (31), ,Bf,j — 0. Since n is finite, from the definition of ﬁ:‘,, we may

. _K

without loss of generality) assume that ﬁfr’ = x,{j . Since ||Axfr|| < 8, D¥|| by (8),
(Axtr )]

/e see by (A1) that {||Axfr II} is bounded above. So xlfj — 0. Hence, x] =0 and by
A3), |g7| > 0. But multiplying the first equation of (16) with X k gives

XFHAXE +1G*|axk 4+ 2% Axk 4 x*gk 4+ X% AT Awk =0, {60)
/hich yields
kj kj kj
lg)' | + Ay —xy’ kj
&1 - = — = By — 0.

k; k; ki. k;
(HAx n + 87 + (ATAaw!)1  (Axn
. kj
‘herefore, by the fact that g,/ — g7 > 0, we must have
k; k; kj
~|(HAx,,’)1 + glj + (ATAw,,’)1| — 00,

/hich is impossible since by (A1), (14), (17) and (37), {| HAxX + gk + AT Awk ||} is
ounded. Therefore, the lemma is true.
a



Lemma 7. Let {AX} be givenin (11)— (13). Then
LI} ©61)

Proof. By (39), (40) and the convergence of {g(x¥)},

(Otf‘r)2

g(x*) — gty > —yk @k axk) > Ak jazk 1z — o.

So by Lemma 6, we have A ||Axt, ||2 —> 0. Then(61) follows by (13).
a

Lemma 8. Let x* be the limit point of {x*}. Let {Ax '} be any subsequence satzsfymg

Ax,,j —> 0. Then for every k; sufficiently large and for every i € A(x*), (Ax,, )i and
g; have opposite sign.

Proof. Let €* := min{|g}| : i € A(x*)}. Then by (A3), ¢* > 0 and
*

| gf.‘| > % > 0 for every & sufficiently large and for every i € A(x*). 62)
By (A1), (14), (17), (37) and the convergence of {x*}, {||HAxk + gk + AT Auwk |} is
bounded. So by (60), there exists C2 > 0 such that for every k sufficiently large,

v [(HAXK); + g+ (AT Awk); |
lg¥| + Ak

| (Axk)i| < x < Cx¥ forevery i € A(x*).

Consequently, by (8),
| (Axk);]

| (ZkAch,),-| = PN < Cz(x:‘)% —> 0 forevery i € A(x™).
(_x’.)i

So,
|G*|Z* Axk, — 0 since g¥ —> 0 forevery i ¢ A(x™).
Hence by the assumption that D*i Z Aif,’ = Axf,j — 0, we have
M4 Z4 A%y = DY DN Z4 AZN 1 1GHZb AR s o,
Therefore, by (A1), (17), (37), (61), and the fact that gk — 0, we have
Awd s 0. 63)
From (60),

4 (HAXE); + g, '+ (ATAw,:),
g ’l + A

k.
(Axtrj)i = —X

By (62), (63) and the fact that Ax,,' —> 0, we see that for every k; sufficiently large and

foreveryi € A(x*), (Ax, ), and gl " have opposite sign. Then the lemma follows.
a



We can now state the following convergence result.

'heorem 3. Let x* be the limit point of {x*}. Then for every k sufficiently large and for
veryi € A(x*), s:‘ and g} have opposite sign. Therefore, the sequence {x*} generated
y Algorithm Interior-Newton converges (globally) to x* satisfying the KKT conditions.

roof. The convergence of {x*} implies that s* = x**!1 — xk¥ — 0. By Lemma 6, the

1bsequence
k
)
{Ax:‘rzak:]]:{—k :ak=]]
%y

onverges to zero. So by Lemma 8, sf (with o* = 1) and g; have opposite sign for
very k sufficiently large and for every i € A(x*). On the other hand, by Lemma 35,
C = a’; (Ax;‘)i (with o = 0) and g; have opposite sign for every k sufficiently large
nd for every i € A(x*). Then the lemma follows.
a
Next, we turn to the second-order optimality conditions. To simplify the notation, we
efine g* = g(x*), M* = M(x*), Z* = Z(x*), and N* = N (x*) for a given feasible
oint x*. The following lemma reveals the relation between the positive definiteness of
{in N* and that of (Z*)T M*Z*. The proof can be found in [9].

.emma 9. Let x* be any feasible point satisfying the complementarity condition. Then

) (Z%TM*Z* > Oifand only if pT Hp > 0O for every p € N'* and p # 0.
i) (z%)T M*Z* > 0 if and only if pT Hp > 0 for every p € N'*.

All the previous results hold as long as the columns of Z* form an orthonormal basis
or the null space of Ak = A D and we do not specify Z* in Algorithm Interior-Newton.
‘or convergence to a point satisfying the second-order conditions, however, continuity
eeds to be imposed on Zk and we will assume here that Z(x) is continuous in the
ppropriate region. This may not be true for an arbitrary choice of Z. For discussions
n this regard see [4], [10], and {17].

