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Abstract

We compare the dynamic hedging performance of the deterministic local volatility
function approach with the implied/constant volatility method. Using an example
in which the underlying price follows an absolute diffusion process, we illustrate
that hedge parameters computed from the implied/constant volatility method can
have significant error even though the implied volatility method is able to calibrate
the current option prices of different strikes and maturities. In particular the delta
hedge parameter produced by the implied/constant volatility method is consistently
significantly larger than that of the exact delta when the underlying price follows an
absolute diffusion.
In order to compute a better hedge parameter, accurate estimation of the local

volatility function in a region surrounding the current asset price is crucial. We
illustrate that a suitably implemented volatility function method can estimate this
local volatility function sufficiently accurately to generate more accurate hedge pa-
rameters. Hedging using this volatility function for the absolute diffusion example
leads to a smaller average absolute hedging error when compared with using the
implied/constant volatility rate.
When comparing the hedging performance in the S&P 500 index option market

as well as the futures option market, we similarly observe that the delta hedge pa-
rameter from the implied/constant volatility method is typically greater than that
using the volatility function approach. Examination of the hedging error reveals
that the using a larger delta factor greater than that of the true volatility yields
more positive average hedging error, assuming the underlying follows a determin-
istic volatility model. We observe that, in both the S&P 500 index option market
and futures option market, the average absolute hedging error using the volatility
function approach is smaller than that of the implied/constant volatility method for
a sufficiently long hedging horizon, approximately 17 days for the S&P 500 index
options and 6 days for the S&P 500 futures options. In addition, the average hedg-
ing error using the volatility function approach is always smaller than that of the
implied/constant volatility method.
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1. Introduction

Option hedging error can arise from two different sources. First, the option value is
a nonlinear function of the underlying and the Black-Scholes hedging is instantaneous;
however, only discrete hedging, possibly with infrequent rebalancing due to transaction
costs, can be done in practice. Second, errors in the underlying price model can lead to
poor hedging performance.

Many studies have shown that the classical Black-Scholes constant volatility model
does not adequately describe the stock price dynamics, see e.g., [17]. Implied volatility
typically exhibits a dependence on both the option strike and maturity, referred to as the
volatility smile. The constant volatility method, which assumes that the volatility rate
is constant for all the options on the same underlying, can lead to a significant model
specification error. To reduce this error, the implied volatility method which applies
different volatility rates for options with different maturities and strikes is frequently
used in practice for pricing and hedging. However, this method is ad hoc and inher-
ently inconsistent. Although the implied volatility method yields accurate option price
calibration, it does not address the issue of the appropriate model specification. One
objective of this paper is to illustrate the importance of the accurate model specification
in hedging.

A natural extension to the constant Black-Scholes pricing formula is to allow the
volatility rate to be a deterministic function of the underlying price and time. In [12],
Dupire shows that, under some regularity assumptions, this local volatility function can
be uniquely determined if the prices of European options of all strikes and maturities
are available. In this paper we refer a volatility function method as the method which
computes a local deterministic volatility function from the market option prices. The
computed volatility function can then be used for pricing options and computing hedge
parameters for risk management. Various computational methods have been proposed
[2, 3, 7, 9, 10, 14, 15, 16, 17] to compute a local volatility function calibrating a finite set
of market option data. In the volatility function method [7], the volatility function is rep-
resented as a spline in an attempt to estimate the unknown volatility model accurately;
the use of spline offers the flexibility in potentially modeling a complex volatility function
and at the same time has the capacity to limit overfitting by judiciously choosing the
number of spline knots.

More recently, there have been empirical studies comparing the local volatility func-
tion approach with the implied/constant volatility rate method in pricing and hedging
[5, 4, 6, 11, 15]. In particular, Dumas, Fleming and Whaley [11] compare a few paramet-
ric volatility function models, including constant and quadratic forms, in option price
predicting and hedging for S&P 500 index options using the market data from June 1988
to December 1993. They conclude that a parsimonious model is better for predicting
the future option price [11]. In addition, a deterministic volatility function method does
not appear to be an improvement over the implied/constant volatility rate model when
delta hedging for a 1-week hedging period with continuous rebalancing [11].

In this paper, we provide empirical evidence illustrating that a suitably implemented
volatility function method can be advantageous in discrete delta hedging for a longer
time hedging horizon, compared with an implied/constant volatility rate method. The
purpose of delta hedging is to eliminate the first order sensitivity of an option price
with respect to the underlying price. We first quantify the dependence of this hedging
error on the accuracy of the delta hedge parameter in §2. Then we illustrate in §3 that
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the ad hoc implied volatility rate method, as well as the constant volatility method,
generates erroneous hedge parameters, assuming the underlying price does not follow a
geometric Brownian motion. In particular, we demonstrate that delta computed from
the implied/constant volatility method tend to be larger than the true hedge parameters.
In §4, we describe a spline volatility function method [7] and demonstrate, using a simple
example, that it can produce significantly more accurate hedge parameters and smaller
hedging error. More importantly, we provide empirical evidence in §5 and §6, using the
S&P 500 index and futures option market data, that a suitably implemented volatility
function method performs significantly better in dynamic hedging against the underlying
price movement, in comparison with the implied/constant volatility method. We observe
that the delta hedge parameter computed from the volatility method is on average less
than that of the implied/constant volatility method. Moreover, dynamic hedging using
the volatility function method always yields smaller average absolute hedging error for
a sufficiently long hedge horizon, approximately 17 days for the S&P 500 index options
and 6 days for the S&P 500 futures options.

2. Delta and Hedging Error

In dynamic hedging, hedge parameters are computed at each rebalancing time to adjust
the position of the underlying holding in a hedge portfolio. Thus it seems intuitive that
hedging with an accurate hedge parameter yields smaller hedging error.

