
Total risk minimization using Monte-Carlo simulationsThomas F. Coleman?, Yuying Li??, Maria-Cristina Patron???? Department of Combinatoris and Optimization, University of Waterloo,Waterloo, ON, N2L 3G1, Canada, email ontat: tfoleman�uwaterloo.a?? Shool of Computer Siene, University of WaterlooWaterloo, ON, N2L 3G1, Canada, email ontat: yuying�uwaterloo.a??? Risk Capital, 1790 Broadway, 15th Floor, New York, NY, 10019August 12, 2005AbstratIn an inomplete market, it is generally impossible to repliate an option exatly. Inthis ase, total risk minimization hooses an optimal self-�naning strategy that bestapproximates the option payo� by its �nal value. Total risk minimization is a dynamistohasti programming problem, whih is generally very hallenging to solve; a diretapproah may lead to very expensive omputations.We investigate total risk minimization using a pieewise linear riterion. We desribe amethod for omputing the optimal hedging strategies for this stohasti programmingproblem using Monte Carlo simulation and spline approximations. We illustrate thismethod in the Blak-Sholes and the stohasti volatility frameworks. We also omparethe hedging performane of the strategies based on pieewise linear risk minimization,the traditional, quadrati risk minimizing strategies and the shortfall risk minimizingstrategies. The numerial results show that pieewise linear risk minimization may leadto smaller hedging ost and signi�antly di�erent, possibly better, hedging strategies.The values of the shortfall risk for the pieewise linear total risk minimizing strategiessuggest that these strategies typially underhedge the options.1. IntrodutionHedging is a method for reduing the sensitivity of a portfolio to market utuations. Inpartiular, when hedging an option, one tries to onstrut a trading strategy that repliatesthe option payo� with no inow or outow of apital besides the initial osts. In theBlak-Sholes framework, an option an be hedged by using only the underlying asset anda bond. However, the investor's position must be adjusted ontinuously, sine it is onlyinstantaneously risk-free. In pratie, however, it is impossible to hedge ontinuously intime. In addition, one may want to hedge as little as possible due to transation osts. If1



only disrete hedging times are allowed, ahieving a risk-free position at eah time is nolonger possible sine this instantaneous hedging will not last till the next rebalaning time.Moreover, presene of additional risks, e.g., jump risks, leads to an inomplete market.Under these onditions, it is not possible to totally hedge the intrinsi risk of an option thatannot be exatly repliated. There is muh unertainty regarding the hoie of an optimalhedging strategy and in de�ning the fair prie of an option.El Karoui and Quenez ([10℄) use the super-repliation method for priing and hedgingin inomplete markets. The method onsists in �nding a self-�naning strategy of minimuminitial ost suh that its �nal value is always larger than the option payo�. This minimuminitial ost represents the ask prie, or the seller's prie of the option. Correspondingly,the method omputes a bid prie, or a buyer's prie. However, only an interval of no-arbitrage pries is determined in this manner. Moreover, there are ases when using asuper-repliating strategy for hedging an option is not interesting from a �nanial point ofview. For example, in the Hull-White ([9℄) stohasti volatility model, the super-repliatingstrategy for a all option is to hold the underlying asset (Frey [5℄). In addition, the minimuminitial ost of a super-repliating strategy may be undesirably large.Another approah to priing and hedging in inomplete markets is to ompute an optimalstrategy by minimizing a partiular measure of the intrinsi risk of the option. F�ollmer andShweizer ([4℄), Sh�al ([14℄), Shweizer ([15, 16℄), Merurio and Vorst ([12℄), Heath, Platenand Shweizer ([6℄, [7℄), Bertsimas et al. ([1℄) study quadrati riteria for risk minimization.We only briey desribe them here, but they are presented in more detail in Setion 2.Suppose we want to hedge an option whose payo� is denoted by H and we only have a�nite number of hedging times: t0; t1; : : : ; tM . Suppose also that the �nanial market ismodeled by a probability spae (
;F ; P ), with �ltration (Fk)k=0;1;:::;M and the disountedunderlying asset prie follows a square integrable proess. Denote by Vk the value of thehedging strategy at time tk and by Ck the umulative ost of the hedging strategy up totime tk (this inludes the initial ost for setting up the hedging portfolio and the ost forrebalaning it at the hedging times t0; : : : ; tk).Currently, there are two main quadrati hedging approahes for hoosing an optimalstrategy. One possibility is to ontrol the total risk by minimizing the L2-norm E((H �VM)2), where E(�) denotes the expeted value with respet to the probability measure P .This is the total risk minimization riterion. An optimal strategy for this riterion is self-�naning, that is, its umulative ost proess is onstant. A total risk minimizing strategyexists under the additional assumption that the disounted underlying asset prie has abounded mean-variane tradeo�. In this ase, the strategy is given by an analyti formula.The existene and the uniqueness of a total risk minimizing strategy have been extensivelystudied by Shweizer ([15℄).Another possibility is to ontrol the loal inremental risk, by minimizing E((Ck+1 �Ck)2jFk) for all 0 � k � M � 1. This is the loal quadrati risk minimizing riterion.The same assumption that the disounted underlying asset prie has a bounded mean-variane tradeo� is suÆient for the existene of an expliit loal risk minimizing strategy(see Sh�al [14℄). This strategy is no longer self-�naning, but it is mean-self-�naning, i.e.,the umulative ost proess is a martingale. In general, the initial osts for the loal riskminimizing and total risk minimizing strategies are di�erent. As Sh�al notied, the initialosts agree in the ase when the disounted underlying asset prie has a deterministimean-variane tradeo�. He then suggests the interpretation of this initial ost as a fair2



hedging prie for the option. However, as mentioned by Shweizer ([15℄), this is not alwaysappropriate.The quadrati total and loal risk minimizing hedging strategies have many theoretialproperties, their existene and uniqueness have been extensively studied and, in the aseof existene, they are given by analyti formula. However, the optimal hedging strategieshinge on the riteria for measuring the risk. Therefore, it is important to answer the naturalquestion of how di�erent hedging strategies are under di�erent risk measures. Moreover,how should one hoose a risk measure?In the Blak-Sholes framework, an option an be hedged ompletely, with no risk, i.e.,zero in or out ashows, besides the initial ost. When rebalaning an only be done atdisrete times, a natural optimal hedging strategy is the one whih minimizes the expetedmagnitude of the ashows; this leads to the optimization problems, minimize E(jH�VM j),or minimize E(jCk+1 � Ckj jFk), respetively.Coleman, Li and Patron ([2℄) investigate the pieewise linear riterion for loal risk min-imization. They illustrate the fat that pieewise linear loal risk minimization may lead tovery di�erent, possibly better, hedging strategies. These strategies have a larger probabilityof small hedging ost and risk, although a very small probability of larger ost and risk thanthe traditional quadrati risk minimizing strategies. Although there is no analyti solutionto the pieewise linear loal risk minimization problem, the optimal hedging strategies anbe omputed very easily.In this paper, we investigate hedging strategies based on pieewise linear total riskminimization. Minimizing the pieewise linear risk, E(jH � VM j), and minimizing thequadrati risk, E((H�VM)2) are also likely to yield signi�antly di�erent solutions. Assumethat p(S) is the onditional density funtion of the underlying prie at time T . MinimizingE((H�VM )) puts more emphasis on reduing the largest value ofpp(S)jH�VM j, whereasminimizing E(jH � VM j) attempts to redue the density weighted inremental ashow,p(S)jH � VM j for eah underlying value S equally.To illustrate the above disussion in more detail, onsider the following omparisonbetween the pieewise linear risk minimization with respet to the total risk measure E(jH�VM j), and the quadrati risk minimization with respet to E((H�VM )2). Suppose the prieof the underlying asset satis�es the stohasti di�erential equation:dStSt = �dt+ �dZtwhere Zt is a Wiener proess. Let the initial value of the asset S0 = 100, the instantaneousexpeted return � = :2, the volatility � = :2 and the riskless rate of return r = :1. Supposewe want to statially hedge a deep in-the-money and a deep out-of-money put option withmaturity T = 1; we only have one hedging opportunity, at time 0. At the maturity Twe ompare the payo� of the options with the hedging portfolio values of the strategiesobtained by the pieewise linear and quadrati loal risk minimization. The payo� and thehedging portfolio values at time T are multiplied by the density funtion of the asset prieand are disounted to time 0. The �rst plot in Figure 1 shows the density weighted payo�and the density weighted values of the hedging portfolios at the maturity T for the in-the-money put option. The seond plot presents the orresponding data for the out-of-moneyput option. 3
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Figure 1: Best �tting of the option payo�In the ase of the in-the-money put option, the weighted payo�, loser to lognormal,is muh easier to �t. We remark that in this ase both riteria generate similar plots ofthe hedging strategy values and they �t the option payo� relatively well. However, theweighted payo� for the out-of-money put option seems more diÆult to math. Despite thesmall values (of order 10�3), it is important to note that the relative di�erenes betweenthe weighted payo� and the weighted values of the hedging portfolios are large. (The ostof an out-of-money put is muh smaller than the ost of the in-the-money put.) We haveillustrated the hedging of only one out-of-money put option; if we want to hedge 100 putoptions idential to the one onsidered, the absolute di�erenes between the weighted payo�and the weighted hedging portfolio values will also be signi�ant. The hedging styles of thetwo strategies are very di�erent. The L2-norm (i.e., quadrati) attempts to penalize largeresiduals exessively and this atually leads to a worse �t under most senarios. Indeed,the probability that the put option expires out of money is very large, around :97, but theL2-hedging strategy either over or under repliates the option payo�. On the other hand,the L1-strategy hedges exatly the option payo� when it expires out of money. Suppose weshort the out-of-money put option. At the maturity of the option, our possible losses arenever greater than the strike prie. Assume now that we want to hedge our position bybuying the L2-hedging strategy. We an see from the �gure that, by exessively trying toredue the risk in the unlikely event that the option expires in the money, the L2-strategyatually introdues the very small probability of unlimited losses. This is not the ase if wetry to hedge the short position using the L1-strategy.The main diÆulty in omputing the optimal strategies under the pieewise linear totalrisk minimization riterion is that, beause these strategies are self-�naning, the total risk,H�VM , depends on the entire path of the stok prie. Total risk minimization is a dynamistohasti programming problem whih is omputationally hallenging to solve. Using atree method to model the future unertainties may lead to very expensive omputationsfor solving this stohasti programming problem, sine the number of tree nodes inreasesexponentially as the number of trading opportunities inreases. We propose a method foromputing the pieewise linear total risk minimizing hedging strategies using Monte Carlosimulation and approximating the holdings in the hedging portfolios by unknown ubisplines whih are determined as the solution to an optimization problem.4



