
he problems of financial engineering,
and more generally quantitative finance,
represent an important class of com-
putationally intensive computing

problems arising in industry. Many of these
computation-intensive problems involve portfolio
calculations. Examples include determining the
fair value of a portfolio (of financial instruments),
computing an effective portfolio hedging strategy,
calculating the value-at-risk of a portfolio and
determining an optimal rebalance of the portfolio.
Because of the size of many practical portfolios,
and the complexity of modern financial instru-
ments, the computing time to solve these prob-
lems can take many hours, even days. However,
with the movement of many organizations to
automated (near) real-time systems, speed is of
paramount importance. Days, even hours, may
be impractical.

Moreover, the computing challenge increases as
future “scenarios” are considered. For example,
hedge fund managers wish to peek into the
future. How will the value of my portfolio of
convertibles change going forward if interest
rates climb but the underlying declines and
volatility increases? If the risk of default of a
corporate bond issuer rises sharply over the next
few years, how will my portfolio valuation be
impacted? Can I visualize some of these depend-
encies and relationships evolving over the next
few years? Within a range of parameter fluctua-
tions, what is the worst case scenario? Clearly
such “what if” questions can help a fund manag-

er decide today on portfolio adjustments and
hedging possibilities. However, peering into
the future can be very expensive. Even modest
“futuristic” questions can result in many hours of
computing time on powerful workstations.

How is one to significantly speed up these
calculations to allow for aggressive portfolio
management? There are several possible roads to
take. One ill-advised solution is to cheat: e.g.,
reduce the number of simulations (disregarding
accuracy concerns), use very coarse approxima-
tions, cut corners, etc. Of course using coarser
approximations can sometimes work in numerical
work but accuracy implications must be carefully
understood: There is no point in computing a dan-
gerously wrong answer, fast or slow! A second
approach is to exploit problem structure and
apply tailored structured numerical techniques in
the design of the solution – this can sometimes
produce dramatic improvements in running times
(a good example here is efficient frontier calcula-
tions in the context of a portfolio representation
using factors. We will discuss this type of example
in greater detail in a subsequent article.) Yet
another alternative is to move the entire portfolio
system to a supercomputer. This certainly can be
effective though, unless a supercomputer is
conveniently at hand, this approach can certainly
be costly. It may also involve the use of more than
one environment – moving between system
environments can lead to errors as well as “real”
time delays. This can be a cumbersome, inefficient
and “user unfriendly” approach.

Universal Coverage of Financial Innovation www.fenews.com

T H E N E W S P A P E R O F F I N A N C I A L E N G I N E E R I N G™

FINANCIAL
ENGINEERING

NEWS
Copyright © 2006. From the July/August issue of Financial Engineering News. For a free subscription to Financial Engineering News, visit www.fenews.com/subscriptions.

T

continued on next page

http://www.fenews.com/subscriptions
http://www.fenews.com/
http://www.fenews.com/
http://www.fenews.com/
http://www.fenews.com/
http://www.fenews.com/
http://www.fenews.com/

Exploitation of parallelism, in the setting
of (commodity) clusters, provides another
approach which can be quite effective, and
relatively low-cost, for many of the com-
pute-intensive problems that arise in
finance. A cluster is just a collection of
processors (or machines) in some way
linked together, or grouped, so that togeth-
er they can be orchestrated to solve a single
problem. The word “commodity” is used to
indicate that these need not be expensive
specialized processors, but can be proces-
sors used in standard PCs or, in some cases,
standard servers.

The use of clusters in scientific computing
has been a significant growth area in the
last few years – many of the largest
machines in the world are really just
clusters of processors linked with an inter-
connect (to allow communication). Indeed,
many of the big Wall Street firms are using
clusters in some computational contexts
and currently exploring their use in others.
Some of these efforts tie in with grid com-
puting; this is the technology which locates
appropriate computing resources, in a
given universe of possible resources, and
then makes those resources available for a
given requested task. In many cases,
though not always, the computing
resources that are corralled for use form a
commodity cluster.