For example, delta hedging error is directly related to the accuracy of the delta
hedge parameter. To see this mathematically, let us assume that the underlying price St

is described by a general deterministic local volatility model,

dSt

St
= (µ− q)dt + σ(St, t)dWt, (1)

where Wt is a standard Brownian motion, µ is the drift, q is the dividend yield, and
σ(S, t) is a deterministic local volatility function satisfying suitable regularity conditions
so that (1) admits a unique solution. In this paper we denote Vt ≡ V (St, t) as the exact
option value when the underlying has price St at time t. Hedging error from using an
approximate delta hedge factor ∆t for an infinitesimal time dt can be measured by the
value Πt+dt at t+dt of the self financing portfolio {∆tSt, Bt,−Vt} formed at time t where
B(t) = Vt −∆tSt is the riskless bond. The value of the portfolio Πt+dt equals dΠt where

dΠt = ∆tdSt + q∆tStdt+ r(Vt −∆tSt)dt− dVt.

Using Ito’s Lemma,

dVt = σSt
∂V

∂S
dWt +

(
(µ− q)St

∂V

∂S
+
1
2
σ2S2

t

∂2V

∂S2
+

∂V

∂t

)
dt,

and the Black-Scholes equation

∂V

∂t
+
1
2
σ2S2 ∂

2V

∂S2
= rV − (r − q)S

∂V

∂S
,

the instantaneous hedging error is

dΠt = σSt(∆t − ∂V

∂S
)dWt + (µ− r)St(∆t − ∂V

∂S
)dt. (2)
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Thus, assuming that the underlying price satisfies a stochastic equation (1) with σ > 0
and µ �= r, the instantaneous hedging error is determined by the accuracy of delta: the
mean and standard deviation of the relative instantaneous hedging error dΠt

St
is zero if

and only if ∆t equals the exact delta ∂V
∂S .

3. Delta from the Implied Volatility

It is well recognized that the price of an exotic option, e.g., a barrier option, can be
very sensitive to the volatility model specification. Less emphasized, however, is the
sensitivity of the hedging error to the model specification error. In a market exhibiting a
volatility smile, the constant volatility model can yield a poor approximation to the price
movement. In addition, the implied volatility method is an inherently inconsistent way
of modeling the underlying price in this context. They both can generate poor hedge
parameter approximation.

To examine this in detail, let us consider a European call option with a fixed time to
maturity T . Assume that the underlying price is modeled by a deterministic volatility
model (1). For a call option with value C(S0,K, T, r, q, σ), the implied volatility is the
volatility rate σc

imp such that

CBS(S0,K, T, r, q, σc
imp) = C(S0,K, T, r, q, σ). (3)

Here CBS(S0,K, T, r, q, σc
imp) denotes the corresponding Black-Scholes formula. Holding

K, T , r, and q constant, the implied volatility σc
imp is a function of the initial price

S0 unless the local volatility function σ is a constant. In general, we have σc
imp =

σc
imp(S0,K, T, r, q). Thus

∂C

∂S0
=

∂CBS

∂S0
+

∂CBS

∂σc
imp

∂σc
imp

∂S0
. (4)

When the local volatility σ is not a constant, the implied volatility rate σc
imp(S0,K, T, r, q)

can vary with the initial price S0.
Let us illustrate this with a simple example in which the underlying price is assumed

to follow an absolute diffusion process,

dSt

St
= µ dt+

C

St
dWt, (5)

where µ is the drift, Wt is a standard Brownian motion, and C > 0 is a constant. Here
the volatility is a monotonically decreasing function of the underlying price but does not
depend on time.

Consider specifically an example when the initial underlying price S0 = 100, risk
free interest rate r = .06, the dividend rate q = 0, and C = 40. Figure 1 graphs how the
implied volatility rate σc

imp varies with the strike and time to maturity in relation to the
true local volatility function C/K (note that the local volatility function is considered
as a function of strike and time to maturity σ(K,T ) in the context of the forward Black-
Scholes equation).

This simple volatility model is of interest since the computed volatility functions
from the S&P 500 index options and futures options bear a strong resemblance to this
model. Analysis of the hedging results for this simple example can potentially shed light
on the performance of the hedging methods in the S&P 500 index and futures options
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Figure 1: Implied Volatility and the Exact Volatility C/K

markets. When the underlying follows the absolute diffusion process (5), a closed-form
solution for the European option price exists [8]; this closed form solution can be used
to compute the exact option prices as well as hedge parameters.

For the absolute diffusion example, we can clearly observe the dependence of the
implied volatility σc

imp on S0; Figure 2 graphs σc
imp(S0) for a call option with K = 100

and T = 1.
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Figure 2: Implied Volatility σc
imp(S0) and the Exact Volatility C/S0

Since here σc
imp(S0) is monotonically decreasing with the initial price S0 and the

Black-Scholes vega ∂CBS
∂σc

imp
is positive, equation (4) suggests that the implied volatility

method overestimates the delta hedge parameter. Figure 3 confirms this is indeed the
case: delta from the implied/constant volatility is significantly larger than the true
delta. In addition, error in delta increases as time to maturity increases. The delta
hedge parameters from the implied volatility rate and constant volatility rate are close
for this example (we have K = S0 = 100 here).

Sensitivity
∂σc

imp

∂S0
provides useful information on the error in the implied volatility

delta. Indeed, if this sensitivity is known, it can be used to adjust the Black-Scholes
delta ∂C

∂S0
= ∂CBS

∂S0
according to (4) so that it becomes more accurate. Unfortunately,

sensitivity
∂σc

imp

∂S0
is not observable in practice. In [10], Derman, Kani and Zou assume

that the local volatility function is a linear function of the underlying price S only and
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Figure 3: Delta Comparisons: Using the Implied/Constant Volatility Rate

heuristically derive three rules of thumb for the S&P 500 index options. We use the
following arguments suggesting that the implied volatility σc

imp, at least in the S&P 500
index option market, is typically a monotonically decreasing function of the initial price
S0.