‘heorem 4. The sequence {xX} generated by Algorithm Interior-Newton converges
globally) to x* satisfying the second-order necessary conditions (2) — (5).

’roof. By Theorem 3, we need only to show that the limit point x* satisfies condition (5).
n fact, by (12), (61) and the convergence of {x*} to x*, we have (Z*)TM*Z* > 0.
‘hen condition (5) follows by Lemma 9.

a

To conclude this section, we justify the statement about #% given at the end of
iect. 2.2.

“heorem 5. Let 6% be defined by (27). Let v¥ denote the least eigenvalue of (Z¥)T M* Z*.
“hen



i 60— o.

i) Ilikgkll < 26* and —-%9-; < v for every k such that 8% < %, where 8; > 0 is the
constant used in (38).

(>iii) ok =0 if and only if x* satisfies the second-order necessary conditions (2)—(5).

Proof. Proof of (i). Since xk converges to a point satisfying the KKT conditions, we
have | X*gk|| — 0. So it suffices to show that

vh (axp) = v (axk) — 0. (64)
By (11) and the fact that g — 0, we have
lim ((A;{;)T (ZHT M*ZFAzk Ak azk Hz) =0
which implies that
limsup (Ax})T (Z4T M*ZFAzk < o0.

On the other hand, liminf (AxX)T (ZYT M*Z*Axk > 0 since (Z*)TM*Z* > o.
Therefore,

lim (Ax%)T (ZHT M*Z*Aazk = 0.

Then (64) follows from (40) and (61). 3
Proof of (ii). By (27), it is clear that || X*gk|| < 2 6*. In addition, by (27) and {(64),

[¥* (axf)| = |y* (axk)| < 26%,
which by (40) implies that
1
Exf, |axk)? < 26*.

If | A% || < 8%, then (13) yields Ak = O which implies that v* > 0 > — 4 Otherwise,

1l
|axk| = &% > § and

P
)"tr < ?12—.
Therefore, by (12),
46k
k k
iz a2 -
1

Proof of (iii). Assume first that ¥ = 0. Then it follows from Part (i) that x* satisfies
the second-order conditions (2) - (5).
Now we assume that x* satisfies conditions (2) — (5). Then X "g" = 0and gk =
D¥gk = 0. So (11) implies
(AT (ZHT M*ZFAZE + 2k laxk )2 = 0. 65)

tr



n the other hand, by Lemma 9, condition (5) implies that (Ax% )T (Z})T M*ZkAxk > 0.
aen, by {65) and (13), Afr = 0. Therefore, using (11) and the fact that g" = 0, we have

- 1 _ -
vt (axk) = gk (axk) = 5 Az (ZHT M ZFaxk = 0.

hen 6% = 0.

. Quadratic convergence of Algorithm Interior-Newton

1 this section we consider the local convergence rate properties of Algorithm Interior-
‘ewton: we establish superlinear and quadratic convergence results.
In addition to (A1), (A2), and (A3), we assume the following:

A4) pT Hp > 0 forevery p € N'(x*) and p # 0, where x* is the limit point of {x*}.

That is, we assume the limit point x* is a strong local minimizer.
emma 10. Let {AxX), {Awk}, and {AK} be given by (8), (17), and (11). Then
Axfr — 0, Awfr — 0, (66)
nd

Af, =0, (Zk)TMka > 0 for every k sufficiently large. 67)

‘roof. By (A4) and Lemma 9, (Z*)"M*Z* > 0. Then by (61), there exists C3 > 0
uch that for every k sufficiently large, (ZHT Mk ZF + )»f,l > 0 and

| (Z49T M*Zk + 2k D7 < Cs.

jo using (11) and the fact that g —> 0, we have

Axk — 0.
Cherefore,
Axk = D*ZFAzk — 0, (68)
nd by (13),
A’,‘r = 0 for every k sufficiently large.
“onsequently,

(Zk)TMka > 0 for every k sufficiently large.

“inally, similar to (63), we have

Awfr — 0.
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Lemma 11. Let {af} be given by (31). Then o — 1.

Proof. By definition, x} > 0 forevery i ¢ A(x*). So by (68),
xk

(Axk);

—> o0 foreveryi ¢ A(x*).

By (A3), g # 0 foreveryi € A(x*). Using (60), ( 66), and (67), we have

K 851+ Ay
(Axg)i  (HAxK): + g5 + (AT Awk),

—> 1 forevery i € A(x*). (69)

Therefore, by (29), (30), (31), and the fact that 6* — 0, we have & —> 1, pk — 1,
and @k —s 1.

{u]

The following result shows that o = 1 will hold for every k sufficiently large,
where o* is defined in (36). Therefore, the updates will be

ok = xk 4 af Axk forevery k sufficiently large.