The key insight underlying our method is similar to the idea behind the Longsta�-Shwartz method for valuing Amerian options ([11℄). Essentially, the optimal exerisestrategy for an Amerian option is determined by the onditional expeted value of thepayo� from ontinuing to keep the option alive. Longsta� and Shwartz ompute the opti-mal exerise strategy for Amerian options using Monte Carlo methods and approximatingthe onditional expeted values of the payo� from ontinuation by funtions of the statevariables.The method we propose for omputing the optimal pieewise linear total risk minimizingstrategies may also be useful in omputing the quadrati total risk minimizing strategies,for example, in the ase of the stohasti volatility models. Shweizer ([15℄) establishes ananalytial formula for the omputation of the quadrati risk minimizing strategies whenthe stok prie has a bounded mean-variane tradeo� and Bertsimas et al. ([1℄) present aformula based on dynami programming under the additional assumption of vetor-Markovprie proesses. However, the numerial implementation of these formula may be quiteinvolved in the stohasti volatility framework.We illustrate our method in the Blak-Sholes and stohasti volatility framework. Wealso investigate the di�erenes between the hedging styles of the trading strategies basedon pieewise linear and quadrati risk minimization. The behavior of the di�erent hedgingstrategies for total risk minimization is similar to the one observed in the ase of the loalrisk minimization (see Coleman et al. [2℄). Pieewise linear total risk minimization generallyleads to smaller hedging ost and risk than the orresponding quadrati riterion, althoughthere is a very small probability of larger ost and risk.Both quadrati and pieewise linear risk minimization are symmetri risk measures,sine they penalize losses as well as gains. However, when hedging an option, one maybe more interested in penalizing only the losses of his position. This leads to minimizingthe shortfall risk, E((H � VM)+). We remark that, while total risk minimization an beused for both hedging and priing an option, shortfall risk minimization an only be usedfor hedging purposes. We investigate riteria for shortfall risk minimization and omparethe optimal hedging strategies for these riteria with the quadrati and pieewise lineartotal risk minimizing strategies. The optimal hedging strategy performanes depend on themoneyness of the options and the number of rebalaning opportunities. Analyzing the valuesof the shortfall risk for the optimal total risk minimizing strategies, suggests that, whilequadrati total risk minimization shows no trend for either overhedging, or underhedging,the orresponding pieewise linear riterion typially underhedges the options.To summarize the main ontributions of this paper, we �rstly propose a omputationalmethod to approximate optimal hedging strategies for total risk minimization under theL1-risk measure. Seondly, we ompare the total risk minimizing hedging strategies for theL1, L2 and shortfall risk measures.Setion 2 of the paper desribes the di�erent risk minimization riteria for disretehedging. In Setion 3 we present our method for omputing the pieewise linear totalrisk minimizing strategies. We illustrate this method in the Blak-Sholes framework andompare the di�erent riteria for total risk minimization in this framework. Setion 4 hasa similar analysis for a stohasti volatility framework. In Setion 5 we investigate riteriafor shortfall risk minimization and ompare the performane of the hedging strategies forshortfall, pieewise linear and quadrati total risk minimization. We onlude in Setion 6.5



2. Disrete hedging riteriaConsider a �nanial market where a risky asset (alled stok) and a risk-free asset (alledbond) are traded. Let T > 0 and assume we only have a �nite number of hedging datesover the time horizon [0; T ℄. Let 0 = t0 < t1 < : : : < tM = T denote these disrete hedgingtimes. Suppose the �nanial market is modeled as a �ltered probability spae (
;F ; P ),with �ltration (Fk)k=0;1;:::;M , where Fk orresponds to the hedging time tk and w.l.o.g.F0 = f;;
g is trivial. Suppose, moreover, that the stok prie follows a stohasti proessS = (Sk)k=0;1;:::;M , with Sk being Fk-measurable for all 0 � k � M . We an set the bondprie B � 1 by assuming the disounted stok prie proess X = (Xk)k=0;1;:::;M , whereXk = SkBk ; 80 � k �M .Assume that we want to hedge a European option with maturity T and payo� given bya FM -measurable random variable H . For example, H = (K �XM)+ for a European putwith maturity T and disounted strike prie K.A trading strategy is given by two stohasti proesses (�k)k=0;1;:::;M and (�k)k=0;1;:::;M ,where �k is the number of shares held at time tk and �k is the amount invested in the bond attime tk . We assume �k; �k are Fk-measurable, for all 0 � k �M and �M = 0. Consider theportfolio onsisting of the ombination of the stok and bond given by the trading strategy.The ondition �M = 0 orresponds to the fat that at time M we liquidate the portfolio inorder to over for the option payo�.The value of the portfolio at any time tk , 0 � k �M , is given by:Vk = �kXk + �k:For all 0 � j � M � 1, denote by �Xj = Xj+1 � Xj . With this notation, �j�Xjrepresents the hange in value due to the hange in the stok prie at time tj+1 before anyhanges in the portfolio. Therefore, the aumulated gain Gk is given by:Gk(�) = k�1Xj=0 �j�Xj ; 1 � k �Mand G0 = 0.The umulative ost at time tk, Ck, is de�ned by:Ck = Vk � Gk; 0 � k �M:A strategy is alled self-�naning if its umulative ost proess (Ck)k=0;1;:::;M is onstantover time, i.e. C0 = C1 = : : := CM . This is equivalent to (�k+1 � �k)Xk+1 + �k+1 � �k = 0(a.s.), for all 0 � k � M � 1. In other words, any utuations in the stok prie an beneutralized by rebalaning � and � with no inow or outow of apital. The value of theportfolio for a self-�naning strategy is then given by Vk = V0+Gk at any time 0 � k �M .A market is omplete if any laim H is attainable, that is, there exists a self-�naningstrategy with VM = H (a.s.). If the market is inomplete, for instane in the ase of disretehedging, a laim is, in general, non-attainable and a hedging strategy has to be hosen basedon some optimality riterion.One approah to hedging in an inomplete market is to �rst impose VM = H . Sine suha strategy annot be self-�naning, we should then hoose the optimal trading strategy to6



minimize the inremental ost inurred from adjusting the portfolio at eah hedging time.This is the loal risk minimization. The traditional riterion for loal risk minimization isthe quadrati riterion, given by minimizing:E((Ck+1 � Ck)2jFk) ; 0 � k �M � 1: (1)This riterion is disussed in detail in F�ollmer and Shweizer ([4℄), Sh�al ([14℄), Shweizer([15, 16℄).A quadrati loal risk minimizing strategy is guaranteed to exist under the assumptionsthatH is a square integrable random variable, X is a square integrable proess with boundedmean-variane tradeo�, that is:(E(�XkjFk))2Var(�XkjFk) is P-a.s. uniformly bounded:Moreover, this hedging strategy is given expliitly by:8>>>>>>><>>>>>>>:�(l)M = 0; �(l)M = H�(l)k = Cov(�(l)k+1Xk+1+�(l)k+1;Xk+1j Fk)Var(Xk+1jFk) ; 0 � k �M � 1�(l)k = E((�(l)k+1 � �(l)k )Xk+1 + �(l)k+1jFk); 0 � k �M � 1: (2)The hoie of the quadrati riterion for risk minimization is, however, subjetive. Al-ternatively, one an hoose to minimize:E(jCk+1 � Ck)j jFk) ; 0 � k �M � 1: (3)As illustrated by Coleman et al. ([2℄), even if there is no analyti solution to theabove pieewise linear risk minimization problem, an optimal hedging strategy an be easilyomputed. Criterion (3) for pieewise linear loal risk minimization leads to signi�antlydi�erent hedging strategies and possibly better hedging results.Another approah to hedging in an inomplete market is to onsider only self-�naningstrategies. An optimal self-�naning strategy is then hosen whih best approximates H byits terminal value VM . The quadrati riterion for this total risk minimization is given byminimizing the L2-norm:E((H � VM)2) = E((H � V0 � M�1Xj=0 �j�Xj)2): (4)By solving the total risk minimization problem (4), we obtain the initial value of theportfolio, V0, and the number of shares, (�0; : : : ; �M�1). The amount invested in the bond,(�0; : : : ; �M), is then uniquely determined sine the strategy is self-�naning. If the dis-ounted stok prie is given by a square integrable proess with bounded mean-varianetradeo� and if the payo� is given by a square integrable random variable, then problem(4) has a unique solution. The existene and uniqueness of a total risk minimizing strategyunder the quadrati riterion have been extensively studied by Shweizer ([15℄).7