When the underlying price satisfies the stochastic equation (1), the European put
and call prices are related through the reversal of K and S, and q and r via the following
equation

C(S,K, T, r, q, σ) = P (K,S, T, q, r, σ), (6)

where P (S,K, T, q, r, σ) denotes the put price with strike K and time to maturity T .
Therefore we have

PBS(K,S0, T, q, r, σ
c
imp(S0,K, T, r, q)) = CBS(S0,K, T, r, q, σc

imp(S0,K, T, r, q)).

But
CBS(S0,K, T, r, q, σc

imp(S0,K, T, r, q)) = C(S0,K, T, r, q, σ).

Using (6) again, we obtain

C(S0,K, T, r, q, σ) = P (K,S0, T, q, r, σ).

Let σp
imp(K,S0, T, q, r) be the implied volatility of the put option P (K,S0, T, q, r, σ), i.e.,

P (K,S0, T, q, r, σ) = PBS(K,S0, T, q, r, σ
p
imp(K,S0, T, q, r)).

Therefore

PBS(K,S0, T, q, r, σ
c
imp(S0,K, T, r, q)) = PBS(K,S0, T, q, r, σ

p
imp(K,S0, T, q, r)).

Assuming that the implied volatility is unique, we have

σc
imp(S0,K, T, r, q) = σp

imp(K,S0, T, q, r).

Therefore
∂σc

imp(S0,K, T, r, q)
∂S0

=
∂σp

imp(K,S0, T, q, r)
∂S0

.

Note that the derivative on the left of the above equation is with respect to the ini-
tial price whereas the derivative on the right is with respect to the strike price. For
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futures options, we can regard q = r in the pricing function and thus
∂σc

imp(S0,K,T,r,q)

∂S0
=

∂σp
imp(K,S0,T,r,q)

∂S0
. When q ≈ r, we can use

∂σp
imp(K,S0,T,q,r)

∂S0
as an approximation to

∂σc
imp(S0,K,T,r,q)

∂S0
. It has been noted in [17] that, after the 1987 crash, the implied volatility

of the S&P 500 index options exhibits a sneer: the implied volatility rate decreases mono-

tonically as the option strike increases, i.e.,
∂σp

imp(K,S0,T,q,r)

∂S0
< 0, with the rate of decrease

increasing for options with short maturities. Therefore it is likely that
∂σc

imp(S0,K,T,r,q)

∂S0
< 0

when q ≈ r.

4. A Spline Volatility Function Method

In order to compute accurate hedge parameters, it is important to estimate the local
volatility function sufficiently accurately. More precisely, the local volatility function in
a region B ∈ 
+ × [0, T ] around (S0, 0) is crucial; the option price is most sensitive to
the volatility function σ(S, t) in the region (S, t) ∈ B. This is depicted, in Figure 4,
by the contours of the sensitivity matrices

[
∂V

∂σi,j

]
for two European calls with (K,T ) =

(90, 0.5) and (K,T ) = (110, 1) at a constant volatility level of .15; here ∂V
∂σi,j

is the option

sensitivity with respect to the volatility at the grid point (Si, tj) = ((i−1)2S0
200 , (j−1) 1

50 ).
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Figure 4: The Significant Region B

We now summarize the main idea behind the volatility function method [7]. In
addition, we illustrate, using the previous example in which the underlying price follows
an absolute diffusion, that the local volatility function method produces more accurate
hedge parameters than the implied/constant volatility method.

Assuming that the underlying price satisfies the stochastic equation (1), a local
volatility function can be determined uniquely if the prices of European options for all
strikes and maturities are available. Unfortunately, only a limited finite set of options
are traded in a derivative market. This makes the problem of the local volatility func-
tion determination an ill-posed problem. This ill-conditioning is typically dealt with by
smoothness regularization.

To achieve smoothness explicitly, a local volatility function is represented in [7] by a
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bicubic spline which is computed by solving an inverse constrained nonlinear optimization
problem as follows. Let {V̄j}m

j=1 denote them given market option prices and the number
of spline knots p ≤ m. Given {(S̄i, t̄i)}p

i=1 spline knots with corresponding local volatility

values σ̄i
def= σ(S̄i, t̄i), an interpolating cubic spline c(S, t; σ̄) with a fixed end condition,

e.g., the natural spline end condition, is uniquely defined by setting c(S̄i, t̄i) = σ̄i, i =
1, · · · , p. Let the value Vj(c(S, t; σ̄)) denote the theoretical option price with the same
maturity and strike as that of the given option V̄j when the local volatility σ(S, t) =
c(S, t; σ̄). The local volatility values {σ̄i}p

i=1 at spline knots (hence the spline) can be
determined by calibrating the market option prices:

min
σ̄∈�p

f(σ̄) def=
1
2

m∑
j=1

[Vj(c(S, t; σ̄))− V̄j ]2

subject to l ≤ σ̄ ≤ u. (7)

Additional smoothness regularization can be added in the objective function; we choose
to explicitly control the smoothness of the spline with a minimal number of spline knots
(which also leads to a better computational efficiency). Additional weights can be in-
troduced to take account of different accuracies of V̄j . The lower and upper bounds,
l, u ∈ 
p, l < u can be used to incorporate information concerning σ. More detailed
discussion on computational issues pertaining to solving (7) can be found in [7].

Let us consider again the afore mentioned example in which the underlying price
follows an absolute diffusion (5) with the parameters S0 = 100, r = 0.06, q = 0, and C =
40. Using the closed form price formula for (5), a set of 22 European call option prices
with maturities T = [0.5, 1] (either half year or one year) and strikesK = [90, 92, · · · , 110]
are generated. Figure 5 compares the computed delta and gamma from these option
prices using the spline volatility function method [7] with those from the exact local
volatility function and the implied/constant volatility rate. For the plots on the left, the
option maturity is fixed at T = 1. For the constant volatility method, the volatility rate
is set to C

S0
= 0.4.