Lemma 12. The equality o* = 1 will hold Jor every k sufficiently large, where o* is
defined in (36). _
Proof. By (36), we need to show that
ko k Ak koo kA k .
Y (o, Ax,) <y (agAx,) for every k sufficiently large. (70)
In fact, by (11) and (67), we have
l/,k (afrAxfr) = afr(z - all‘(r)lsz (Ai:‘r)

On the other hand, it is easy to see that Aiﬁ = 0 for every k sufficiently large. Then, since
Ai:‘r solves (9) and u’g‘, solves (21), we have

v (gaxg) = yh (Axf) = vk (k) = 3 (a3k).
Therefore, by Lemma 11 and (40),

Ve Axg) ok (2— ok )yt (ARK)
vhlegaxh) — yk (@kaxk

>ak2-ak) — 1.
Since y < 1, we see that (70) is true.

Now we cite a standard result (see, e.g., [12]), used ‘subsequently.



Theorem 6. Let D C R" be an open convex set. Let y* €D, F : " —s R", F(y*) =0,
VF(y*) be nonsingular, and VF be Lipschitz continuous at y* in D. Let {Ti} be
1sequence of nonsingular matrices inR"*". Suppose for some y° € D that the sequence
of points generated by y**1 = yk — Tk_lF(yk) remains in D, y* # y* for every k, and
— y*.

If Tk — VF(y*)|| —> 0, then {y*} converges superlinearly to y*.

If 1T — VFOM) | = O (Iy* — y*|)), then {y*} converges quadratically to y*.

We show next that the conditions in Theorem 6 hold with function F defined in (6).
We note that

* * x AT
VF* = VF*, w) = | O TXH X AT (71)
A 0
Lemma 13. The matrix VF* is nonsingular.
«| Ax
Proof. Let VF = 0. Then by (71),
Aw
AAx =0 (72)
(G*+ X*H)Ax + X*ATAw = 0. (73)

since x; = O for every i € A(x*), we have from (73) that (G*Ax); = 0 for every
€ A(x*). But g7 # 0 for every i € A(x*). So Ax; = 0 for every i € A(x*) and
)y (72), we have Ax € N (x*). Using (73), and the facts that g = 0 and xf #40
or every i & A(x*), we have (HAx); + (AT Aw); = 0 for every i € A(x*). Then
AxT HAx = 0 which by (A4) implies that Ax = 0. By (73) and (A2), we also have

Aw = 0, which implies that V F* is nonsingular.
O

The next result is obvious so we state it without proof.

~emma 14. There exists € > 0 and aneighborhood B(x*, w*) = { (x, w) : {|(x, w)—
x*, w*)| =< €} of (x*,w*) such that VF is Lipschitz continuous at (x*, w*) in
3¢(x*, w*), and VF(x, w) is nonsingular for every (x, w) € B¢(x*, w*).

Itis not clear how to directly apply Theorem 6 to the sequence {(x*, w¥)} since {wk}is
10t updated in the form w*™! = wk + Aw*. Therefore, to establish the convergence rates
of {(x*, w*)} and {x*}, intermediate steps need to be inspected. We shall introduce three
wxiliary sequences {i*}, {A®*}, and { 2%} below. Note that these auxiliary sequences
rre used only for the purpose of analysis. They are not actually computed.

First, we consider the sequence {(x*, *)} where {#*} is defined by

o = w Ak k>, (74)

nd {AwX} is defined by (17). By (66),

v — w*.




Using (16) and the fact that AX = 0 for every k sufficiently large, we have
(H+ (X 4G*)axk + ATawk = —gk,

So, if for k > 0 we let

Aﬁ)k — ﬁjk-H _ ﬁ)k
g = Hxt 4 c+ AT ok,
then
(H+ X5 GHyaxk + aATank = —g*.
Define

@ LA 0

[%—(IGH + X*H) X"AT]
Tk P oy .
Qg
Since |G¥| — |G*| = G*, by Lemma 11, we have
T — VF*,
So T is nonsingular for every k sufficiently large and
(af Axk, Awk) = —(TH 7V FGE, @b,

Therefore, by Lemma 12

@ D) = ok, @4 — (1) T RGK, ).

Using Theorem 6 and (77), we have the following theorem:

Theorem 7. The sequence (x*, W) coﬁverges superlinearly to (x*, w*).

Next, we show that {(x*, W*)} converges quadratically to (x*, w*).

Lemma 15. The sequence {aX } satisfies |1 — af,l = 0 (J]x* — x*|)).

Proof. First, for every k sufficiently large,

w* — wh = (AX*AT) T AX*(Hx* + ¢) — (AX*AT) 1 AX*(Hx* + ¢).

By (37), it is easy to verify that
lw* —w*l = O (llx* = x*).
Consequently,

Ix*gk I = I1x*gk — X*g*|| = 0 (=% — x*)),

(75)
(76)

amn

(78)

(79)



and
1X* gk = o (Jx* — x*1).