Conveniently locating parallelism in a
large-scale scientific computing task, and
then exploiting this parallelism in a pro-
ductive way, is generally not easy. In addi-
tion, a solution, once developed, is often
not transportable and may have a short
shelf life. The many challenges in parallel
scientific computing include determining
the appropriate level of granularity, deter-
mining a good trade-off between compu-
tational and communication concerns,
effective data distribution, and coordina-
tion/synchronization of computing tasks.
Add to this mix of concerns the reality of
existing legacy code codes and the use of
third-party software and you can feel a
real headache coming on. It is no wonder
that commercial and industry use of paral-
lel computing has seriously lagged the use
of this technology in university and gov-
ernment labs (where teams of Ph.D.s can
often be dedicated to these tasks).

There is progress. Increasingly there are
tools, public and commercial, to help with
the effective parallel use of a cluster envi-
ronment. Argonne National Labora-tories
has a set of tools available to enhance grid,
cluster and parallel computing (http://
www-fp.mcs.anl.gov/division/software/).
On the commercial side, companies such as
Aspeed (http://www. aspeed.com/) and
Data-synapse (http://www.datasynapse.
com/) have commercially available prod-
ucts with particular applicability and expe-
rience in the financial services sector.
There are also more basic free tools now
available – both for communication and
computation, for help in the design of
parallel “cluster-friendly” computational
finance procedures. Many basic building
blocks are now available.

However, our thesis is that many of the compu-
tationally intensive problems that arise in
finance are actually easier to solve using paral-
lelism within a commodity cluster environment,
than many of the more traditional large-scale
scientific problems (e.g., design of an aircraft
wing). The reason is that often the comput-
ing demands are severe primarily because
the portfolios are large. This type of request
often leads to a “loosely-coupled” computa-
tion, where the bulk of the work can be
computed in large chunks with relatively
little communication or coordination.
Hence, a simple master-worker framework
can be used. The master processor, perhaps
the desktop machine, doles out work as it
becomes available in good-sized chunks to
processors (as they finish their previous
tasks and are thus ready for more work).

Many portfolio evaluation problems, hedg-
ing problems and risk computations have
exactly this flavor. And there is more good
news. In this setting, i.e., when solving
computationally intensive problems that
are loosely coupled, it may be possible to
design an effective parallel approach tar-
geted to clusters without a large invest-
ment in hardware or specialized parallel
tools and software. Indeed in our
Manhattan center, the Cornell-Waterloo
Solutions Lab (formerly CTC-Manhattan),
we have illustrated that many significant
finance problems can be effectively solved
in an environment that is already common
in many workplaces: a Web services cluster
environment with computations driven
straight from an Excel spreadsheet repre-
sentation of a portfolio. A graphical
representation of the environment we have
in mind is given in Figure 1. A short
description of a Web service is given in the
appendix at the end of this article.

This can be particularly attractive in finance
since an Excel representation of a portfolio
is common. Note that a special interconnect,
beyond Internet connectivity, is not needed
and the cluster need not be local (and could
be distributed in disperse regions of the
world.) This is not a general solution for
many of the large-scale problems that arise
in the scientific computing community; it
is a very effective solution of some of the
common large-scale portfolio problems that
arise in finance. Note also that while we
have specifically worked with .Net and
Windows clusters in our lab, Linux solutions

continued on next page

Remote Windows Cluster

Each node performs assigned computations
independently of all other nodes.

Desktop

Portfolio inputs

Excel

View results

.NET web services

Internet

Figure 1. Desktop Access to Cluster Using Web Services

Copyright © 2006. From the July/August issue of Financial Engineering News. For a free subscription to Financial Engineering News, visit www.fenews.com/subscriptions.

http://www.fenews.com/subscriptions
http://www.fenews.com/
http://www.fenews.com/

(perhaps with an Excel front-end) are also
possible. What is required is that cluster
processors are designated Web servers.

Table 1 lists some of the general computa-
tional finance (portfolio) problems that can
be effectively solved in the Web services
framework.

For example, consider the problem of
evaluating a portfolio of fairly complex
instruments, say callable bonds. Assume
the instruments vary in their features and
hence must be evaluated independently,
and the evaluation of each instrument is
fairly costly, perhaps requiring about one
minute on a single processor. Finally
assume that beyond the portfolio value, we
require portfolio greeks, delta and gamma,
and approximate risk values VaR and CVaR
(value-at-risk, conditional value-at-risk).
This type of request arises frequently in
finance. The key features are the evaluation
of each instrument is independent and
fairly costly, and there is little communica-
tion required.