The hedge parameters graphed by the dash curves in Figure 5 are computed using
the volatility function method [7] as follows. Applying the finite difference method for
solving the generalized Black-Scholes partial differential equation, the volatility function
method [7] computes a volatility function represented with 8 spline knots below

[.4S0, .8S0, 1.2S0, 1.6S0]× [0, 1].

Once the volatility function is computed, hedge parameters are calculated using the
finite difference approximation. From Figure 5, it is clear that both the delta and
gamma computed using the volatility function method [7] are significantly more accurate
compared to those from the implied/constant volatility rate.

In practice, hedging is done discretely. Using the known volatility function in the
absolute diffusion option example as a benchmark, we now compare different volatility
methods in the context of the discrete dynamic hedging. We consider three different
rebalancing frequencies n = 52 (weekly), n = 104 (biweekly), and n = 365 (daily). For
the constant volatility method, the volatility rate is fixed at C/S0 = .4 over the entire
hedge period, where S0 is the initial underlying price. For the implied volatility method,
implied volatility rates are computed at every rebalancing time. For the volatility func-
tion method [7], a single volatility surface is computed using the 8 spline knot locations
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Figure 5: Hedge Parameter Comparisons: Using the Volatility Function Method

at the beginning of a hedge horizon; this surface is then used for the entire hedge period
since the local volatility function here is independent of time.

We perform dynamic hedge simulation similar to that described in [13] to illustrate
hedge effectiveness. Assuming that the expected return µ equals to 8% in the diffusion
equation (5), underlying price paths are simulated using the Euler approximation.

To compare hedge effectiveness, hedging error of an option V needs to be quantified.
Let {ti}n

i=0, ti+1 = ti + δt, denote the discrete rebalancing times in the hedge horizon,
[0, τ ], 0 < τ ≤ T , where T is the time to maturity of the option. For delta hedging, we
consider the delta hedge portfolio {∆S(t), B(t),−V (t)} with the value,

Π∆(t) = ∆(t)S(t) +B(t)− V (t)

where Π∆(t), V (t), S(t), and B(t) denote the prices of the portfolio, option, underlying,
and money market account respectively. At the beginning of the hedge horizon, Π∆(0) =
0, B(0) = V (0)− S(0)∆(0) where ∆(0) is an approximate delta hedge parameter of the
option V at t = 0. At each rebalancing time ti, the hedge parameter ∆(ti) is recomputed
and the money market account is adjusted:

B(ti) = erδtB(ti−1) + S(ti)(∆(ti−1)−∆(ti)).
Thus the portfolio is self-financed. The delta hedging error is defined as Π∆(τ), the value
of the portfolio Π∆ at the end of the hedge horizon τ .

Similarly, we can consider gamma hedging which takes into account the curvature
in the relationship between the option price and the underlying price, and thus produces
better hedging results. To perform this second order hedging, one additional traded op-
tion on the same underlying is needed to make a portfolio both gamma and delta neutral.
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To measure gamma hedging error, a gamma hedge portfolio {m1(t)S(t),m2(t)I(t), B(t),−Vt}
is formed with

ΠΓ(t) = m1(t)S(t) +m2(t)I(t) +B(t)− V (t),

where ΠΓ(t) denotes the dollar value of the portfolio, I(t) is the price of an additional
instrument, which depends on the same underlying S(t), with the maturity greater than
τ . The numbers of holdings m1(t) and m2(t) are chosen such that the portfolio ΠΓ is
both delta and gamma neutral. For example, if the delta and gamma factors for the
option V , ∂V

∂S and
∂2V
∂S2 , and the delta and gamma for the option I, ∂I

∂S and
∂2I
∂S2 are used,

then m1(t) and m2(t) are chosen to satisfy

m1(t) +m2(t) ∂I
∂S − ∂V

∂S = 0
m2(t) ∂2I

∂S2 − ∂2V
∂S2 = 0.

At the beginning of the hedge horizon, ΠΓ(0) = 0, B(0) = (V (0) − m1(0)S(0) −
m2(0)I(0)). At each rebalancing time ti, both delta and gamma hedge parameters are
recomputed and the money market account is adjusted:

B(ti) = erδtB(ti−1) + S(ti)(m1(ti−1)−m1(ti)) + I(ti)(m2(ti−1)−m2(ti)).

The gamma hedging error is then defined as ΠΓ(τ), the value of the gamma hedge
portfolio ΠΓ at the end of the hedge horizon τ .

Rebalance Frequency n=52 n =104 n=365

Delta
Hedging

Constant Volatility .1126 .1000 .0907
Implied Volatility .1228 .1119 .1008
Volatility Function .0737 .0551 .0303
Exact Volatility .0738 .0547 .0300

Gamma
Hedging

Constant Volatility .0240 .0226 .0228
Implied Volatility .0253 .0236 .0235
Volatility Function .0075 .0039 .0026
Exact Volatility .0074 .0038 .0021

Table 1: Average Absolute Relative Hedging Errors for One Year Hedge Period

Table 1 displays the average absolute relative hedging errors over 200 price paths
at the maturity for the absolute diffusion European call option example with the strike
K = 100, maturity T = 1 and τ = T in the described dynamic hedge simulation with
µ = 0.08. The average absolute relative hedging error here is defined as the expected
absolute hedging errors at the maturity over the 200 price simulation paths divided by
the initial option price V (0) = $18.58. i.e., E(|Π∆(τ)|)

V (0) and E(|ΠΓ(τ)|)
V (0) . For gamma hedging,

the put option with the strike K = $98 and maturity T = 1.1 is used as the additional
instrument.