1G¥| + X*H X*AT | [ axt | [ —x*gr
A 0 Awk |7 0 |°
It is easy to see that the sequence of the coefficient matrices converges to VF™ since

|G*| = G*. So, by Lemma 13 and (79),
laxpll + lAwg il = O (Ix* — x*|). (80)

By (16), we have

Also, multiplying the first equation of (16) by (Ax!‘,)T yields
ly* (Axp)| = O (Ix* — x*|)).
Therefore,
ok = 0 (Ix* — x*Il), and |1 — pk| = O (Ix* — x*|)). (81)

In addition, similar to (69), for every i € A(x*) and for every k sufficiently large,

|| A BTAw | ey,
(Axk)i| T(HAxE): + g + (AT Awb); '
So,
11— Byl = O (Ix* —x*),
and therefore, by (81),
11— o] = O (Ix* — x*I)). (82)
]
Theorem 8. The sequence {(x*, W*)} converges quadratically to (x*, w*).
Proof. We show that
175 = VF*|| = 0 (Ix* - x*|)). (83)

Then the desired result follows by Theorem 6. In fact, let || - || r denote the Frobenius

norm, we have
1 |
(g -x)n
Ar

1
’ (a—:; -1) 4
It is not hard to show that
IHG*| — G*llF + I1X* = X*|F = O (Ix* — x*|)). (84)
So by (82) and the equivalence of the norms, (83) holds.

IT¥ — VF*|F = G| - G*

+

_k l
o F

tr

F

+HH(xF = x*) AT ||F +

F




Next we establish the convergence rate of the sequences {x*} and {{x*, w*)}. To do
this, we need the following lemma whichcan be regarded as a complement to Theorem 6.
Its proof is similar to that of Theorem 8.2.4 in [12].

Lemma 16. Suppose in Theorem 6, there is a partition y = (y1, y2) and || Ti—V F(y*){| =
o y{‘ — Y1 ). Then there exists C > 0 such that for every k sufficiently large,

k+1
15—yl < CIy* = YAy = 1.

Theorem 9. There exists C > 0 such that for every k sufficiently large,

I — x5 < C kTt — ) gl = ) (85)
A, whh) — (e, wh )| <

CIERT, wh) — e, w) I I GF, wh) — (%, w*)ll. (86)

Proof. By (83) and Lemma 16, there exists C > 0 such that for every k sufficiently large,
I — ) < CIER, M) — R bk -+, ®7)

Then (85) and (86) follow by (74), (78), and (80).
0

Theorem 9 shows that the sequences {x*} and {(x*, w*)} have quadratic convergence
property: the rate of convergence is at least 2-step quadratic.

5. A modification of Algorithm Interior-Newton and numerical experiments

We have shown above that Algorithm Interior-Newton has strong convergence proper-

ties. However, Algorithm Interior-Newton uses the scaling matrix D% = (X k)% which is
based on the complementarity condition (3), but reveals no information about the sign
condition (4). On the other hand, conditions (3) and (4) together are equivalent to the
following system:

X(Hx+c+ ATw) =0, (88)

where X is defined in (28). So system (3) is weaker than (88), and an algorithm with
scaling matrices based on (88) would be expected to outperform Algorithm Interior-
Newton: those points, satisfying complementary slackness and feasibility but not the
KKT conditions, are attractors for (3) but not for {88).

This logic leads to the consideration of D¥ = |X¥|2 in Algorithm Interior-Newton.
Unfortunately, the unbridled use of D¥ = |X k'I% does not appear to yield a conver-
gent process. Nevertheless, computational performance using D = l)~(k|.l°. often yields
a significant improvement over the use of DX = (X ")% . Consequently, we develop an

. . . . . kil
algorithm that mixes the use of these two different scaling matrices. We use D* = | X*|2
when progress is good — in most cases this scaling accelerates progress toward a neigh-

borhood of the solution. If progress is weak, D¥ = (Xk)% is used. In this fashion



impressive computational performance is achieved while maintaining the strong global
convergence properties of Algorithm Interior-Newton. The second-order convergence
rate is maintained. We denote this modified algorithm, Interior-Newton,, which we
describe below.

Algorithm Interior-Newton;

Let x° be an interior feasible point. Let 0 < 71, 170, 73 < 1.

Fork=0,1,2,---

1. (Select a trial D))

v,k 1 ((1 lefr ])

k—1 k—1 k—1
Ifk=00r ¥ 2% ) — in (1) 1,6*1) or

VT (A ) VT @k Tadk ) ST
Dk = (x*4)3;
else
DF =Xz, where ¥ = ¥ (x, w*"1) is defined by (28);
end.

(Compute a trial w*, g, Ax{g‘ , aé, and perform an acceptance test to
determine D.)

