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Abstract

Value at risk (VaR) and conditional value at risk (CVaR) are frequently used as risk mea-
sures in risk management. Compared to VaR, CVaR is attractive since it is a coherent risk
measure. We analyze the problem of computing the optimal VaR and CVaR portfolios. We
illustrate that VaR and CVaR minimization problems for derivatives portfolios are typically
ill-posed. We propose to include cost as an additional preference criterion for the CVaR opti-
mization problem. We demonstrate that, with the addition of a proportional cost, it is possible
to compute an optimal CVaR derivative investment portfolio with significantly fewer instru-
ments and comparable CVaR and VaR. A computational method based on a smoothing tech-
nique is proposed to solve a simulation based CVaR optimization problem efficiently.
Comparison is made with the linear programming approach for solving the simulation based
CVaR optimization problem.
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1. Introduction

One of the main objectives of risk management is to evaluate and improve the per-
formance of financial organizations in light of the risks taken to achieve profits. A
current standard benchmark for firm-wide measures of risk is value at risk (VaR)
(Duffie and Pan, 1997). For a given time horizon �t and confidence level b, the value
at risk of a portfolio is the loss in the portfolio�s market value over the time horizon �t
that is exceeded with probability 1 � b. However, as a risk measure, VaR has recog-
nized limitations. Firstly it lacks subadditivity and convexity (Artzner et al., 1997;
Artzner et al., 1999). For example, the VaR of the combination of two portfolios
can be greater than the sum of VaR of the individual portfolios. Indeed, VaR is a
coherent risk measure only when it is based on the standard deviation of normal dis-
tributions. In addition, it has been shown in Mausser and Rosen (1999) and McKay
and Keefer (1996) that the problem of minimizing VaR of a portfolio can have multi-
ple local minimizers.

An alternative risk measure to VaR is conditional value at risk (CVaR), which is
also known as mean excess loss, mean shortfall or tail VaR. For a given time horizon
�t and confidence level b, CVaR is the conditional expectation of the loss above VaR
for the time horizon �t and the confidence level b. The CVaR risk measure, with a
slight modification, is also applicable to distributions with jumps (Rockafellar and
Uryasev, 2002). It has been shown (Pflug, 2000) that CVaR is a coherent risk mea-
sure that has many attractive properties including convexity, e.g., see Ogryczak and
Ruszczynski (2002) for an overview of CVaR. In addition, minimizing CVaR typi-
cally leads to a portfolio with a small VaR.

A convex optimization problem has been proposed in Rockafellar and Uryasev
(2000) to compute the optimal CVaR portfolio. We describe the mathematical for-
mulation of CVaR optimization problem in Section 2. In particular, when this opti-
mization problem is approximated by Monte Carlo simulation, it has an equivalent
linear programming formulation and can be solved using standard linear program-
ming methods.

Derivative contracts have become increasingly important as investment tools for
achieving higher returns and decreasing funding costs. In this paper, we first analyze
in Section 3 the well-posedness of the optimal CVaR/VaR portfolio selection prob-
lem when the investment universe consists of derivative contracts. We illustrate that
the CVaR/VaR optimization problem for derivative portfolios typically has an infi-
nite number of solutions if the derivative values are computed using delta–gamma
approximations. Moreover, even when the derivative values are computed with more
accurate methods such as analytic formulae, numerical partial differential equations,
or Monte Carlo methods, the CVaR/VaR optimization problem for derivative port-
folios remains ill-posed in the sense that there are many portfolios that have similar
CVaR/VaR values to that of the optimal portfolio and slight perturbation of the
data can lead to significantly different optimal solutions. We illustrate this with
derivative CVaR portfolio examples in Section 3. In Section 4 we focus on the CVaR
optimization problem and introduce cost as an additional preference; the cost is
modeled as proportional to the magnitude of the holding positions. A similar
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consideration can be applied to the VaR optimization problem although VaR opti-
mization is a more computationally challenging task. We show that a convex pro-
gramming problem can be formulated for CVaR optimization under the proposed
proportional cost model. In addition, we demonstrate that the proposed CVaR opti-
mization formulation with cost is able to limit both the transaction cost and manage-
ment cost; an optimal CVaR derivative investment portfolio using a suitable
weighted cost parameter has smaller total trading positions, significantly fewer
instruments, and comparable CVaR (and VaR).