The following observations can be made from Table 1. First, the performance of
delta hedging using the volatility function method [7] is almost identical to the perfor-
mance achieved with the true volatility function; delta hedging with the implied/constant
volatility rate is significantly inferior. Regarding gamma hedging, again both the true
volatility surface and the reconstructed surface from the volatility function method [7]
significantly outperform the use of the implied/constant volatility rate. In this case the
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use of the true surface is marginally better than using the reconstructed surface. In
addition, delta hedging error decreases with more frequent rebalancing using the exact
volatility function and the volatility function method [7]; the hedging error using the im-
plied/constant volatility method does not decrease as quickly when the hedge portfolios
are rebalanced more often.

In Figure 6, the plot on the left graphs the average absolute hedging error, with
daily rebalancing, as a function of the length of the hedging period; the average hedging
error is displayed on the right. As noted previously, delta hedge parameter from the
implied/constant volatility rate is greater than the true delta for this absolute diffusion
example; thus the average absolute hedging error increases as the length of the hedging
period increases. In addition, the average absolute hedge error of the implied/constant
volatility rate is significantly larger than the hedging error from using the exact delta
and the spline volatility function method. Moreover, the hedging performance difference
between using the exact delta and the spline volatility method is insignificant whereas
the constant volatility rate of C

S0
is slightly better than the implied volatility rate for

this particular example.
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Figure 6: Average Hedging Errors over 200 Paths

5. Dynamically Hedging S&P 500 Index Options

The absolute diffusion example in §2 demonstrates that both delta and gamma hedging
errors using the volatility function method [7] are significantly smaller than those from
using the implied/constant volatility rate; delta hedging error using the volatility func-
tion method is close to that of the true volatility function. However, the encouraging
performance on this example does not immediately imply that hedging with the volatil-
ity function method is better in a real market since a deterministic local volatility model
(1) may not describe the underlying price dynamics exactly. By calibrating the market
option prices and following the market price movement, we now provide similar evidence
of the advantages of using the volatility function approach in dynamic hedging for S&P
500 index options. In §6, we provide comparison for the S&P 500 futures options.

data description

First we consider the S&P 500 index options market. In this study, we use the data
used by Aı̈t-Sahalia and Lo for nonparametric estimation of the state price density using
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historical option prices [1]; this data set is derived from the S&P 500 index option
market prices from January 4, 1993 to December 31, 1993. The S&P 500 index options
are European style with the S&P 500 index as the underlying. During 1993, the mean
and standard deviation of continuously compounded daily return of the S&P 500 index
were 7.95% and 10.28% respectively. The short term interest rate ranged from 2.85% to
3.21%.

To circumvent the unobservability of the dividend rate and the difficulty in synchro-
nizing the index price and the option price, Aı̈t-Sahalia and Lo convert the S&P 500
index options equivalently to options on the futures using the spot-futures parity [1],

Ft,T = Ste
(rt,T −qt,T )T ,

where St is the spot price, rt,T , qt,T are the constant interest rate and dividend rate in
the interval [t, t+ T ], and Ft,T is the futures price with the time to maturity T in years.
At each time t, the futures price is implied from the at-the-money put and call option
prices using the put-call parity. In addition, in-the-money call option prices are replaced
by the implied put prices of the out-of-the-money options via the put-call parity; thus
only the call option prices are in the data set. We refer a reader to [1] for more details
on this data set.

To enhance the reliability of our study, similar to Dumas, Fleming and Whaley [11],
we exclude the extremely short-term, deep in- and out- of the money options since they
have a small time premia and are not actively traded [11]. We consider only options
with 8

252 ≤ T ≤ 99
252 , assuming 252 trading days per year. For a given time to maturity

T , we consider the options with the magnitude of moneyness M def= K/F − 1 less than .1
where K is the strike price, and F is the current implied futures price, i.e., the exercise
price of an option cannot be larger or smaller than the underlying futures price by 10
percent. In addition, we exclude option prices that violate the no-arbitrage conditions

∂V

∂K
< 0 and

∂2V

∂K2
> 0,

where V is the market call option price and K is the exercise price (the derivatives are
approximated using finite difference). A summary of the remaining data set is given in
Table 2. On average, there are 36.2 options each day.

T < 40
252

40
252 ≤ T < 70

252 T ≥ 70
252 row sum

M < −2.5% 1,511 1,263 994 3,768
−2.5% ≤ M < 2.5% 1,221 1,030 852 3,103

2.5% ≤ M 558 900 784 2,242
column sum 3,290 3,193 2,630 9,113

Table 2: The S&P 500 Option Data

volatility models

Now we compare the local volatility function approach with the implied/constant volatil-
ity rate method in dynamically hedging the S&P 500 options in the described data set.
For the local volatility function approach, we consider both the parametric quadratic

12



models used by Dumas, Fleming and Whaley in [11], as well as the nonparametric spline
function method [7]. The potential advantage of the spline volatility function method
[7], compared to the parametric volatility function method, lies in its capacity to model
a complex volatility function with a judicious choice of the spline knots. The parametric
quadratic models considered here are:

QUAD 1: max(0.01, a0 + a1F + a2F
2),

QUAD 2: max(0.01, a0 + a1F + a2F
2 + a3T + a4FT ),

QUAD 3: max(0.01, a0 + a1F + a2F
2 + a3T + a4FT + a5T

2).

These models are used in [11]. The spline function models considered include both a
1-dimensional spline function and a 2-dimensional spline function with knots placed at

SP 1: [.6F, .8F, F, 1.2F, 1.4F ],
SP 2: [.6F, .8F, F, 1.2F, 1.4F ] × [0 T ],

respectively, where F is the implied futures price and T here is the longest maturity date
on any given day.

At each rebalancing time, for the implied volatility method, an implied volatility
rate is computed for each option and the delta hedge parameter is calculated using this
volatility rate. For the constant volatility method, we compute, on each rebalancing
time, a single volatility rate by fitting the Black-Scholes model to all call option prices
in the least squares sense.