If D* = | Xk|2
Compute t* = || X¥(Hx* + ¢ + ATwk=1)|| /
(1 + | X (Hx* + ¢ + ATwk=1)));

Compute w* = —(A|X¥|AT)=1 A| X*|(Hx* + ¢) and
let gk = Hx* + ¢ + ATuk;

Compute Ax¥ and a¥ by (20) and (34); (with D* = 1X*|2)
If y* (g AxE) / y* (AxK) < min (11, ©a1%)
Dk = (xk)2;
end;
end.
(Compute wk, g, Ax{g‘, and a;f if necessary.)
If Dk = (x%)2
Solve (19) for w* and let gk = Hx* + c + ATwk,
Compute Ax;f and aé‘, by (20) and (34);
end.
2. Solve (9) for AxX; Compute Axk and o* by (8) and (31)
(Note: if D¥ = | X "l 2, then rep]ace X* by | X¥| in the computation).

3. Determine s* by (35); Update x**1 = xk 4 ¢k,



We see that Algorithm Interior-Newton, differs from Algorithm Interior-Newton
only in that procedures to select and determine a trial D* are added in Algorithm
Interior-Newton,. In the Appendix, we verify that Algorithm Interior-Newton, has the
same strong convergence properties as Algorithm Interior-Newton. Here we make a few
remarks before discussing our computational experiments.

1. As we show in the Appendix, due to the acceptance test in Step 1 for safeguarding,
the convergence of {x*} is independent of the choice between D = | X* | 5 and DF =
(x* )% - However, a proper choice is important for improved practical performance:
the rule we specify has done well in our numerical experiments.

2. We show in the Appendix that, ultimately, only a single solve of (19) is needed in
each iteration; therefore, ultimately there is no extra cost for the acceptance test.

3. With minor modifications, both Algorithm Interior-Newton and Algorithm Interior-
Newton; can handle QP problems of the “general” form:

min {g(x) = 3x7 Hx + T x} (89)
subjectto Ax =b and | < x <u,

where !l € {RU{—o0}}" and u € {R U {00} }". For example, we may replace X* by
diag (min (x* — I, u — x*)). We actually conducted our numerical experiments on
problems of this more general form.

We have implemented our algorithms in Matlab and conducted some preliminary
testing to investigate the practical viability of our approach. The experiments were
performed on a Sun workstation. In the remainder of this section we present and discuss
our preliminary numerical results.

Problem Generation: The Moré/Toraldo [29] QP-generator was adapted to generate
the test problems. All the problems reported here are dense, and of moderate size. For
positive definite problems the single global solution, with prescribed characteristics, was
generated. For indefinite problems, the local minimizer determined by the algorithmg(s)
may have little relationship with the point generated (with prescribed characteristics)
by the test problem generator: indefinite problems have many local minimizers.

Starting and Stopping: For each test problem, a feasible starting point was found using
afeasible point determination algorithm [25]. This procedure does not involve the matrix
H nor the vector c; therefore, the feasible starting point can be considered somewhat
arbitrary with regard to problem (1).

As usual, choosing a robust stopping criterion is not easy. We have used stopping
criteria based on three computations: the relative difference in the objective function
values of two successive iterations, the size of «,,, and the size of & which is defined
by (27). We terminate the iteration if:

g(x*) — g(x**1) < 10l * (1 + |g(x*)])

and (90)
afr > 0.1,
or
6% < tol, (91)




or
k = 100. 92)

Criterion (91) is reasonable by Theorem 5. Criterion (90) suggests that no significant
progress can be made. We introduceda®. > 0.1 since we did not want to stop the iteration
if (90) was caused by a very small step length. In our experiments, 7ol = 10~!2, This

stopping criterion was successful for our experiments since forevery problem we tested,
the second-order optimality conditions were confirmed.

Computation and Parameter Setting: Our implementation is strai ghtforward i.e., we
solve (19) for w*, and at the same time, Z* is obtained. We compute Ax by (20), and
compute Axt, by (8), etc..

The parameters are set as follows:

7, =0.8; 174, =1.9; 11 =0.001; 75 =13 =0.5, {93)

where 7, is used in (30) and (33), 7, is used in (31) and (34), 11, 12, and 73 are used in
Algorithm Interior-Newton; for selecting the trial D and for the acceptance test.

We adjust &* as follows:

Updating 8%
Let0 <74 <75 <1and0 < 76 < 1 < 77 be given.
80 =1;
Fork=0,1,2,-

a"_a ok + (1 — o%)ak;

If ok <1

81 = max (8, 168%);
end.
If ok > 15

81 = min (6, 176%);
end.

The corresponding parameters are set as follows:
74 =0.5; 15=0.9; 16 =0.75; 77 =1.25.

Experimental Results: We tested four groups of problems using Algorithm Interior-
Newton; and the results are tabulated in Tables 1 — 4. For each case, three problems
were attempted. The table entries are the numbers of iterations required to satisfy the
stopping criterion. Positive definite problems are reported in Tables 1 and 2; indefinite
problems are reported in Tables 3 and 4. Foreach problem in Tables 3 and 4, about 10%
of the eigenvalues of H are negative.