Shweizer gives an analyti formula whih relates the holdings and the hedging portfoliovalues for the quadrati total risk minimizing strategy to the holdings and the portfoliovalues for the quadrati loal risk minimizing strategy:8>>><>>>:V (t)0 = E(HQM�1j=0 (1��j�Xj))E(QM�1j=0 (1��j�Xj))�(t)M = 0�(t)k = �(l)k + �k(V (l)k � V (t)0 � Gk(�(t))) + k; 0 � k �M � 1: (5)where the proesses (�k)k=0;:::;M�1 and (k)k=0;:::;M�1 are given by the formula:�k = E(�XkQM�1j=k+1(1��j�Xj)jFk)E(�X2k QM�1j=k+1(1��j�Xj)2jFk)k = E((V (l)T �GT (�(l))�V (l)k +Gk(�(l)))�XkQM�1j=k+1(1��j�Xj)jFk)E(�X2kQM�1j=k+1(1��j�Xj)2jFk)Bertsimas et al. ([1℄) also obtains a formula for the quadrati total risk minimizingstrategy, using dynami programming, in the ase of vetor-Markov prie proesses.The orresponding pieewise linear total risk minimization riterion is given by theL1-norm: E(jH � VM j) = E(jH � V0 � M�1Xj=0 �j�Xj j): (6)We are interested in omputing optimal hedging strategies given by the pieewise lineartotal risk minimization problem (6). This is a dynami stohasti programming problemthat is, in general, very diÆult to solve. Sine H � V0 �PM�1j=0 �j�Xj depends on theentire path of the stok prie, a diret approah to problem (6) an be very expensiveomputationally. In order to see this, assume that we use Monte Carlo simulation and wegenerate L independent senarios for the stok prie. The total risk minimization problem(6) orresponds, in this ase, to minimizing the expeted total risk over all the senarios:minV0 ;�0 ;�(k)j�j:Fj�measurable LXk=1 ������H(k) � V0 � �0�X(k)1 �M�1Xj=1 �(k)j �X(k)j ������ (7)The notation (k) means that the option payo�, the stok prie and the holdings orre-spond to the kth senario. We remark that at time 0, the stok prie is deterministi and,therefore, the holdings in the hedging portfolio at time 0 have to be the same for all thesenarios.The number of unknowns in problem (7) is of order L �M , where L is the number ofsenarios andM is the number of rebalaning times. Therefore, trying to solve this problemdiretly is omputationally very hallenging when the number of senarios is large and therebalaning is frequent.In order to redue the omplexity of problem (7) we try to approximate the holdings�j . Spline funtions have been extensively used for funtion approximations, sine they are8



very attrative from a omputational point of view. We hoose to approximate the holdings�j by unknown ubi splines.The number of unknowns at eah hedging time in the problem formulation (7) is equalto the number of senarios; after approximating the holdings by ubi splines, the numberof unknowns at eah hedging time is redued to the number of parameters in the ubisplines, whih is typially very small.An important issue to be onsidered when approximating the holdings in a hedgingstrategy by ubi splines is that the optimal hedging strategy has to be path dependent.Indeed, the total risk, H � VM = H � V0 �M�1Xj=0 �j�Xj;minimized by the optimal hedging strategy, depends on the entire path of the stok prie. Al-though the holdings (�j)j=0;:::;M�1 are omputed at time 0 and any measurable (�j)j=0;:::;M�1is an admissible hedging strategy, intuitively, at any time tj , 0 � j � M � 1, the optimalholdings �j will have an intrinsi information about the past history of the stok prie andthe optimal holdings up to time tj .In this paper, we desribe a method for solving the total risk minimization problem (6)by approximating the holdings in the optimal hedging strategy with unknown ubi splinesand trying to apture the path dependeny of the strategy by a simple spline formulation.The unknown ubi splines are determined as solutions of an optimization problem thatonsists in minimizing the total risk over a set of senarios for the stok prie. Sine thestrategy omputed in this way is suboptimal we have to analyze its degree of optimality. Wealso ompare the hedging strategies based on the pieewise linear total risk minimizationriterion, to the traditional strategies based on quadrati total risk minimization.3. Total risk minimization in the Blak-Sholes frameworkWe will �rst desribe our method in the Blak-Sholes framework. We suppose that thestok prie is given by the stohasti di�erential equation:dStSt = �dt+ �dZt; (8)where Zt is a Brownian motion. We also assume that the writer of a European option withmaturity T has only M hedging opportunities at 0 = t0 < t1 < : : : < tM�1 < tM := T tohedge his position using the underlying stok and a bond.Using Monte Carlo simulation, we generate L independent samples for the stok prie,based on equation (8). We want to determine the holdings in the hedging strategy suhthat the expeted total risk over all the senarios is minimized.The total risk minimization problem for the pieewise linear riteria beomes:minV0 ;�0 ;�(k)j�j:Fj�measurable LXk=1 ������H(k) � V0 � �0�X(k)1 �M�1Xj=1 �(k)j �X(k)j ������ : (9)9



As before, the notation (k) refers to the kth senario.3.1. First formulationWe want to redue the omplexity of the above problem by approximating the holdings �k.We �rst hoose to ignore the fat that the hedging strategy is path dependent and assumethat the amount �jXj invested in the stok at any time tj depends only on the stok prieat time tj . We will investigate the degree of optimality that an be ahieved under thisassumption and we will pursue subsequent re�nement of this assumption. This is a naturalassumption, sine one should take into aount the urrent value of the stok prie, Xj ,when rebalaning the portfolio at time tj . Thus, we an assume:�j = Dj(Xj); 8j = 1; : : : ;M � 1; (10)with Dj unknown funtions. Let us suppose that the holdings depend ontinuously on thestok prie, that is, Dj is a ontinuous funtion, 8j = 1; : : : ;M � 1. We denote by D0 theonstant funtion identially equal to �0. The total risk minimization problem under thepieewise linear riterion beomes:minV0;D0;:::;DM�1 LXk=1 ������H(k) � V0 �M�1Xj=0 Dj(X(k)j )�X(k)j ������ : (11)In order to make the above problem omputationally attrative, we assume that eahfuntion Dj is a ubi spline with �xed end onditions and spline knots plaed with respetto the stok prie. The funtion Dj is then uniquely determined by its values at the splineknots. Note that Dj is a linear funtion of its knot values. In this way, problem (11)beomes an L1-optimization problem with unknowns V0, D0 and the values of the ubisplines Dj ; j � 1 at their knots.The number of knots for eah spline in our implementation is typially very small (around8) and independent of the number of senarios. Therefore, the number of unknowns in theL1-optimization problem (11) is of order M , where M is the number of rebalaning times.We an now solve this problem and ompute the pieewise linear risk minimizing strategythat satis�es assumption (10) on the speial form of the holdings �j .The question that arises is how good assumption (10) is. In order to answer this question,we will investigate the quadrati total risk minimization problem (4). We an ompute thequadrati risk minimizing strategy either by solving an optimization problem similar to(11), or by using the theoretial formula (5). By omparing the hedging strategies obtainedby these two methods, we will try to assert the quality of assumption (10).We an modify the quadrati risk minimization problem (4), using an approah similarto the one desribed above for pieewise linear risk minimization. Under the assumption,�j = Dj(Xj); 8j = 1; : : : ;M � 1 and with the notation D0 � �0, the problem beomes:minV0;D0;:::;DM�1 LXk=1(H(k) � V0 � M�1Xj=0 Dj(X(k)j )�X(k)j )2 (12)We obtain, therefore, the optimal quadrati risk minimizing hedging strategy whihsatis�es assumption (10). 10



Another method for solving problem (4) is to use Shweizer's analyti solution (5) andompute the optimal quadrati risk minimizing strategy, in the general ase, with no as-sumption on the form of the holdings. In the Blak-Sholes model, the mean-variane ofthe stok prie is not only bounded, but also deterministi. As mentioned in Shweizer'spaper ([15℄), formula (5) redues in this ase to:8><>: V (t)0 = V (l)0�(t)M = 0�(t)k = �(l)k + �k(V (l)k � V (l)0 �Gk(�(t))); 0 � k �M � 1: (13)where the proess (�k)k=0;:::;M�1 is given by:�k = E(�XkjFk)E(�X2k jFk)We �rst ompute the quadrati loal risk minimizing strategy, as given by formula (2).The details of this omputation are given in Coleman et al. ([2℄). We then use formula (13)to obtain the holdings in the total risk minimizing hedging portfolio for eah senario.The total risk minimizing hedging strategy omputed from the analytial formula (13) inthe above manner, is used as a benhmark for the solution of the quadrati risk minimizationproblem (12), in order to evaluate the validity of the assumption (10).We also want to ompare the e�etiveness of the hedging strategies based on pieewiselinear risk minimization and, respetively, quadrati risk minimization.The numerial results presented below refer to hedging put options with maturity T = 1and di�erent strike pries. The initial stok prie is S0 = 100. The instantaneous expetedreturn of the stok prie is � = :15, the volatility, � = :2 and the riskless rate of return,r = :04. The number of senarios in the Monte Carlo simulation of the stok prie isL = 40000 and the number of time steps in this simulation is 600.We have omputed three risk minimizing hedging strategies:� Strategy 1: Pieewise linear risk minimizing strategy satisfying (10)� Strategy 2: Quadrati risk minimizing strategy satisfying (10)� Strategy 3: Quadrati risk minimizing strategy given by the analytial formula (13)For eah of these strategies and eah senario, we ompute the following:� Total ost: H �M�1Xk=0 �k�Xk (14)This is the total amount of money neessary for the writer to implement the self-�naning hedging strategy and honor the option payo� at expiry. Sine the hedgingstrategy is self-�naning, there are no intermediate osts for rebalaning the hedgingportfolio.� Total risk: jH � VM j (15)11



This measures the di�erene between the �nal value of the hedging portfolio and theoption payo�. The strategy being self-�naning, it is the only unplanned ost orinome.Tables 1 and 2 show the average umulative ost and average total risk over 40000simulated senarios, for di�erent number of time steps per rebalaning time. The lastolumn in these tables orrespond to the ase of the stati hedge, when we only have onehedging opportunity at time 0.Table 1: Average value of the total ost over 40000 senarios# of time steps per rebalaning timeStrike Strategy 25 50 100 300 6001 2.2194 1.9764 1.0876 0.9398 0.939890 2 2.4540 2.4033 2.3155 2.0400 1.74213 2.4838 2.4387 2.3474 2.0429 1.74541 3.7878 3.6356 3.2435 1.6648 1.664895 2 3.9512 3.8830 3.7647 3.4006 2.97353 3.9770 3.9188 3.8022 3.4018 2.97451 5.8421 5.7082 5.5074 4.0392 2.7269100 2 5.9183 5.8396 5.6983 5.2566 4.69483 5.9413 5.8773 5.7399 5.2565 4.69281 8.3549 8.2549 8.1113 7.2494 5.5301105 2 8.3613 8.2809 8.1280 7.6307 6.94493 8.3866 8.3221 8.1724 7.6303 6.93921 11.2609 11.1988 11.0950 10.6364 9.2160110 2 11.2566 11.1789 11.0264 10.4994 9.71483 11.2858 11.2221 11.0713 10.5007 9.7072Average total ost for put options with T = 1, di�erent strike pries andnumber of timesteps per rebalaning time, for strategies: 1 - pieewise linearwith (10), 2 - quadrati with (10) and 3 - quadrati given by analytialformula; S0 = 100, � = :15, � = :2, r = :04.We remark that, in the ase of Strategy 1, the average values of the umulative ost inTable 1 and total risk in Table 2 are equal for some of the put options onsidered, as forexample, the out-of-money put options with 1 or 2 hedging opportunities. This happensbeause the holdings in the optimal hedging portfolio of Strategy 1 are zero. Therefore, if theput option is not in-the-money and the number of rebalaning opportunities is suÆientlysmall, the optimal hedging Strategy 1 is not to hedge at all. This is intuitively quitereasonable sine the likelihood of the option expiring out-of-money is large and one has noopportunity of further adjusting the hedging portfolio. The optimal hedging strategies 2and 3, on the other hand, still hoose to hedge these partiular put options. We remarkthat out-of-money put options with more hedging opportunities are hedged by Strategy 1.Experiments show that out-of-money put options whih are loser to expiry will be hedgedby Strategy 1.When the rebalaning is infrequent, the average values of the total risk for the quadratirisk minimizing strategies 2 and 3 are very lose. The same an be observed for the umula-12