The standard method for a CVaR optimization problem is a linear programming
(LP) approach. Using Monte Carlo simulation, a piecewise linear function is used to
approximate the typically continuous differentiable CVaR function which results in a
linear programming problem. This LP is then solved using standard linear program-
ming software. We illustrate that this approach becomes inefficient for large scale
CVaR optimization problems.

A computational method based on a smoothing technique is proposed in Section
5 to efficiently solve a simulation based CVaR optimization problem. Comparison is
made with the linear programming approach to solve the simulation based CVaR
optimization problem. We demonstrate that the smoothing formulation, compared
with the linear programming approach, is computationally much more efficient in
both CPU usage and memory requirement and is capable of solving larger problems.
2. Mathematical formulation

For a time horizon�t, let f(x,S) denote the loss of a portfolio with decision variable
x 2 Rn and random variable S 2 Rd denote the value of underlying risk factors at �t.
Without loss of generality, we assume that the random variable S 2 Rd has a prob-
ability density p(S). For a given portfolio x, the probability of the loss not exceeding
a threshold a is given by the cumulative distribution function

Wðx; aÞ ¼def
Z
f ðx;SÞ6a

pðSÞdS. ð1Þ

When the probability distribution for the loss has no jumps, W(x,a) is everywhere
continuous with respect to a.

VaR associated with a portfolio x, for a specified confidence level b and time hori-
zon �t, is given by

abðxÞ ¼def inffa 2 R : Wðx; aÞ P bg. ð2Þ
Note that under the assumption thatW(x,a) is everywhere continuous, there exists

a (possibly not unique) such that W(x,a) = b.
Define [f(x,S) � a]+ as

½f ðx; SÞ � a�þ ¼def
f ðx; SÞ � a if f ðx; SÞ � a > 0;

0 otherwise.

�
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The risk measure CVaR, /b(x), is defined as (Pflug, 2000; Rockafellar and
Uryasev, 2002)

/bðxÞ ¼
def

inf
a
ðaþ ð1� bÞ�1

Eð½f ðx; SÞ � a�þÞÞ.

When the loss distribution has no jumps, CVaR is the conditional expectation of
the loss, given that the loss is ab(x) or greater, and is given by

/bðxÞ ¼ ð1� bÞ�1

Z
f ðx;SÞPabðxÞ

f ðx; SÞpðSÞdS. ð3Þ

Define the augmented function

F bðx; aÞ ¼def aþ ð1� bÞ�1

Z
S2Rd

½f ðx; SÞ � a�þpðSÞdS. ð4Þ

Under the assumption that the loss function f(Æ,S) is convex and the loss distribu-
tion is continuous, it can be shown (Rockafellar and Uryasev, 2000) that function
Fb(x,a) is convex and continuously differentiable with respect to a and /b(x) is con-
vex with respect to x. Moreover, minimizing CVaR over any x 2 X, where X is a sub-
set of Rn, is equivalent to minimizing Fb(x,a) over ðx; aÞ 2 X � R, i.e.,

min
x2X

/bðxÞ � min
ðx;aÞ2X�R

F bðx; aÞ. ð5Þ

If, in addition, X is a convex set, then the CVaR minimization problem

min
ðx;aÞ2X�R

F bðx; aÞ ð6Þ

is a convex programming problem.
3. Minimizing risk for derivative portfolios

At a given time horizon�t > 0, assume that the underlying asset prices of the deriv-
ative instruments are S�t 2 Rd , the initial asset prices are S0, and the function f(x,S) is
the loss of a portfolio from a universe of n instruments. Assume that instrument
values at time �t are fV 1ðS�t;�tÞ; . . . ; V nðS�t;�tÞg. For a portfolio selection problem and
a given investment horizon �t > 0, the loss associated with the portfolio x is

f ðx; S�tÞ ¼ �xTðV �t � V 0Þ;
where for any time t, V t ¼def½V 1ðSt; tÞ; . . . ; V nðSt; tÞ�. Note that f(x,S) is a linear func-
tion of x and it can be easily shown that, for any q > 0,

abðq � xÞ ¼ q � abðxÞ; and /bðq � xÞ ¼ q � /bðxÞ.

Let dV 2 Rn denote the change in the instrument values over the time horizon �t,
i.e., dV ¼ V �t � V 0. Then the loss, f ðx; S�tÞ, of the portfolio over the investment hori-
zon �t is �(dV)Tx.
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Without loss of generality, let x 2 Rn denote the ratio of the instrument holdings
to the total initial investment wealth, i.e., xi is the number of units of the ith instru-
ment holding per dollar investment. (VaR and CVaR of a portfolio with a budget q
are simply q Æ ab(x) and q Æ /b(x), respectively, where ab(x) and /b(x) are computed
for a dollar�s investment).