We conducted our experiments on problems of the general form {89). The lower
bounds were all set to zero. The upper bounds were all set to unity in Table 1 and 3
while in Table 2 and 4, about 10% were set to infinity (that is what pctinf = 0.1 means).




For all the problems, about 0.8 x (n — m) components of the generated x were set to the
bounds and cond(H) = cond(A) = cond.

We did not encounter any instance where q(xk) —> —00; however, for our generated

indefinite problems, with some infinite bounds, there is no guarantee that g is bounded
below in the feasible region.

Very few iterations needed more than a single QR factorization (see Theorem 13).
Over all 3806 iterations (for the 216 test problems), only 18 extra QR factorizations
were used. On average, D* = (X k)% was used about twice per problem (remember that

1 . ; . . .
DO is always set to be (X 0y2 )- The average cost for finding a feasible starting point was
4.30 linear system solves.

Table 1. Positive Definite Problems, pctinf = 0

size cond=103 cond=10° cond=10°
n m | max | avg | max | avg | max | avg
100 | 10 18 17 18 16.3 20 17
100 | 50 16 13 17 15.3 23 1173
100 | 90 12 10.3 13 11.3 18 16.7

size cond=103 cond=10% cond=10°
n m max | avg | max | avg | max | avg
200 20 17 16 21 18.7 23 21
200 | 100 20 18.3 22 19.3 22 19.3
200 | 180 15 133 16 13.3 17 15.3

Table 2. Positive Definite Problems, pctinf = 0.1

size cond=103 cond=10% cond=10°

n m | max | avg | max | avg | max avg

100 | 10 18 | 16.3 17 16 | 18 16.3
100 | 50 15 12.7 18 | 16 22 16
100 | 90 | 13 11 14 11.7 16 14

size cond=103 cond=10° cond=10°

n m max | avg | max | avg | max avg
200 20 17 16 22 20 19 ] 183
200 | 100 21 | 183 21 19.7 22 19
200 | 180 15 13.7 | 14 13 24 17.3

Observations: On the whole, the experiments indicate that algorithm Interior-Newton,
is efficient. The iteration numbers are insensitive to problem size and condition number.

Though our experiments are limited, they clearly indicate that the new algorithm is
promising.




Table 3. Indefinite Problems, pctinf = 0

size cond=103 cond=10° cond=10°
n | m | max | avg | max | avg | max | avg
100 | 10 20 | 18.3 26 203 | 29 23.3
100 | 50 20 19.3 23 20 17 16
100 | 90 13 11.3 13 11.7 18 14.7

size cond=103 cond=10° cond=10°
n m max avg | max | avg | max | avg
200 20 21 20.3 26 24.7 32 | 287
200 | 100 25 21.7 28 23.7 23 21.3
200 | 180 17 15.7 14 12.7 17 16

Table 4. Indefinite Problems, pctinf = 0.1

size cond=103 cond=10° | cond=10°
n m | max | avg | max | avg | max | avg
100 10 19 17.7 26 20.3 34 243 |
100 | 50 20 18.3 24 213 19 17.3
100 | 90 13 11.3 14 12.3 17 14.3

size cond=103 cond=10° cond=10°

n m max avg | max | avg | max | avg
200 20 39 26 28 25.3 30 30
200 { 100 | 27 22 29 233 | 25 21.7
200 | 180 16 15.3 19 15.7 25 18

For purposes of comparison, we have used Algorithm Interior-Newton to solve the
same set of problems as in Table 1, and the results are presented in the following table.
In most cases both algorithms terminated at (almost) the same function values for each
problem; however, the required numbers of iterations are quite different. On average,
the number of iterations is 16.1 in Table 1 but is 31.0 in Table 1’. The largest number

is 23 in Table 1 but is 89 in Table 1’: the modification in Algorithm Interior-Newtony
improves the computational performance significantly.

6. Concluding remarks

We have proposed an interior Newton method with a new scaling strategy for general
quadratic programming problems. The algorithm is robust and has ‘stronger conver-
gence properties than existing interior methods for the general quadratic programming
problem. Specifically, the main theoretical property of our proposed method can be
summarized as follows. Under compactness and nondegeneracy assumptions, i.e., (A1),
(A2), and (A3), our proposed algorithm generates a sequence {x*} converging to a point



Table 1’. Positive Definite Problems, pctinf = 0
1
(D% = (x*)2 for every k)

size cond=103 cond=10® | cond=10°
n m | max | avg | max | avg | max | avg
100 | 10 20 18 27 20.7 35 27
100 | 50 60 313 69 36.7 28 19
100 | 90 | 53 34.3 21 15.7 89 58

size cond=103 | cond=1 0 cond=10°
n m max { avg | max | avg | max | avg
200 20 20 | 19 43 27.3 40 31
200 | 100 59 50.3 56 | 35.7 59 35
200 | 180 53 | 44 56 28.7 40 25.7

x* satisfying the second-order necessary conditions. Moreover, if x* satisfies second-
order sufficiency conditions, then the local rate of convergence is 2-step quadratic.