Table 2: Average value of the total risk over 40000 senarios# of time steps per rebalaning timeStrike Strategy 25 50 100 300 6001 0.6031 0.7822 0.9276 0.9398 0.939890 2 0.6312 0.8410 1.1212 1.5727 1.77073 0.5336 0.7450 1.0377 1.5799 1.77591 0.7761 1.0419 1.3829 1.6648 1.664895 2 0.7918 1.0771 1.4687 2.1945 2.62223 0.6885 0.9641 1.3592 2.1993 2.62511 0.9790 1.2921 1.7293 2.5544 2.7269100 2 0.9877 1.3144 1.7784 2.7944 3.51173 0.8295 1.1636 1.6479 2.7914 3.51191 1.1000 1.4535 1.9668 3.1622 3.9566105 2 1.1068 1.4677 2.0051 3.2892 4.31843 0.9465 1.3180 1.8694 3.2774 4.31701 1.1240 1.5192 2.0798 3.4688 4.7912110 2 1.1308 1.5344 2.1240 3.6189 4.93663 1.0147 1.4171 2.0036 3.6027 4.9355Average total risk for the hedging of put options with di�erent strike priesand di�erent number of time steps per rebalaning time, for the three strate-gies and in the setup desribed in Table 1.tive ost. However, as the rebalaning beomes frequent enough, the total risk for Strategy2 beomes larger than the total risk for Strategy 3. The results maintain the same trendeven if we inrease the number of spline knots or hange their position. This suggests thatthe onstraint (10), on the form of the holdings leads to supplementary risk and a betterassumption has to be found.The numerial results in Tables 1 and 2 illustrate that the hedging strategies based on thepieewise linear and, respetively, quadrati risk minimization perform di�erently in termsof average umulative ost and risk. In the ase of the in-the-money put options, the valuesof the average umulative ost are very lose for all the three strategies. However, as theoption beomes out-of-money and the rebalaning is less frequent, the average umulativeost for Strategy 1 is almost half the average umulative ost of the quadrati strategies. Theaverage total risk has the same trend. Nevertheless, sine it may be possible to eliminatepart of the total risk for Strategies 1 and 2, by using a less restritive onstraint than(10), the above results do not show very learly the di�erene between the pieewise linearand the quadrati risk minimizing strategies. The numerial results obtained with a betterassumption on the form of the holdings will allow further disussion on this subjet.3.2. Seond formulationAs illustrated above, the onstraint that the holdings at any time tj depend only on theurrent stok prie, �j = Cj(Xj), may be too restritive. In order to obtain a betterformulation, let us analyze in more detail the holdings satisfying assumption (10). Consider13



the partiular ase of the at-the-money put options with 6 hedging opportunities. Figure2 shows the number of shares in the optimal hedging portfolio after the third rebalaningopportunity, for the quadrati risk minimizing Strategies 2 and 3.
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Strategy 3Figure 2. Number of shares in the hedging portfolio after the thirdrebalaning time for the at-the-money put option with 6 rebalaningopportunitiesWe an see that in the ase of Strategy 3, for the same value of the urrent stok prie,we may have di�erent number of shares in the hedging portfolio for the di�erent senarios.This is beause this hedging strategy depends not only on the urrent value of the stokprie, but also on the path of the stok prie up to the urrent time. However, sine theholdings for Strategy 2 satisfy assumption (10), they only depend on the urrent stok prieand this assumption an beome too restritive. Note, however, that the holdings obtainedunder (10) apture quite well the trend of the optional holdings. To further redue the risk,we have to inorporate the dependene on the path of the stok prie in the assumption onthe form of the holdings.Strategy 2 onsiders only the hedging strategies for whih the amount invested in thestok at any time tj depends only on the stok prie Xj at time tj . It may be morenatural to assume, however, that the investment in the stok at time tj also depends on theumulative gain up to time tj . We assume that the holdings depend linearly on the pastgain, spei�ally: �j = Dj(Xj) + 1Xj j�1Xi=0 �i�Xi; 8j = 1; : : : ;M � 1with Dj unknown ubi splines. As before, we make the onvention D0 � �0. After somealgebrai manipulation and ignoring the higher order terms ontaining produts �Xi1�Xi2 ,we obtain: �j = Dj(Xj) + 1Xj j�1Xi=0 Di(Xi)�Xi; 8j = 0; : : : ;M � 1:14



We introdue more degrees of freedom in the above formulation by allowing the e�etof the urrent stok prie, Xj , on the holdings at time tj to be di�erent from the e�et ofthe past stok pries, X0; : : : ; Xj�1.The assumption on the form of the holdings �j beomes:�j = Dj(Xj) + 1Xj j�1Xi=0 ~Di(Xi)�Xi; 8j = 0; : : : ;M � 1; (16)where for j � 1, Dj and ~Dj are unknown ubi splines with �xed end onditions and splineknots, while D0; ~D0 are onstant funtions. With this formulation, the pieewise linearoptimization problem (6) beomes:minV0;Dj; ~Dj LXk=1 ������H(k) � V0 �M�1Xj=0  Dj(X(k)j ) + j�1Xi=0 ~Dj(X(k)j )�X(k)iX(k)j !�X(k)j ������ (17)Problem (17) an be interpreted, similarly to problem (11), as a L1-optimization problemwith unknowns V0, D0, ~D0 and the values of the ubi splines Dj , ~Dj , j � 1 at their knots.The orresponding formulation for the quadrati risk minimization riterion is:minV0;Dj ; ~Dj LXk=10�H(k) � V0 � M�1Xj=0  Dj(X(k)j ) + j�1Xi=0 ~Dj(X(k)j )�X(k)iX(k)j !�X(k)j 1A2(18)We note that the number of knots for eah spline is usually small (around 8). Thenumber of unknowns in the above problems is approximately double to the number ofunknowns in the previous formulation.The optimization problems (17) and (18) allow us to ompute the optimal pieewiselinear and, respetively, quadrati risk minimizing strategies satisfying assumption (16) onthe form of the holdings in the hedging portfolio. We an now investigate the quality ofthis assumption using the three strategies:� Strategy 1: Pieewise linear risk minimizing strategy satisfying (16)� Strategy 2: Quadrati risk minimizing strategy satisfying (16)� Strategy 3: Quadrati risk minimizing strategy given by the analytial formula (13)We �rst re-examine the ase onsidered in Figure 3 of the at-the-money put optionwith 6 hedging opportunities. The number of shares in the optimal hedging portfolio forStrategies 2 and 3, after the third rebalaning time is shown in Figure 3. We remark thatthe values of the holdings for the optimal quadrati Strategy 2 satisfying onstraint (16)follow losely the values of the holdings for the theoretial quadrati Strategy 3.Tables 3 and 4 show the average values over 40000 senarios of the umulative ostand total risk, as de�ned before, for the above hedging strategies and di�erent numbers ofhedging opportunities. 15
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Strategy 2 Strategy 3Figure 3. Number of shares in the hedging portfolio after the thirdrebalaning time for the at-the-money put option with 6 rebalaningopportunitiesWe remark that in the ase of one hedging opportunity, the assumptions (10) and (16)on the form of the holdings oinide and, therefore, the last olumn in Tables 3 and 4 hasthe same results as the last olumn in Tables 1 and, respetively 2.As notied before, the optimal hedging Strategy 1 for some of the put options whih arenot in-the-money and have very few rebalaning opportunities, is not to hedge at all. Thisis shown by the fat that the holdings in the hedging portfolios for these options are zero,whih implies that the average umulative ost and the average total risk are equal.In ontrast with the numerial results presented earlier, the quadrati strategies 2 and3 now yield very lose values for the average umulative ost in Table 3 and, respetively,the average total risk in Table 4. We onlude that imposing the onstraint (16) on theform of the holdings in the hedging portfolio does not a�et signi�antly the optimal valueof the average total hedging risk over the 40000 simulated senarios.
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Table 3: Average value of the total ost over 40000 senarios# of time steps per rebalaning timeStrike Strategy 25 50 100 300 6001 2.2728 2.1093 1.5031 0.9398 0.939890 2 2.4504 2.4086 2.3224 2.0388 1.74213 2.4838 2.4387 2.3474 2.0429 1.74541 3.7964 3.6640 3.4080 1.6648 1.664895 2 3.9443 3.8885 3.7741 3.3983 2.97353 3.9770 3.9188 3.8022 3.4018 2.97451 5.8223 5.6896 5.5067 4.0644 2.7269100 2 5.9118 5.8455 5.7119 5.2530 4.69483 5.9413 5.8773 5.7399 5.2565 4.69281 8.2982 8.1835 8.0393 7.2893 5.5301105 2 8.3584 8.2882 8.1412 7.6261 6.94493 8.3866 8.3221 8.1724 7.6303 6.93921 11.2072 11.1146 10.9945 10.6934 9.2160110 2 11.2569 11.1881 11.0413 10.4945 9.71483 11.2858 11.2221 11.0713 10.5007 9.7072Average total ost for put options with di�erent strike pries and numberof time steps per rebalaning time, for the three strategies: 1 - pieewiselinear with (16), 2 - quadrati with (16) and 3 - quadrati given by analytialformula; same setup as in Table 1.
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Table 4: Average value of the total risk over 40000 senarios# of time steps per rebalaning timeStrike Strategy 25 50 100 300 6001 0.5033 0.6819 0.8874 0.9398 0.939890 2 0.5450 0.7497 1.0325 1.5722 1.77073 0.5336 0.7450 1.0377 1.5799 1.77591 0.6575 0.9062 1.2512 1.6648 1.664895 2 0.6952 0.9662 1.3551 2.1908 2.62223 0.6885 0.9641 1.3592 2.1993 2.62511 0.8246 1.1269 1.5635 2.5524 2.7269100 2 0.8563 1.1789 1.6518 2.7843 3.51173 0.8295 1.1636 1.6479 2.7914 3.51191 0.9380 1.2800 1.7897 3.1551 3.9566105 2 0.9722 1.3319 1.8802 3.2738 4.31843 0.9465 1.3180 1.8694 3.2774 4.31701 1.0140 1.3806 1.9099 3.4619 4.7912110 2 1.0460 1.4279 2.0079 3.6025 4.93663 1.0147 1.4171 2.0036 3.6027 4.9355Average total risk for put options with di�erent strike pries and numberof time steps per rebalaning time, for the three strategies and in the setupdesribed in Table 3.The numerial results suggest that assumption (16) leads to smaller average total hedg-ing risk than assumption (10). In the ase of the quadrati risk minimization, the averagetotal hedging risk is very lose to optimal. Therefore, we use the optimization problems(17) and (18) to ompute the optimal hedging strategies under the pieewise linear and thequadrati risk minimizing riteria.Tables 3 and 4 allow a learer omparison of the hedging strategies based on the tworiteria for risk minimization. We remark that the performane of these strategies dependson the moneyness of the options and on the number of rebalaning opportunities. Thepieewise linear risk minimizing strategy yields a smaller average umulative ost and riskfor almost all the options onsidered. However, for in-the-money put options the values forthe average umulative ost and, respetively, total risk are lose for all three strategies.The di�erenes tend to inrease as the put options are out-of-money and the rebalaningis less frequent. For the out-of-money put options with only 1 or 2 hedging opportunitiesthe average umulative ost for Strategy 1 is almost half the average umulative ost forStrategies 2 and 3. The same happens for the average total risk.Even if the market is inomplete due to the disrete hedging, many pratitioners arestill using delta hedging in order to hedge an option in the urrent framework. They hoosea self-�naning strategy suh that the initial value of the hedging portfolio, V0, is given bythe value of the option at t0, as omputed by the Blak-Sholes formula and the number ofshares, �k, at any hedging time tk is equal to the delta of the option at tk ,�k = ��V�S�tk ;18