The volatility surfaces computed using both the parametric 2-dimensional quadratic
volatility function and the 2-dimensional spline function are typically predominantly a
function of the underlying price within the region B in which the volatility significantly
influences the option value; the computed volatility functions typically show less depen-
dence on time in this region. Figure 7 graphs the 1-dimensional spline function (SP 1)
and a quadratic polynomial function (QUAD 1) implied from the S&P 500 index option
prices on August 9, 1993. We observe that these two functions are close to each other
around the the interval [420, 476] surrounding the current implied futures price $450.8;
this is the region around which volatility rate is most important in pricing these options.
This illustrates that the spline volatility function [7] is stable with suitably chosen spline
knots. In addition, around the interval [420, 476], similar to the absolute diffusion model
(5), the volatility function appears to be a decreasing function of the underlying price.

hedging performance

Once the volatility in a model is estimated, it is used to compute the option delta. This
delta factor is then used for dynamic hedging.

To evaluate dynamic hedging performance of different volatility models for S&P 500
index options, we similarly quantify the hedging error as follows; the difference is that
here the underlying is the futures price F rather than the spot price since we treat S&P
500 index options as European futures options.

Consider a specified rebalancing frequency n and a hedge horizon τ : assume that
t0 > 0 denotes the starting hedge time and t1 < . . . < tn with t1 > t0 denote the
subsequent rebalance times and tn − t0 = τ . At ti, i = 0, 1, . . . , n, let Vi be an option
price, ∆i a corresponding approximate option delta, Fi the futures price, and Πi the
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Figure 7: Volatility Functions: 1-dimensional Models

value of the hedge portfolio. Let ri denote the short term interest rate for the period
[ti, ti+1] where i = 0, 1, . . . , n− 1.

At the initial time t0, for each option, we set up a self finance hedge portfolio Π0 with
one unit short position in the call option, B0 units of money market account, and ∆0

units of the futures contract; actually, B0 = V0 and the initial value of the portfolio Π is
0 since the futures contract has zero value. At time t1, we adjust the units of the futures
contract held in the hedge portfolio so that there is ∆1 units of the futures contract. The
value of B1 is adjusted to B1 = er0(t1−t0)B0+∆0(F0 −F1); the portfolio is self financed.
At time t2, B2 = er1(t2−t1)B1 + ∆1(F1 − F2). Following this procedure, delta hedging
error at tn equals the value Πn of the hedge portfolio at tn. For example, for a hedge
period of one day, we set up the hedge portfolio at t0 and compute the hedging error on
the next business day. For a hedging period of twelve days with daily rebalance, we set
up a hedge portfolio at t0 and rebalance the portfolio every business day and the hedging
error is computed 12 business days later.

For a specified rebalance frequency ∆t and a hedge horizon τ , the average hedging
error is the average of the hedging errors of all possible option prices {Vt0 , Vt1 , · · · , Vtn}
available in the data set, with ti+1 − ti = ∆t and tn − t0 = τ . In evaluating hedge
performance, we consider average hedging error, average absolute hedging error and
root mean squared error. The root mean squared error is the square root of the average
squared error.

We now compare hedge performance of the volatility function approach with the
implied/constant volatility rate method. For the volatility function approach, unlike
the absolute diffusion example, the volatility function is estimated each time the hedge
portfolio is rebalanced to compute delta hedge parameter. For the implied volatility
method, the implied volatility rate at each rebalance time is used to compute the delta
hedge parameters.

First we note that, similar to the absolute diffusion example in §2, the delta hedge
parameter computed from the volatility function approach is usually smaller than the
delta from the implied volatility/constant volatility method. A typical hedge parameter
comparison is depicted in Figure 8. In Table 3, the average of the implied delta sub-
tracted by the spline local volatility delta, standard deviation of the difference, and the
number of options in each category are displayed. The number without any parenthesis
is the average difference. The number in a bracket < · > is the standard deviation and
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the number in a bracket (·) is the number of options in each category. This table illus-
trates that the implied delta is greater than the spline local volatility delta on average.
Moreover, the difference is greatest for at-the-money options with the longest maturities.
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Figure 8: A Typical Delta Comparison

M < −0.03 −0.03 ≤ M < 0.03 M ≥ 0.03 all M
0.0320 0.0579 0.0151 0.0418

T < 0.15 < 0.0348 > < 0.0294 > < 0.0123 > < 0.0342 >
(1, 262) (1, 361) (360) (2, 983)
0.0851 0.0943 0.0211 0.0735

.15 ≤ T < 0.25 < 0.0280 > < 0.0280 > < 0.0167 > < 0.0392 >
(981) (1, 053) (636) (2, 670)
0.1128 0.1122 0.0358 0.0926

T ≥ 0.25 < 0.0256 > < 0.0268 > < 0.0238 > < 0.0423 >
(1, 201) (1, 362) (897) (3, 460)
0.0753 0.0876 0.0269 0.0704

all T < 0.0458 > < 0.0366 > < 0.0216 > < 0.0444 >
(3, 444) (3, 776) (1, 893) (9, 113)

Table 3: Statistics of the Implied Delta Minus the Spline Volatility Function Delta

In addition, we note that there is no significant difference in delta hedging errors for
the 2-dimensional model and 1-dimensional model for this S&P 500 index options data
set; both the 2-dimensional spline and quadratic models give slightly smaller average
hedging errors. In Figure 9 we graph the delta hedging errors of the volatility function
approach (SP 2 and QUAD 2) and the implied/constant volatility method against the
length of the hedge horizon with daily rebalancing.