It is noted that the strong convergence properties hold under a more general algo-
rithmic framework: we do not have to compute w¥, s¥, etc. exactly as stated. Rather,
only the following conditions need be satisfied:

(i) The sequence {wX} satisfies the following: if any subsequence {x*/} converges
to a point x* satisfying the complementarity condition (3), then w* — w* =
—(AX*ATY"1AX*(Hx* + ©).

(ii) The sequence {s*} satisfies that for a given y > 0 and for every % sufficiently large,
(1) y*(s*) <y min (Y* (@bAxb), v @ axh)).

@) IDH~1sk) < v o~

Proofs under these more general conditions are provided in [9].

Preliminary numerical experiments suggest that the method is efficient for dense
problems of moderate size. Inspection of the conditioning of the underlying linear
systems, in the limit, indicates that robust asymptotic behavior is to be expected from
this approach, even in the presence of near-degeneracy and ill-conditioning. This is in
sharp contrast to certain formulations of interior methods which are inherently afflicted
by ill-conditioning. To further explore this remark, consider the following.

Suppose (A4) holds. Then for every k sufficiently large, the resulting coefficient
matrix of our algorithm can be formulated as

(ZHTM*zk = (Z4T (D*HD* +{G*|) Z. (94)
Alternatively, the underlying system can be solved using the coefficient matrix

[D"HD" +1{G*| (AD")T]

The limit matrix of (95),

AD* 0

] € m(m+n)><(m+n) , (96)



is well-behaved under (A3) since there exists a permutation matrix P such that

D*HD* +|G*| (AD®)T diag(|g’s.1) 0
T — A

F [ AD? o |P=| o7 B ©7)
where B € RO tn=AT)x(m+n—IA") j5 some nonsingular matrix and g"_;l,, is a sub-vector
of g* containing those elements of g with i € A(x*). The limit matrix of (94) is

(zT(D*HD* +|G*))Z*. (98)

Any possible ill-conditioning of matrix (95) can only come from the ill-conditioning
of H, the rank deficiency of A, and the degeneracy of the original problem (1).

The interior approach we have explored in this paper is an exciting new way to solve
quadratic programming problems: it is theoretically interesting and practically viable.
As it stands it is not suitable for large-scale quadratic programming in that it requires
full-dimensional trust region computations and several matrix factorizations in each
major iteration. In response to this we are currently investigating a modification of this
approach involving iterative and approximate linear solvers. This will be the topic of
a future report.
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Appendix: The convergence properties of Algorithm Interior-Newton;

In this appendix, we verify that Algorithm Interior-Newton; has the same convergence
properties as Algorithm Interior-Newton. First, we give a simple general result; the
proof is straightforward and so it is omitted.

Lemma 17. Suppose H > 0 is any symmetric matrix. Then

IHx|? < x" Hx | H].
The following set will be useful subsequently:

K:=1{k: D= (Xk)% at the end of Step 1 in Interior-Newton;}.

Let K¢ denote the complementary set of K. It is clear that k € K¢ if and only if
D* = | X¥|2 at the end of Step 1.

Theorem 10. Suppose {k;} C K¢ and xki —» x*. Then (49) holds with x* and

~kj k; . .
x:" = x;’ foreveryi € A(x*) and for every k;j sufficiently large, (99)

where ¥ is defined by (28).



Proof. First, assume that zero is a limit point of {¢*/}, where X appears in Step 1 for the
acceptance test. Without loss of generality, assume t*i —> 0. Then

Xki(Hx*i + ¢+ ATwhi=ly — 0.

Since {||%* ||} and {||w* ||} are bounded, let (x*, w*) be a limit point of { ¥/, wki—1)).
Then

X*(Hx* +c+ ATw") = 0.

kj kj
If any (Hx* + c+ ATw?); # 0, then x? = 0 which implies x;” = ;" — 0 for some
subsequence {k;} of {k;} and consequently x} = 0. Therefore,

X*(Hx* +c+ ATw*) = 0,
which implies that w* = w* by (A2), where w* is defined in (50). So in this case,
wk~! — w* and (49) holds.
To show (99), let i € A(x*). By (A3), (Hx* + ¢ + ATw*); # 0. Then i —> 0,
which implies that J"clk l = x:‘j for every k; sufficiently large.
Now assume that {*/} is bounded away from zero. Then for some € > 0,

tki > € forevery k;.
It is clear that (43) holds and it implies that {g(x¥)} converges. Also, (39) is true and by
the acceptance test in Step 1, noting that {k;} C K¢, we have

g(xki) — g(Rity > —ypyhi @ axt)
> ymin (51, 726) (—¥ (8xg)) —> o.