where V denotes the value of the option as given by the Blak-Sholes formula. However,delta hedging insures a risk-free repliation of the option only if the hedging is ontinuous. Inthe ase of disrete rebalaning, delta hedging is no longer optimal sine the orrespondingportfolio is only instantaneously risk-free and the risk-free position does not last till thenext rebalaning time. Tables 5 and 6 show the average values of the umulative ost andrisk over the 40000 generated senarios for the delta hedging strategy in omparison tothe pieewise linear and quadrati risk minimizing strategies satisfying assumption (16) -Strategies 1 and 2, respetively.Table 5: Average value of the total ost over 40000 senarios# of time steps per rebalaning timeStrike Strategy 25 50 100 300 6001 2.2728 2.1093 1.5031 0.9398 0.939890 2 2.4504 2.4086 2.3224 2.0388 1.7421Delta 2.5583 2.5859 2.6454 2.8838 3.28191 3.7964 3.6640 3.4080 1.6648 1.664895 2 3.9443 3.8885 3.7741 3.3983 2.9735Delta 4.0702 4.1028 4.1763 4.4830 4.97931 5.8223 5.6896 5.5067 4.0644 2.7269100 2 5.9118 5.8455 5.7119 5.2530 4.6948Delta 6.0483 6.0897 6.1734 6.5382 7.10981 8.2982 8.1835 8.0393 7.2893 5.5301105 2 8.3584 8.2882 8.1412 7.6261 6.9449Delta 8.5011 8.5505 8.6407 9.0457 9.66071 11.2072 11.1146 10.9945 10.6934 9.2160110 2 11.2569 11.1881 11.0413 10.4945 9.7148Delta 11.4019 11.4537 11.5484 11.9712 12.5952Average total ost for put options with di�erent strike pries and numberof time steps per rebalaning time, for the three strategies: 1 - pieewiselinear with (16), 2 - quadrati with (16) and 3 - delta hedging; same setupas in Table 3.
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Table 6: Average value of the total risk over 40000 senarios# of time steps per rebalaning timeStrike Strategy 25 50 100 300 6001 0.5033 0.6819 0.8874 0.9398 0.939890 2 0.5450 0.7497 1.0325 1.5722 1.7707Delta 0.6366 0.8935 1.2681 2.2099 3.28361 0.6575 0.9062 1.2512 1.6648 1.664895 2 0.6952 0.9662 1.3551 2.1908 2.6222Delta 0.8042 1.1325 1.6160 2.8786 4.28461 0.8246 1.1269 1.5635 2.5524 2.7269100 2 0.8563 1.1789 1.6518 2.7843 3.5117Delta 0.9481 1.3385 1.9128 3.4582 5.13591 0.9380 1.2800 1.7897 3.1551 3.9566105 2 0.9722 1.3319 1.8802 3.2738 4.3184Delta 1.0576 1.4881 2.1282 3.8736 5.72161 1.0140 1.3806 1.9099 3.4619 4.7912110 2 1.0460 1.4279 2.0079 3.6025 4.9366Delta 1.1144 1.5725 2.2450 4.0892 5.9833Average total risk for put options with di�erent strike pries and numberof time steps per rebalaning time, for the three strategies and in the setupdesribed in Table 5.We remark that when the rebalaning is frequent, the values of the total hedging ostand risk for the delta hedging strategy are very lose, though slightly larger than the or-responding values for the pieewise linear and quadrati total risk minimizing strategies.However, as the number of rebalaning opportunities dereases, delta hedging an optionleads to muh larger hedging ost and risk than hedging the option by any of the twooptimal hedging strategies for total risk minimization.Next we analyze the distributions of the umulative ost and total risk for the at-the-money put option with 6 hedging opportunities. The average umulative ost from Table3 is 5:5067 for Strategy 1, 5:7119 for Strategy 2 and 5:7399 for Strategy 3. The histogramsfor eah strategy of the umulative ost over the 40000 simulated senarios are presentedin Figure 4. We mention that all three strategies have very few values of the umulativeost larger than the range of values illustrated in Figure 4, however, we hose this range inorder to make the �gure learer.
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1:6479. 65% of the total risk for Strategy 1 is less than the mean, while this happens 62%of the time for Strategies 2 and 3. The skewness in the ase of Strategy 1 is 3:4414, largerthan the skewness for Strategy 2, 2:0153, and Strategy 2, 2:1058. We note, however, that,as in the ase of the total hedging ost, Strategy 1 has also a small probability of largerrisk than Strategies 2 and 3. We remark that the distributions of Strategies 2 and 3, forboth umulative ost and risk, are very similar, another indiation that (16) is suÆientlyexible to apture the optimal risk performane.A similar behavior of the strategies based on the pieewise linear and quadrati riteriahas been observed in the ase of the loal risk minimization, as shown by Coleman et al.([2℄). Table 7 presents, for omparison, the average umulative ost over the same 40000senarios for the optimal pieewise linear (Strategy 1) and quadrati (Strategy 2) loal riskminimizing hedging strategies. We do not inlude the results for the average risk, sine therisk measure has di�erent meanings in the ase of the loal risk minimization and the totalrisk minimization.Table 7: Average value of the total ost over 40000 senarios for loal risk minimization# of time steps per rebalaning timeStrike Strategy 25 50 100 300 60090 1 2.1933 2.1043 1.8592 1.1690 0.93982 2.4846 2.4377 2.3487 2.0424 1.745495 1 3.7284 3.6485 3.3907 2.1243 1.66482 3.9785 3.9178 3.8036 3.4008 2.9745100 1 5.7803 5.7698 5.5225 4.2964 2.72692 5.9433 5.8765 5.7414 5.2550 4.6928105 1 8.3483 8.4152 8.1908 7.4178 5.53012 8.3889 8.3220 8.1738 7.6285 6.9392110 1 11.3760 11.5276 11.3383 11.0652 9.21602 11.2883 11.2226 11.0723 10.4989 9.7072Average total for the hedging of put options with di�erent strike pries andnumber of rebalaning opportunities, for the two strategies: 1 - pieewiselinear loal risk minimization, 2 - quadrati loal risk minimization; samesetup as in Table 3.As mentioned by Sh�al ([14℄), when the stok prie has a deterministi mean-varianetrade-o�, the expeted total hedging ost for the optimal quadrati loal risk minimizingstrategy is equal to the expeted total hedging ost for the optimal quadrati total riskminimizing strategy. We remark that the average umulative ost for the quadrati loalrisk minimizing Strategy 2 in Table 7 is very lose to the average umulative ost forthe quadrati total risk minimizing strategies 2 and 3 in Table 3 for all the put optionsonsidered. Sh�al ([14℄) suggests the interpretation of the total hedging ost as a fairhedging prie for the option. However, an example given by Merurio and Vorst ([12℄),shows that this is not always appropriate.We note that, in the ase of stati hedging, that is only one hedging opportunity, theloal risk minimization and the total risk minimization riteria oinide. This is why the22