Assume for now that the only constraints on the optimal portfolio are the budget
constraint

ðV 0ÞTx ¼ 1

and the return constraint for the investment horizon �t

ðdV ÞTx ¼ �r;

where �r P 0 specifies the expected return of the portfolio over the time horizon �t and
dV 2 Rn is the expected gain for the instruments, i.e., dV ¼ E½ðdV Þ�.

If X ¼ fx : ðV 0ÞTx ¼ 1; ðdV ÞTx ¼ �rg is the set of feasible portfolios, we can write
(6) explicitly as

min
ðx;aÞ

aþ ð1� bÞ�1

Z
S2Rd

½�ðdV ÞTx� a�þpðSÞdS
� �

subject to ðV 0ÞTx ¼ 1 and ðdV ÞTx ¼ �r. ð7Þ

We assume that a stochastic model for changes of the underlying asset prices of
all the instruments in a portfolio is given. In addition, we assume that there exist
methods for computing the derivative values, such as Black–Scholes formulae,
delta–gamma approximations, and Monte Carlo simulation.

The continuous CVaR optimization problem (7) is a convex nonlinear minimiza-
tion problem with linear constraints. If the loss distribution function is continuous,
the objective function is continuously differentiable. How well is this optimization
problem posed for portfolios of derivatives?

To investigate this, let us consider the delta–gamma approximation of derivative
values. For a short time horizon t > 0, a delta–gamma approximation can be a suf-
ficiently accurate approximation to the derivative value and is often used in risk
assessment. In general, the delta–gamma approximation describes the most signifi-
cant component in the change of the derivative values and can thus provide insight
into the nature of the solution. Thus, we assume for now that the change, for a given
horizon �t, in instrument values is specified by the delta–gamma approximation: for
instrument i,

V �t
i � V 0

i ¼
oV 0

i

ot

� �
d�t þ oV 0

i

oS

� �T

ðdSÞ þ 1

2
ðdSÞTCiðdSÞ. ð8Þ

Here the vector ðdSÞ 2 Rd denotes the change in the underlying values,
oV 0

i
ot denotes

the initial theta sensitivity of the ith instrument value to time,
oV 0

i
oS 2 Rd denotes the

initial delta sensitivity of the ith instrument with respect to the underlyings, and
Ci 2 Rd�d is the Hessian matrix denoting the initial gamma sensitivity of the ith
instrument with respect to the underlyings, and dt is change in time.
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Let oV 0

ot and oV 0

oS denote the initial sensitivities for all instruments in the investment
universe:

oV 0

ot
¼def oV 0

1

ot
; . . . ;

oV 0
n

ot

� �
2 Rn;

oV 0

oS
¼def oV 0

1

oS
; . . . ;

oV 0
n

oS

� �T
2 Rn�d .

Assume for now that each instrument depends on a single risky asset. If a deriv-
ative value depends on more than one risk factor, similar results can be obtained by
accounting for the cross-partial derivatives; this analysis is presented in Appendix A.

In the case of a single risk factor, the only non-zero entries in the vector
oV 0

i
oS and

matrix Ci are entries i and (i,i), respectively. Let

C ¼def½Cdiag
1 ; . . . ;Cdiag

n �T 2 Rn�d ;

where Cdiag
i represents the diagonal of the matrix Ci as a column vector. Let (dS)2 be

the vector with each entry of dS squared. If we set

K ¼def oV 0

ot

� �
;

oV 0

oS

� �
;
1

2
C

� �
2 Rn�ð2dþ1Þ; ð9Þ

the loss in portfolio value is given by

f ðx; SÞ ¼ �xTK

d�t

dS

ðdSÞ2

264
375. ð10Þ

If n > 2d + 1, there exists a non-zero z 2 Rn satisfying KTz = 0. It is clear that, for
any h,

f ðx; SÞ ¼ f ðxþ h � z; SÞ; 8S.
Thus the portfolios x and (x + h Æ z) have the same VaR and CVaR under the

delta–gamma approximation. For a portfolio selection problem, if
X ¼ fx : ðV 0ÞTx ¼ 1; ðdV ÞTx ¼ �rg denotes the set of feasible portfolios correspond-
ing to the budget and return constraints, we may deduce that if n > (2d + 3), then
the optimal CVaR and VaR portfolios for the selection problem defined by
minx2X/bðxÞ and minx2XabðxÞ, for any 0 < b < 1, lie in a linear subspace of dimension
n � (2d + 3). This implies that the VaR and CVaR derivative minimization prob-
lems, under these stated assumptions, are ill-posed and different computational
methods may produce different optimal portfolios.