The curves in Figure 9 demonstrate a clear trend. For a short-term hedge horizon,
the implied/constant volatility model has slightly smaller average absolute hedging er-
ror than the volatility function approach. This is consistent with the 1-week hedging
results reported by Dumas, Fleming and Whaley [11] (although continuous rebalancing
is assumed in their study). However, for a hedge horizon longer than 17 days, dynamic
hedging with the volatility function approach (both the spline and quadratic models)
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generates increasingly smaller average absolute hedging error, compared with the im-
plied/constant volatility method.
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Figure 9: Average Absolute and Root Mean Squared Hedging Error: 1-day Rebalance

The superior hedge performance of the volatility function approach compared to
the implied/constant volatility method for a longer hedge horizon is very interesting;
hedging comparison in [11] has been based on a 1-week time horizon. We believe that
average absolute hedging error of the local volatility function is smaller than that of
the implied/constant volatility method for a longer hedge period due to the following
reason. Assume that the dynamics of the S&P500 index price is sufficiently captured by
a deterministic volatility model

dSt = (µ− q)Stdt+ σ(S, t)StdWt.

Let us form a self financing hedge portfolio Π0 = {∆0F0, B0,−V0}. When an approxi-
mate hedge parameter ∆t is used, it can be similarly shown, using the spot and futures
relationship (assuming constant interest rate), that the instantaneous hedging error is
dΠt and

dΠt = σFt(∆t − ∂V

∂F
)dWt + (µ− r)Ft(∆t − ∂V

∂F
)dt.

For our S&P 500 index option data set, the expected return µ of the S&P 500 index is
7.95% and the risk free interest r is in the range 2.85% to 3.25%. Hence the average
hedging error is determined by the difference ∆t − ∂V

∂F ; a larger delta factor produces
more positive average hedge error. If a hedging method consistently yields larger positive
∆t − ∂V

∂F , the hedging error for a longer hedge horizon will become increasingly more
positive due to the averaging effect of errors for different rebalancing subperiods.

In addition, if ∆t − ∂V
∂F for options with different strikes and maturities, are con-

sistently more positive, the average hedge error (not the average absolute hedging er-
ror) will be more positive; indeed we observe, from the left plot in Figure 10, that the
average hedging error of the volatility function approach is smaller than that of the
implied/constant volatility method even for one day hedge horizon.

The same pattern of delta hedging performance comparison emerges for hedging
with 5-day rebalancing, as illustrated in Figure 11. The volatility function approach has
increasingly smaller long term average absolute and root mean squared hedging errors,
whereas the implied/constant volatility method generates slightly smaller average ab-
solute hedging error for a short hedge horizon. The implied volatility method is again
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Figure 10: Average Hedging Error: 1-day Rebalance (Left) and 5-day Rebalance (Right)

outperformed by the volatility function methods for a hedging horizon of 17 days. It is
interesting that the hedge performance of the volatility function approach surpasses the
implied/constant volatility method around approximately the same hedge horizon re-
gardless of the rebalancing frequency. Moreover, the average hedge error of the volatility
function method is always smaller than that of the implied/constant volatility method
as in the case of daily rebalance, see the right subplot in Figure 10.
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Figure 11: Average Absolute and Root Mean Squared Hedging Errors: 5-day Rebalance

6. Dynamically Hedging S&P 500 Futures Options

Is the better hedge performance of the volatility function approach reported in §5 a mere
coincidence? To further investigate this, we perform similar empirical hedge performance
evaluation for a different option market: the S&P 500 futures options. The S&P 500
futures and futures options are fairly liquid and are traded in Chicago Mercantile Ex-
change (CME). Unlike the S&P 500 index options, S&P 500 futures option is American
style. In addition, it is unclear whether the local volatility function can be determined
from the option prices of all strikes and maturities for the American option contract.
Nonetheless, as will be illustrated subsequently, we observe strikingly similar hedge per-
formance comparisons among the volatility function approach and the implied/constant
volatility method.
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data description

We consider the S&P 500 futures option prices from June 11, 1997 to June 10, 1998.
During this period, there are four different S&P 500 futures contracts with different
maturity dates; the futures contracts mature in September and December of 1997 and
in March and June of 1998. Both futures and options prices are daily closing prices
supplied by the Futures Industry Institute.

Unlike S&P 500 index options, S&P 500 futures options mature on the same day
as the underlying S&P 500 futures contract, i.e., Thursday before the third Friday of
of the delivery month; all options on the same S&P 500 futures contract have the same
maturity date.

To ensure the prices are reliable and the results are meaningful, we apply similar
data selection criteria as before. First, options with time to maturity shorter than 8 days
and longer than 99 days are excluded. Second, we only select options with moneyness
satisfying |K/F − 1| < .1, where K is the exercise price and F is the underlying futures
price. There are 8,714 calls and 7,553 puts satisfying the above criteria during this
period. On average, there are 34.2 calls and 29.6 puts everyday. Table 4 provides some
additional information about the futures and futures options data such as the maturity
date, the period covered, the number of trading days for each futures and futures options
in the data set, and the number of calls and puts for each futures contract. In addition,
we obtain interest rates from the price quotes of the Treasury bill in the Wall Street
Journal; interpolation is typically required to extract the relevant interest rate since the
maturity date of the S&P futures rarely matches that of the Treasury bill exactly.

Maturity date Starting day Ending day Trading Days Calls Puts
Sep. 18, 1997 Jun. 11, 1997 Sep. 10, 1997 64 2,118 1,708
Dec. 18, 1997 Sep. 10, 1997 Dec. 10, 1997 65 2,178 2,065
Mar. 19, 1998 Dec. 10, 1997 Mar. 11, 1998 62 2,011 2,859
Jun. 18, 1998 Mar. 11, 1998 Jun. 10, 1998 64 2,407 1,921

Table 4: Futures and Futures Option Data

volatility estimation

We assume that, for each maturity date, the S&P 500 futures price follows an indepen-
dent stochastic process. Since the hedge performance of 2-dimensional volatility models
does not differ significantly from the 1-dimensional volatility models, we report here only
the results for the 1-dimensional volatility models: the volatility function is assumed to
be time independent.