numerial results for the pieewise linear and the theoretial quadrati risk minimizingstrategies in the last olumn of Table 3 are the same as the orresponding results in Table7. In the ase of the loal risk minimization the hedging performane of the strategies alsodepends on the moneyness of the options and on the number of rebalaning opportunities,with the average umulative ost for the pieewise linear loal risk minimizing strategybeing the smaller for the out-of-money and at-the-money put options. However, for in-the-money put options, the quadrati loal risk minimizing strategy is slightly better, eventhough the values are lose. The total risk minimization shows an improvement in terms oftotal hedging ost for the pieewise linear riterion, espeially in the ase of in-the-moneyput option. As a result, the average umulative ost for the pieewise linear total riskminimizing strategy is the smallest for almost all the put options onsidered.As shown by Coleman et al. ([2℄), the values of the optimal hedging portfolios for loalrisk minimization satisfy disrete hedging put-all parity. This is also true in the ase ofthe total risk minimization, the proof being very similar.Suppose that we have omputed the optimal holdings �p; �p in the portfolio for hedginga put option with maturity T , disounted strike prie K and M hedging opportunities at0 = t0 < t1 < : : : < tM�1 < tM := T . We an derive a relation between these holdings andthe orresponding optimal holdings �; � for the all option on the same underlying assetand with the same maturity, strike prie and hedging opportunities. We have the followingproperty: (�k = �pk + 1�k = �pk �Kfor all 0 � k �M � 1.Moreover, the disounted values of the portfolios for hedging the put and the all options,V pk and V k , satisfy the following put-all parity relation for all 0 � k �M :V k � V pk = Xk �K:Similarly, the relation between the umulative osts for the all and put options is givenby: Ck = Cpk +X0 �K;for all 0 � k �M .Therefore, if we know the optimal strategy for hedging the put option, we an omputethe optimal strategy for the all, diretly, without solving any optimization problems.4. Total risk minimization in a stohasti volatility frameworkIn this setion we assume that the stok prie follows a Heston type stohasti volatilitymodel ([8℄). The disounted stok prie X and its volatility Y satisfy a stohasti di�erential23



equation of the form: dXtXt = �Ytdt+ YtdZt (19)dYt = �4�� � Æ28Yt � �2Yt� dt+ Æ2dZ0twhere Zt and Z0t are Brownian motions with instantaneous orrelation �.In the Heston type model, the square of the volatility, F := Y 2 is a Cox-Ingersoll-Rosstype proess satisfying the stohasti di�erential equation:dFt = �(� � Ft)dt+ ÆpFtdZ0t (20)As in the previous setion, we assume the writer of a European option wants to hedgehis position using only the underlying stok and a bond, but he only has a �nite number ofhedging opportunities.Formula (5) given by Shweizer ([15℄), or the formula presented by Bertsimas et al.([1℄), an be used to ompute the optimal quadrati total risk minimizing strategy. Weompute both the pieewise linear and quadrati risk minimizing strategies as given by theoptimization problems (17) and (18) using Monte Carlo implementation.Sine the formulation of problems (17) and (18) depends on the entire stok prie path,we are interested in generating strongly onvergent disrete path approximations to thestohasti di�erential equations (19) and (20). We use Euler's method for equations (19)and (20) to generate senarios for the stok prie and volatility.The parameters for our numerial experiments are hosen as in Heath et al. ([6℄,[7℄),in whih the authors investigate ontinuous hedging under the total and loal quadratirisk minimizing riteria and provide omparative numerial results for a lass of stohastivolatility models. The values of the parameters are � = 0:5; � = 5; � = 0:04; Æ = 0:6 and� = 0. As emphasized by Heath et al. ([6℄,[7℄), these parameters satisfy Feller's test forexplosions: �� � 12Æ, whih insures a positive solution for Ft in the stohasti di�erentialequation (20). We generate 10000 senarios using 1024 time steps in Euler's method. Wehave also performed numerial experiments for 20000 simulated senarios, the results beingvery lose in value to the results presented below. The initial stok prie and volatility areX0 = 100 and Y0 = 0:2. The riskless rate of return is r = 0:04. As before, we want to hedgeput options with maturity T = 1 and di�erent strike pries.We �rst assume that the holdings in the hedging portfolio depend on the urrent stokprie and the past gains, their form being given by the onstraint (16):�j = Dj(Xj) + 1Xj j�1Xi=0 ~Di(Xi)�Xi; 8j = 0; : : : ;M � 1:We remark that this onstraint assumes the holdings are independent of the urrentvolatility. This is attrative, sine the volatility is not observable in the market. On theother hand, sine the volatility is no longer onstant in the urrent framework, it may bereasonable to assume that it also a�ets the form of the holdings. We will investigate latera di�erent onstraint on the form of the holdings whih takes into aount the volatility.However, the new formulation, while being omputationally more expensive to implement,does not improve signi�antly the average total hedging ost and risk.We ompute the total risk minimizing strategies satisfying assumption (16):24



� Strategy 1: Pieewise linear risk minimizing strategy� Strategy 2: Quadrati risk minimizing strategyTables 8 and 9 present the average values of the total hedging ost and risk over the10000 simulated senarios. We remark that the last olumn in these tables orresponds tothe stati hedging, when we only have one rebalaning opportunity, at time 0.Table 8: Average value of the total ost over 10000 senarios# of time steps per rebalaning timeStrike Strategy 16 64 128 512 102490 1 1.9433 1.5446 1.1637 1.0199 1.01992 2.3366 2.2365 2.2137 1.9469 1.734095 1 3.4682 3.2307 3.0079 1.7710 1.77382 3.7234 3.6141 3.5726 3.2049 2.9003100 1 5.4967 5.2277 5.1111 3.8699 2.89022 5.5977 5.4786 5.4225 4.9567 4.5512105 1 7.9197 7.7034 7.6502 7.0733 5.86292 8.0112 7.8777 7.8106 7.2709 6.7681110 1 10.8262 10.7099 10.6651 10.5153 9.54712 10.9231 10.7769 10.7051 10.1219 9.5382Average total ost for the hedging of put options with T = 1, di�erentstrike pries and number of rebalaning opportunities, for the two strategiessatisfying (16): 1 - pieewise linear, 2 - quadrati; X0 = 100, Y0 = 0:2,r = 0:04, � = 0:5, � = 5, � = 0:04, Æ = 0:6 and � = 0.The above numerial results follow the trend observed in the Blak-Sholes framework.For out-of-money and at-the-money put options the average umulative ost and risk for thepieewise linear risk minimizing strategy are muh smaller than the orresponding valuesfor the quadrati risk minimizing strategy. The di�erenes inrease as the rebalaning isless frequent. For the deep out-of-money put options with very few hedging opportunitiesthe values for the pieewise linear risk minimizing strategy are almost half the values forthe quadrati risk minimizing strategy.
25



Table 9: Average value of the total risk over 10000 senarios# of time steps per rebalaning timeStrike Strategy 16 64 128 512 102490 1 0.8395 0.9099 0.9901 1.0199 1.01992 0.9727 1.0942 1.2546 1.7399 1.898595 1 1.1469 1.2728 1.4854 1.7737 1.77382 1.2599 1.4251 1.6598 2.4190 2.7518100 1 1.4342 1.5745 1.8701 2.7670 2.89022 1.5274 1.7164 2.0283 3.1000 3.6495105 1 1.6076 1.7925 2.1315 3.4513 4.10892 1.7032 1.9303 2.3000 3.6521 4.4442110 1 1.7004 1.9156 2.2754 3.7799 4.85972 1.7915 2.0499 2.4533 4.0204 5.0373Average total risk for the hedging of put options with di�erent strike priesand number of rebalaning opportunities, for the two strategies and in thesetup desribed in Table 8.In the ase of the in-the-money put options, the two strategies yield lose values for theaverage umulative ost and risk, with the pieewise linear risk minimizing strategy beingbetter in most of the ases.We an also analyze the distributions of the total hedging ost and risk for the twohedging strategies. Figure 6 shows the histograms of the total hedging ost over the 10000simulated senarios for eah strategy, in the ase of the at-the-money put option with 8hedging opportunities.
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the distribution of the quadrati risk minimizing strategy. In the ase of Strategy 1, 65%of the umulative osts for Strategy 1 are less than the mean, while this happens only 55%of the time for Strategy 2. The skewness is 2:7526 for Strategy 1 and 1:3711 for strategy2. However, we remark again that pieewise linear risk minimization may lead, with a verysmall probability, to larger total hedging ost than the quadrati risk minimization.Figure 7 presents the histograms of the total hedging risk for the same at-the-moneyput option with 8 hedging opportunities. As shown in Table 9, the average total hedgingrisk is 1:8701 in the ase of Strategy 1 and 2:0283 in the ase of Strategy 2.
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Table 10: Average total hedging ost and squared net loss for Strat-egy 2 over 10000 senariosTime steps Cost Net loss1024 6.3182 32.9453512 6.8041 22.5713128 7.2715 9.515764 7.3155 6.488316 7.3260 3.7875Average total ost and squared net loss for the hedging of the put optionwith T = 1 and strike prie 100�exp(r�T ), for the quadrati risk minimizingstrategy; same setup as desribed in Table 8.We have remarked earlier in this setion that the onstraint (16) on the form of theholdings does not take into aount the volatility Yt. It may be reasonable to inludethe e�et of the volatility on the holdings in the hedging portfolio and use the followingonstraint: �j = Dj(Xj; Yj) + 1Xj j�1Xi=0 ~Di(Xi; Yi)�Xi; 8j = 0; : : : ;M � 1: (21)The unknown funtions Dj , ~Dj , j = 1; : : : ;M � 1, are now biubi splines with �xedend onditions and knots plaed with respet to the stok prie and volatility. For eahj = 1; : : : ;M � 1, Dj and ~Dj depend on the stok prie and the volatility at time tj . Weassume, as before, that D0 and ~D0 are onstant funtions.Solving an L1-optimization problem similar to (17) and, respetively, an L2-optimizationproblem similar to (18), we ompute the total risk minimizing strategies satisfying assump-tion (21):� Strategy 1: Pieewise linear risk minimizing strategy� Strategy 2: Quadrati risk minimizing strategySine the assumption (21) involves biubi splines, omputing the above optimal strate-gies is muh more expensive than omputing the optimal strategies satisfying (16).The average values of the umulative hedging ost and risk for these two strategiesover the 10000 simulated senarios are presented below, in Tables 11 and 12, respetively.In order to make the omparison easier, we also reprodue the orresponding results fromTables 8 and 9. We remark that in the ase of the stati hedging, assumptions (16) and (21)oinide. This is why, in Tables 11 and 12, the olumns for 1024 time steps per rebalaningtime, whih orrespond to stati hedging in our implementaton, oinide.28