Therefore, by (40) and letting y* = & we have

FK
(6" #1494 +3) W) — o.
Using (23), we have
g4 = DY (HxXY + ¢+ ATwY) —s 0,

~ 1 . . N
where D% = |X%/|2. Repeating the arguments above for the case tX/ —> 0, replacing
{wki—1} by {w/}, we see the lemma is true.

in

Corollary 2. Let x* be any limit point of {x*}. Then ( 49) holds with x*.

k

Proof. Assume x*i —> x*.If k; € K, then s* is computed based on D¥/ = (X"f)%

and otherwise, based on D% = |)~( ki | % So if there are infinitely many k j € K¢, then by
Theorem 10, (49) holds with x*. Otherwise, by Corollary 1, (49) holds with x* also.
|




Since Lemma 2 and Lemma 3 are independent of the choice of D*, we have a result
similar to Theorem 2 as follows.

Theorem 11. The sequence {x*} generated by Algorithm Interior-Newton, converges
to x* satisfying (51).

Proof. The proof is almost the same as that of Theorem 2. First, repeat the part from the
beginning of the proof for Theorem 2 to (53). Then by Theorem 10, we have ¥ = x¥
for every i € A(x*) and for every k € K¢ sufficiently large. Therefore,

Is,l‘l < 28, (x,l‘)% for every k sufficiently large and for every i € A(x*).
Then we may repeat from the line after (55) to the end of the proof of Theorem 2.
a

Note that the convergence of {x*} does not depend on whether D¥ = (X")% or

Dk = lffkl% for the trial DX in Step 1. This flexibility gives us freedom to choose Dk
with performance in mind.

The next result establishes the convergence of {w*}.

Lemma 18. The sequence {w*} converges to w* defined in (50).

Proof. Let w" be any limit point of {wk} and assume {w*i} — w” . If there are infinitely
many k; € K, then clearly w* = w*. Otherwise, for every k; sufficiently large, k; € K¢
and

whi = —(A1X51ATY 1 AIXN |(HXN + ©), (100)
where the existence of (4| X% |AT)~! comes from (A2).
Let x* be any limit point of {%%/}. Then w* = —(AX*AT)"1AX*(Hx* + ¢). By
ki k
Theorem 10 and (A3), xf’ = x;’ forevery i € A(x*) and for every k; € K¢ sufficiently
large. Therefore, X* (Hx* + ¢ + ATw*) = 0 which implies
w* = —(AX*AT) T AX* (Hx* + o) = w”.
a
It is easy to verify that all the remaining results in Sects. 3 and 4 for Interior-Newton

also hold for Interior-Newtony. To sum them up, we have the following result:

Theorem 12. Under assumptions (A1), (A2), and (A3), the sequence {x*} generated
by Algorithm Interior-Newton, converges (globally) to a point satisfying the second-
order necessary conditions (2) — (5). Further more, if assuming (A4), then the rate of
convergence is at least 2-step quadratic.

Our final result in this appendix is to show that, ultimately, only one computation is
needed for solving (19), etc.. Clearly, this is true if we can establish that in the acceptance
test,

1/;" (aéAxﬁ,) / 1//" (Ax;‘) > min (11, T2 tk) for every k sufficiently large. (101)



Theorem 13. The inequality (101) holds under assumption (A4).

Proof. First, we show the following:

there exists & > 0 such that aéf > «a for every # sufficiently large. (102)
In fact, by Theorem 10, whether D = (X")% or D¥ = | X* I% , we always have

= (xf)il’- for every k sufficiently large and for every i € A(x*).

If (102) is false, then repeating the arguments between (47) and (48), noting that {||g*/ ||}
is bounded, we would have

Ilé"f I
iu |

—> 0. (103)

But on the other hand, since A¥gk = 0, there exists £f € )"~ such that gt = Zkek,
Hence

(gk)T _ ék — (fk)T (Zk)TMkafk
gkl ngkl )12 ’

By Lemma 9, (Z*)T M*Z* > 0. So there exists € > 0 such that

@' -, &

Ngkn ™ ngki

> € for every k sufficiently large.

Then, using (45), (25) and the fact that g¥ — 0, we have ,ug —> 0 and Ak —> 0.
Using (45) again, we have

_kj
[l E for every k sufficiently large,

[\

lul

which is a contradiction to (103). Therefore, (102) is true.
Now, to show (101), it suffices to show that {y* (a Ax")/\lfk (Axk)} is bounded

away from zero since t* —> 0. This is true because it is easy to see that Ak = 0 for
every k sufficiently large. Therefore, by (41), (23), and (20),

V¥ (ogAxp)
Yk (axh)

= aiﬁ 2- aé‘,) for every k sufficiently large,

which is bounded away from zero by (102) and the fact that afg‘, <1y <2
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