For the volatility function approach, we consider both the nonparametric 1-dimensional
spline model [7] as well as the parametric 1-dimensional quadratic model. For the spline
volatility model, the local volatility function σ(F ) is represented by a 1-dimensional
spline with five knots placed at [.7F , .9F , F , 1.1F , 1.3F ], where F is the current un-
derlying futures price on a give day. The quadratic model specifies the local volatility
function as max(0.01, a0 + a1F + a2F

2). The 1-dimensional spline and the quadratic
polynomial are estimated by fitting the market option prices in the least squares sense.

For the implied volatility method, the volatility rate is computed for each option
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by inverting the Black-Scholes option formula. For the constant volatility model, we
allow different rates for put and call; hence the constant model here does not completely
conform to the constant volatility Black-Scholes assumption since different volatility rates
are allowed for call and put options. We compute call volatility rate by fitting, on each
rebalancing time, the Black-Scholes model to all call option prices in the least squares
sense. Similarly, put volatility rate is estimated by fitting to all put option prices.
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Figure 12: Constant and Implied Volatility

Figure 12 shows the constant and implied volatility rates on the same day. Implied
volatility rate is a decreasing function of the strike price except near the really out-of-the-
money option. Constant volatility rate lies approximately in the middle of the implied
volatility rates.

As an example, Figure 13 displays the 1-dimensional spline and quadratic polynomial
volatility functions estimated from the market data on January 21, 1998. We observe
that two local volatility functions are close to each other around the current futures price
F = $975.40, the region around which the volatility is most important in determining
option prices. The closeness of the estimated spline volatility function and the quadratic
volatility function around the current futures price is typical for this S&P 500 futures
option data set.
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Figure 13: Local Volatility Functions: 1-dimensional Models
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hedging result

Figure 14 graphs the average absolute hedging error with daily rebalancing against the
length of the hedging horizon. We observe that, similar to Figure 9 for S&P 500 index
options, the volatility function (both the 1-dimensional spline and the 1-dimensional
quadratic model) has smaller average absolute hedging error, compared with the im-
plied/constant volatility method, for a hedging horizon of more than six days. The
performance of the 1-dimensional spline and 1-dimensional quadratic volatility models
are comparable. In addition we note that the volatility function approach begins to out-
perform the implied/constant volatility method at a shorter hedge horizon, compared to
the S&P 500 index options experiment. Moreover, the hedging error for the S&P 500
futures options seems to be greater than that of the index option for the same length of
the hedge horizon: note that the S&P500 futures price here is greater than the implied
futures price of the S&P 500 index options in §5. The implied volatility method is bet-
ter for up to six days. In terms of the root mean squared hedging error, the volatility
function approach is consistently better than the implied/constant volatility method.
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Figure 14: Average Absolute and Root Mean Squared Hedging Error: 1-day Rebalance

For hedging with 5-day rebalancing, similar observations can be made. Figure
15 shows that volatility function approach outperforms the implied/constant volatil-
ity method for a hedge period of more than ten days. The 1-dimensional spline and
quadratic polynomial volatility functions show little difference in terms of the hedging
error.
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Figure 15: Average Absolute and Root Mean Squared Hedging Error: 5-day Rebalance
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Figure 16 graphs the average hedging errors against the length of the hedge horizon.
These plots show that the volatility function approach always produces smaller mean
hedging error, even when the hedging period is one day. The constant volatility method
yields the largest mean hedging error.
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Figure 16: Mean Hedging Error: 1-day Rebalance (Left) and 5-day Rebalance (Right)

Despite the striking similarity of the hedging performance comparison in both the
S&P 500 index option market and S&P 500 futures option market, there are some differ-
ences. The most noticeable difference is that, for the S&P 500 futures options, the aver-
age hedging error is no longer monotonically increasing as the hedging period increases
and it can become negative as well. Currently we do not have a clear explanation for
this except noting that it may be attributed to the early exercise feature of the American
option contract.

7. Concluding Remarks

It has been well recognized that the index option markets typically exhibit a volatility
smile; therefore, direct use of the constant volatility Black-Scholes option pricing formula
is questionable. Although the implied volatility method with different volatility rates
applied to options of different strikes and maturities is able to price the vanilla options
accurately, it has been demonstrated [7] that the hedge parameters computed in this
fashion can be erroneous since the constant volatility model does not adequately describe
the underlying price dynamics.

In this paper, we compare the dynamic hedging performance of the deterministic
local volatility function approach and the implied/constant volatility method. We illus-
trate that the mean of the instantaneous hedging error is proportional to (µ−r)(∆− ∂V

∂S ),
where ∆ is the delta used in dynamic hedging and ∂V

∂S is the true delta. This implies
that the mean hedging error using a larger delta factor greater than that of the true
volatility results in more positive mean hedging error, assuming µ > r. We illustrate
that when the underlying price follows an absolute diffusion model with µ > r, the hedge
parameter computed from the implied/constant volatility method is indeed significantly
larger than the true delta hedge parameter. This leads to increasingly positive average
absolute hedging error as the length of the hedging horizon increases.

To estimate a local volatility function from a finite set of option prices, a spline
volatility method has been proposed [7]. We illustrate here, with the absolute diffusion
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example, that the spline volatility function [7] yields smaller average absolute hedging
error compared with the implied/constant volatility method due to more accurate hedge
parameters.

When comparing the hedge performance in the S&P 500 index option as well as the
futures option markets, we similarly observe that the delta from the implied/constant
volatility method is typically greater than that of the local deterministic volatility func-
tion approach. We observe, in both the S&P 500 index option and futures option mar-
kets, the mean hedging error using the volatility function approach is always smaller than
that of the implied/constant volatility error. Moreover, the average absolute hedging er-
ror using the volatility function is smaller than that of the implied/constant volatility
method for a sufficiently long hedge horizon, approximately 17 days for the S&P 500
index options and 6 days for the S&P 500 futures options.
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