Table 11: Average value of the total ost over 10000 senarios# of time steps per rebalaning timeWith assumption (18) With assumption (13)Strike Strategy 128 512 1024 128 512 102490 1 1.2055 1.0186 1.0199 1.1637 1.0199 1.01992 2.1913 1.9507 1.7340 2.2137 1.9469 1.734095 1 2.9708 1.7715 1.7738 3.0079 1.7710 1.77382 3.5455 3.2149 2.9003 3.5726 3.2049 2.9003100 1 5.0478 3.9188 2.8902 5.1111 3.8699 2.89022 5.3959 4.9729 4.5512 5.4225 4.9567 4.5512105 1 7.6027 7.0814 5.8629 7.6502 7.0733 5.86292 7.7734 7.2961 6.7681 7.8106 7.2709 6.7681110 1 10.6063 10.5019 9.5471 10.6651 10.5153 9.54712 10.6836 10.1544 9.5382 10.7051 10.1219 9.5382Average total ost for the hedging of put options with di�erent strike priesand number of rebalaning opportunities, for the two strategies satisfying(21): 1 - pieewise linear, 2 - quadrati; same setup as desribed in Table8. Table 12: Average value of the total risk over 10000 senarios# of time steps per rebalaning timeWith assumption (21) With assumption (16)Strike Strategy 128 512 1024 128 512 102490 1 0.9464 1.0193 1.0199 0.9901 1.0199 1.01992 1.2028 1.7407 1.8985 1.2546 1.7399 1.898595 1 1.4197 1.7726 1.7738 1.4854 1.7737 1.77382 1.6107 2.4152 2.7518 1.6598 2.4190 2.7518100 1 1.8175 2.7492 2.8902 1.8701 2.7670 2.89022 1.9414 3.0880 3.6495 2.0283 3.1000 3.6495105 1 2.1104 3.4145 4.1089 2.1315 3.4513 4.10892 2.2950 3.6276 4.4442 2.3000 3.6521 4.4442110 1 2.2754 3.7335 4.8597 2.2754 3.7799 4.85972 2.4102 3.9797 5.0373 2.4533 4.0204 5.0373Average total risk for the hedging of put options with di�erent strike priesand number of rebalaning opportunities, for the two strategies and in thesetup desribed in Table 11. 29



Computing the optimal strategies satisfying the onstraint (21) on the form of theholdings is expensive, however, these strategies do not lead to signi�antly better umulativehedging ost or risk, as an be seen by omparing the values of the umulative ost and riskfor these strategies to the orresponding values for the optimal hedging strategies satisfyingthe onstraint (16). Moreover, assumption (21) relies on the values of the volatility, whihare not diretly observable in the market. In onlusion, it seems reasonable to omputethe optimal hedging strategies in this framework by solving the optimization problems (17)and (18), even if their formulation takes into aount only the dependene of the holdingsin the hedging portfolio on the stok prie path.The numerial results presented in this setion refer to hedging put options. However,as mentioned at the end of Setion 3, hedging all options is losely related to hedgingput options on the same underlying asset and with the same maturity and strike prie.The optimal hedging portfolio values satisfy disrete hedging put-all parity. Moreover, ifthe holdings in the optimal portfolio for hedging the put options are known, the optimalholdings for the all options an be omputed diretly, without solving any optimizationproblems.5. Shortfall risk minimizationAn important ritiism of the quadrati risk minimizing riterion, whih is also valid forthe pieewise linear risk measure, is the fat that it penalizes symmetrially losses, as wellas gains.It has been argued (see Bertsimas et al. [1℄) that, in the ase of priing an option, asymmetri risk measure is the natural hoie, sine we do not know a priori if the option isbeing sold or purhased. However, when hedging an option, one tries to repliate the optionpayo� by onstruting a hedging portfolio and he may be interested in penalizing only theosts and not also the pro�ts from his position.We will investigate here only the perspetive of the writer of an option. When using aself-�naning strategy to hedge an option with payo� H and maturity T , the total risk forthe writer of the option is given by the di�erene between the payo� H and the �nal valueof the hedging strategy, VM . Even if VM does not math exatly H , if VM � H the writeris still on the safe side, that is, he an over the option payo� with no suplementary inowof apital. Therefore, the writer of the option may prefer to hoose a hedging strategy thatminimizes only the shortfall risk, E((H � VM )+):minE((H � VM)+); (22)and not the total risk, E(jH � VM j) or E((H � VM)2).A self-�naning hedging strategy suh that VM � H , a.s., is alled a super-repliatingstrategy. Unfortunately, the minimum initial ost of a super-repliating strategy is oftentoo high. Moreover, in pratie, one may be inlined not to use a super-repliating hedgingstrategy if he an make higher pro�ts by aepting the risk of a loss.In order to see that it an be quite expensive to super-repliate an option, we ompare theminimum initial ost of a super-repliating strategy - obtained by minimizing E((H�VM)+)- with the initial ost of the total risk minimizing strategies desribed in Setion 3:1 -omputed by minimizing E(jH � VM j) and E((H � VM)2), respetively. The numerial30



results refer to the hedging put options with maturity T = 1 and di�erent strike pries whenwe only have a �nite number of hedging opportunities at 0 = t0 < t1 < : : : < tM := T . Thestok prie follows a Blak-Sholes model with instantaneous expeted return � = :15 andvolatility � = :2. The initial stok prie is S0 = 100. We generate 40000 senarios for thestok prie using Monte Carlo simulation. The riskless rate of return is r = :04.An optimal super-repliating strategy for (22) an be obtained in a similar way to theomputation of a total risk minimizing strategy desribed in Setion 3:1, by assuming thatthe optimal holdings have the speial form given by (16). Moreover, sine,(H � VM)+ = 12(H � VM + jH � VM j) (23)problem (22) an be implemented as a linear programming problem.Table 13 shows the minimum initial ost for a super-repliating strategy satisfying as-sumption (16), in omparison with the initial ost of the pieewise linear total risk mini-mizing strategy - Strategy 1 - and the quadrati total risk minimizing strategy - Strategy 2- satisfying the same assumption.Table 13: Initial portfolio ost# of time steps per rebalaning timeStrike Strategy 50 100 300 600Super-repliate 7.4806 10.3742 19.5669 28.137890 1 1.9022 1.0070 0.0000 0.00002 2.4086 2.3224 2.0388 1.7421Super-repliate 9.7100 12.7437 22.2787 32.286195 1 3.5152 3.0875 0.0000 0.00002 3.8885 3.7741 3.3983 2.9735Super-repliate 12.3146 15.3754 24.9454 35.7017100 1 5.5279 5.2248 2.7110 0.00002 5.8455 5.7119 5.2530 4.6948Super-repliate 15.3226 18.1656 27.7273 39.3592105 1 8.0693 7.8209 6.5076 3.25952 8.2882 8.1412 7.6261 6.9449Super-repliate 18.9710 21.4535 30.8217 43.1454110 1 11.0098 10.9945 10.1126 7.63822 11.1881 11.0413 10.4945 9.7148Initial portfolio ost for put options with di�erent strike pries and num-ber of time steps per rebalaning time, for the three strategies: super-repliating, 1 - pieewise linear and 2 - quadrati; same setup as in Table1.We an see from Table 13 that buying the initial portfolio for super-hedging is muhmore expensive than buying the initial portfolio for total risk minimization. Therefore,omputing a hedging strategy by simply minimizing the shortfall risk E((H�VM )+) is notvery attrative from a pratial point of view, even if a super-repliating strategy preventsthe risk of any loss at the maturity of the option. In these onditions, an investor who31



still wants to penalize only the shortfall risk, but has a given initial apital and is willingto aept some risk of loss, may hoose an optimal self-�naning hedging strategy in thefollowing way: min E((H � VM)+) (24)s.t. V0 givenThe above riteria for minimizing the shortfall risk has been studied by F�ollmer andLeukert ([3℄), and Runggaldier ([13℄).Alternative to penalizing the positive values of H � VM , by minimizing E((H �VM)+),one may try to penalize those values whih are above the mean. This orresponds tominimizing: E �(H � VM � E(H � VM))+� : (25)However, note that, sine for a self-�naning strategy, VM = V0 +PM�1k=0 �k�Xk, wehave: H � VM � E(H � VM) = H � E(H)�M�1Xk=0 �k�Xk +E(M�1Xk=0 �k�Xk)Therefore, the initial value of the hedging portfolio, V0 annot be determined by mini-mizing (25). In these onditions, a natural idea is to impose the onstraint:E(H � VM) = 0, V0 = E(H �M�1Xk=0 �k�Xk); (26)that is, the initial value of the hedging portfolio is equal to the expeted value of thedi�erene between the option payo� and the umulative gain of the portfolio. With thisonstraint, riterion (25) beomes: min E((H � VM)+) (27)s.t. E(H � VM) = 0By (23), this riterion is equivalent to:min E(jH � VM j) (28)s.t. E(H � VM) = 0Assuming that the holdings have the speial form given by (16):�j = Dj(Xj) + 1Xj j�1Xi=0 ~Di(Xi)�Xi; 8j = 0; : : : ;M � 1;an optimal strategy for the above problem an be omputed is a similar way to the pieewiselinear total risk minimization problem (6).We remark that the shortfall risk minimization problem (27) is not equivalent to problem(24), sine (27) imposes a relation between the optimal holdings �k and the initial value ofthe hedging portfolio, V0. 32