The environment illustrated in Figure 1 can
be used to solve this problem. The entries
of each bond can be entered on the desktop
(master) using Excel – the parameters of a
bond are communicated via .NET to an idle
server (processor) which computes the fair
value of the instrument (and delta,
gamma) and the result is communicated
back to the master. On completion the
master has computed the portfolio value,
delta and gamma as well as short-term VaR
and CVaR (using a delta-gamma approxi-
mation). Our experiments indicate that
computing times can be reduced dramati-
cally in this environment relative to a sin-
gle processor. For example, the evaluation
of a portfolio of 1,000 bonds required 7.5
minutes on a 64-node cluster versus
almost seven hours on a single processor.
We have transformed seven hours into
seven minutes.

Two advantages of this approach are that a
familiar portfolio manager, Excel, can be
used; the preferred algorithm to evaluate a
single instrument is used unchanged
(repeatedly, on different processors). It is
interesting to note, however, that if the

instruments were simple, requiring little
computation per instrument, then this
approach must be modified to be effective
– sending a single instrument to be priced
on a processor is not effective since then
there is relatively too much communica-
tion relative to the computation demands.
A solution is to “bunch up” the requests to
evaluate instruments. n

Acknowledgements

The observations in this article rest on
research and development performed by our
group at the Cornell-Waterloo Solutions Lab
in Manhattan. Especially, we thank Shirish
Chinchalkar for all his help.

Appendix: A Web Service

A Web service is an element of function-
ality, such as a method or a function
call, which is exposed through a Web
interface. Any client on the internet can
use this functionality by sending a text
message encoded in XML to a server,
which hosts this functionality. The server
sends the response back to the client
through another XML message. For exam-
ple, a Web service could compute the
price of an option given the strike, the
stock price, volatility and interest rate.
Any application over the internet could
invoke this Web service whenever it needs
the price of such an option.

1. There are several advantages in using
Web services to perform computations:
XML and HTTP are industry standards. This
means that we can write a Web service in
Java or Linux and invoke it from a Windows
application written in C# and vice versa.

2. Using Microsoft’s NET technology, we
can invoke Web services from office
applications such as Microsoft Excel. This
feature is especially useful in the financial
industry, since a lot of end-user data is
stored in Excel spreadsheets.

3. No special-purpose hardware is
required for running Web services. Even
different types of computers in different
locations can be used together as a Web
services cluster.

4. Since the Web service resides only on
the Web server(s), the client software does
not need to be updated every time the
Web service is modified. (However, if the
interface changes, the client will need to
be updated.)

5. The Web service code never leaves the
server, so proprietary code can be protected.

About the Author

Dr. Thomas Coleman is chairman of the
Faculty of Mathematics at the University of
Waterloo (Ontario, Canada).

FOR MORE INFORMATION:
Roger Lang
Director, Corporate Relations
Cornell Operations Research Manhattan
55 Broad St.
New York, NY 10004
212-363-2915 x 13
RLang@tc.cornell.edu
www.orie.cornell.edu/manhattan

Table 1. Solving Computational Finance Problems
on a Cluster Accessed Using Web Services

Problem ? Solution: Use a Cluster Accessed Using Web Services
Price a portfolio of callable bonds. ? Price an individual bond (or a subset of all bonds) on a node, repeat

as necessary.
Price a portfolio of risky bonds. ? Price an individual bond (or a subset of all bonds) on a node, repeat

as necessary.
Compute VaR and CVaR. ? Run a set of Monte Carlo interest rate simulations on each node;

collect, aggregate and display results on desktop.
Do “what-if” analysis for convertible ? Construct set of considered possibilities on desktop; send subsets
bonds (for more details about this of possibilities to nodes; collect results, analyze on desktop.
example, see below).
Other. ? Parallelize solution algorithm and develop Excel interface; use

developed Web services template(s); access cluster.

Copyright © 2006. From the July/August issue of Financial Engineering News. For a free subscription to Financial Engineering News, visit www.fenews.com/subscriptions.

http://www.fenews.com/subscriptions
http://www.fenews.com/
http://www.fenews.com/
http://www.orie.cornell.edu/manhattan
mailto:RLang@tc.cornell.edu