In order to investigate the two shortfall risk minimization riteria (24) and (27), we �rstompute the optimal hedging strategy for the seond riterion, (27), then using the initialvalue of this hedging strategy as given value for V0, we alulate the optimal holdings forthe strategy based on the �rst riterion, (24).We denote by Strategy 3, the optimal strategy solving the �rst shortfall risk minimizationproblem, (24), and by Strategy 4, the optimal strategy for the seond problem, (27). Weremark the the initial portfolio values, V0, are the same for both strategies, however, theholdings, �k , are di�erent. For omparison with the minimum initial ost super-repliatingstrategy, Table 14 illustrates the values of V0 for Strategy 4, for the same put options as inTable 13. Table 14: Initial portfolio ost# of time steps per rebalaning timeStrike 50 100 300 60090 2.2065 2.0562 1.4911 1.248695 3.7236 3.5833 2.8130 2.3168100 5.7089 5.5760 4.8485 3.9832105 8.1940 8.0620 7.5616 6.3626110 11.1355 11.0106 10.7330 9.5202Initial portfolio ost for hedging put options with di�erent strike pries andnumber of time steps per rebalaning time, for the optimal shortfall riskminimizing strategy solving (27); same setup as in Table 1.We remark that the initial portfolio values for strategies 3 and 4 are muh smaller thanthe initial values for the minimal ost super-repliating strategy and they are omparableto the initial portfolio values for the total risk minimizing strategies.Strategies 3 and 4 have a reasonable initial ost ompared to the super - repliatingstrategy. However, this redution in the initial ost has been ahieved by allowing a nonzeroprobability of a loss. While a super - repliating strategy prevents any loss, Strategies 3and 4 have a nonzero shortfall risk. Table 15 illustrates the average values of the shortfallrisk, (H � VM)+, over 40000 senarios for the hedging strategies 3 and 4. We note thatthe shortfall risk inreases as the options beome more in-the-money and we rebalaneless frequently. Moreover, sine Strategy 3 minimizes the shortfall risk for a given initialportfolio, this strategy yields smaller values of the shortfall risk than Strategy 4, whih hasthe same initial investment.
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Table 15: Average value of the shortfall risk over 40000 senarios# of time steps per rebalaning timeStrike Strategy 50 100 300 60090 3 0.2826 0.4280 0.6768 0.75784 0.3437 0.4735 0.6904 0.763295 3 0.3638 0.5571 0.9822 1.17614 0.4570 0.6391 1.0279 1.1957100 3 0.4349 0.6782 1.2353 1.61824 0.5597 0.7847 1.3547 1.6781105 3 0.4944 0.7534 1.3846 1.98444 0.6498 0.9008 1.6037 2.1252110 3 0.5288 0.8007 1.4518 2.19054 0.7035 0.9693 1.7426 2.4653Average value of the shortfall risk for hedging put options with di�erentstrike pries and number of time steps per rebalaning time, for the optimalshortfall risk minimizing strategies solving (24) and (27); same setup as inTable 1.We an also ompute the average values of the shortfall risk, (H � VM)+, over thesame 40000 paths, for the pieewise linear and quadrati total risk minimizing Strategies1 and 2, respetively. These values will ertainly be larger than the orresponding valuesfor Strategies 3 and 4, whih are shortfall risk minimizing strategies. However, the resultsprovide interesting information about the behavior of the total risk minimizing strategies.The average shortfall risk for Strategies 1 and 2 is illustrated in Table 16.We remark from Table 16 that the quadrati total risk minimizing Strategy 2 alwaysyields smaller average shortfall risk than the pieewise linear risk minimizing Strategy 1.Using the relation: jH � VM j = (H � VM)+ + (VM �H)+; (29)we an analyze the average values of the shortfall risk, (H � VM)+, from Table 16, inomparison with the average values of the total hedging risk, jH � VM j, from Table 4.While in the ase of Strategy 2, the average shortfall risk is approximately half the averagetotal risk, in the ase of Strategy 1, these values are muh loser, espeially for out-of-moneyput options. By (29), it follows that Strategy 1 typially underhedges the options, whileStrategy 2 shows no trend for either underhedging, or overhedging.
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Table 16: Average value of the shortfall risk over 40000 senarios for the pieewise linearand quadrati total risk minimizing strategies# of time steps per rebalaning timeStrike Strategy 50 100 300 60090 1 0.4446 0.7533 0.9398 0.93982 0.3920 0.5299 0.7868 0.885495 1 0.5306 0.8057 1.6648 1.66482 0.4905 0.6850 1.0966 1.3111100 1 0.6222 0.9088 1.9555 2.72692 0.5868 0.8259 1.3938 1.7558105 1 0.7043 0.9979 1.9898 3.11362 0.6690 0.9420 1.6385 2.1592110 1 0.7650 1.0773 2.0424 3.18452 0.7214 1.0160 1.8026 2.4683Average value of the shortfall risk for hedging put options with di�erentstrike pries and number of time steps per rebalaning time, for the optimaltotal risk minimizing strategies 1 and 2; same setup as in Table 1.We will now investigate the umulative hedging ost. Table 17 illustrates the averagevalues of the umulative hedging ost over 40000 senarios for the shortfall risk minimizingStrategies 3 and 4. For omparison we inlude the orresponding values from Table 3 forthe pieewise linear and quadrati total risk minimizing strategies satisfying (16).As illustrated in Table 17, even if the two shortfall risk minimizing strategies start withthe same investment in the hedging portfolio, Strategy 4, whih has to satisfy the onstraintE(H � VM) = 0, yields larger values of the average umulative hedging ost than Strategy3. We also note that using a quadrati riterion for minimizing the risk leads to the largesthedging ost, as an be seen by omparing the ost for Strategy 2 to the ost of the otherthree strategies. The performane of the hedging strategies also depends on the moneynessof the options and the number of rebalaning opportunities: the pieewise linear total riskminimization has the smallest average ost when the put options are out-of-the-money andthe rebalaning in infrequent, however, as the options beome in-the-money or the numberof hedging opportunities inreases, the shortfall risk minimization riterion (24) is the leastexpensive on average.
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Table 17: Average value of the total ost over 40000 senarios# of time steps per rebalaning timeStrike Strategy 50 100 300 6001 3.6640 3.4080 1.6648 1.664895 2 3.8885 3.7741 3.3983 2.97353 3.2156 3.1629 2.5151 2.15554 3.7236 3.5833 2.8130 2.31681 5.6896 5.5067 4.0644 2.7269100 2 5.8455 5.7119 5.2530 4.69483 5.0506 5.0474 4.2289 3.61244 5.7089 5.5760 4.8485 3.98321 8.1835 8.0393 7.2893 5.5301105 2 8.2882 8.1412 7.6261 6.94493 7.3748 7.3405 6.5371 5.63654 8.1940 8.0620 7.5616 6.3626Average total hedging ost for put options with di�erent strike pries andnumber of time steps per rebalaning time, for the total risk minimizingstrategies: 1 - pieewise linear and 2 - quadrati and the shortfall riskminimizing strategies: 3 - strategy solving (24), 4 - strategy solving (27);same setup as in Table 1.As in Setion 3:1, we investigate the distributions of the shortfall risk and umulativeost for the shortfall risk minimizing Strategies 3 and 4, in the partiular ase of the at-the-money put options with 6 hedging opportunities. The histograms of the shortfall risk,(H � VM)+, over the 40000 simulated senarios are presented in Figure 8. We mentionthat the strategies have a few values of the shortfall risk outside the represented interval,however, we hose this range to make the �gure learer.From Table 15 the average values of the shortfall risk are 0:6782 for Strategy 3 and0:7847 for Strategy 4. The distributions of the shortfall risk for the two strategies are verysimilar in the hosen interval. However, Strategy 3 has a longer right tail, outside theinterval. This an be seen from the values of the skewness: 6:6456 for Strategy 3, omparedto 4:2451 for Strategy 4.
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of his position; if one prefers to penalize both losses and gains, he has to hoose a symmetririsk measure, suh as the total risk measure.5. ConlusionsIn a omplete market, there exists a unique self-�naning strategy that exatly repliates theoption payo�. Market ompleteness is not, however, a realisti assumption. For example,introduing stohasti volatility or volatility with jumps in the Blak-Sholes model in orderto explain the market data, or allowing for disrete hedging, leads to an inomplete market.If the market is inomplete, the optimal hedging strategy for an option depends on theriterion for measuring the risk. The traditional strategies found in the literature are basedon quadrati risk measures.We investigate alternative pieewise linear risk minimizing riteria for total-risk mini-mization. Unfortunately, there are no analyti solutions to the pieewise linear risk mini-mization problem. Sine a diret approah to this dynami stohasti programming problemmay be omputationally very expensive, we obtain the optimal pieewise linear risk min-imizing strategies using Monte Carlo simulations and approximating the holdings in thehedging portfolio by ubi splines. We analyze this approah in the Blak-Sholes andstohasti volatility frameworks.The numerial results illustrate that, as in the ase of the loal risk minimization, thepieewise linear total risk minimization riterion typially leads to smaller average hedgingost and risk. We remark that the hedging performane of the optimal strategies dependson the moneyness of the options and on the number of rebalaning opportunities. Thehedging strategies based on pieewise linear risk minimization have quite di�erent, and oftenpreferable, properties ompared to the traditional, quadrati risk minimizing strategies. Thedistributions of the umulative ost and risk show that these new strategies have a largerprobability of small ost and risk, though they also have a very small probability of largerost and risk. We also remark that in the stohasti framework analyzed in this paper,the volatility does not signi�antly a�et the average total ost and risk of the hedgingstrategies.Comparing the hedging performane of the optimal strategies for pieewise linear andquadrati total risk minimization to the performane of the shortfall risk minimizing strate-gies, we note that the quadrati riterion yields the largest values of the average umulativehedging ost. Shortfall risk minimization may lead to smaller average umulative hedgingost than pieewise linear risk minimization, depending on the moneyness of the optionsand the number of hedging opportunities.By analyzing the values of the shortfall risk for the pieewise linear and quadrati totalrisk minimizing hedging strategies, we infer that the pieewise linear riterion typially leadsto options being underhedged, while quadrati total risk minimization shows no trend foreither overhedging, or underhedging the options.A shortfall risk measure may be more attrative than a total risk measure when one triesto hedge an option and he is inlined to penalize only the osts of his position. However,shortfall risk minimization annot be used for priing the option, while total risk minimiza-tion an be used for both hedging and priing. Moreover, when one prefers to penalize bothlosses and gains, a shortfall risk measure is no longer appropriate.38
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