We note that not all derivative values can be simply expressed as V(St, t) where St

represents risk factor values at time t. Asian options for example have a strong
dependency on the history of the stock price. The analysis when such instruments
are present is more complex but similar results may be obtained.

When the derivative values are computed through more accurate methods, such
as analytic formulae or Monte Carlo simulation, the CVaR optimization problem
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typically remains ill-posed in the sense that there are many portfolios that have sim-
ilar risk values to that of the optimal portfolio and slight perturbation of the data
can lead to significantly different optimal solutions.

Although much of the subsequent discussion is applicable to the VaR optimiza-
tion problem, we will focus only on the CVaR optimization problem due to its com-
putational tractability.

A continuous CVaR optimization problem (7) can be approximated using Monte
Carlo simulation. Assume that fðdV Þig

m
i¼1 are independent samples of dV, the change

in the instrument values over the given horizon. Then the following is an approxima-
tion to the optimization problem (7):

min
ðx;aÞ2X�R

F bðx; aÞ ¼
def

aþ 1

mð1� bÞ
Xm
i¼1

½�ðdV ÞTi x� a�þ
 !

. ð11Þ

When the subset X is specified by a finite set of linear constraints, (11) has an
equivalent linear programming formulation which can be solved by standard meth-
ods for linear programming, see e.g., Rockafellar and Uryasev (2000) for an over-
view of modeling the CVaR problem (as well as other risk measures) as an LP.
Here we use interior point method software MOSEK (Mosek, 2002).

Naturally, additional properties can be included in the CVaR optimization prob-
lem as constraints to alleviate the ill-posedness of the problem and produce a more
desirable optimal portfolio. However, one needs to be careful to ensure that these
constraints are meaningful and consistent in the sense that there exist feasible solu-
tions. In addition, simply adding constraints may give a false sense of security; the
optimization problem may remain ill-posed, as will be illustrated next.

The most natural constraints that one can add are simple bound constraints on
the instrument holdings. The following example illustrates that this does not neces-
sarily regularize the ill-posedness of the problem. In addition, it demonstrates signif-
icant consequences of the ill-posedness of the CVaR derivative portfolio
optimization problem.

Assume, for example, that the feasible portfolios satisfy budget and return con-
straints as well as bound constraints on the instrument positions. Then the optimi-
zation problem (11) becomes

min
ðx;aÞ

aþ 1

mð1� bÞ
Xm
i¼1

½�ðdV ÞTi x� a�þ
 !

subject to ðV 0ÞTx ¼ 1; ðdV ÞTx ¼ �r; and l 6 x 6 u. ð12Þ

To illustrate the properties of the optimal portfolio from (12), we consider a uni-
verse of 196 instruments consisting of 12 vanilla calls, 12 vanilla puts, 12 binary calls,
and 12 binary puts on each of the four correlated assets, and the four underlying assets
themselves; here the derivative instruments are all European options. The initial asset
prices, the covariance matrix of the annual returns, and the expected rates of return
of the four assets are given in Table 7 in Appendix B. In this paper, we use these
specifications for all our computational results, varying only the option types being
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Fig. 1. (ordered) Holding ratios from (12) with no cost consideration: b = 0.95, �t ¼ 10 days.
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considered. The derivatives are priced using Black–Scholes type formulae, assuming
that the underlying prices are log-normally distributed. For this example, we use
m = 25,000 Monte Carlo samples. The strike prices used for options on each asset
are [0.8; 1.025;1.25] · S0 where S0 is the time 0 asset values (see Table 7 in Appendix
B). The times to expiry are ½2; 4; 6; 8� ��t, where �t ¼ 10 days is the investment horizon
(we assume that there are 250 trading days in a year). The options are all combinations
of strikes and expiry times. The required portfolio return is twice the risk free interest
rate over the investment horizon with the annual risk free interest rate equal to 5%.We
use lower bounds of�0.3 and upper bounds of 0.4 for this example. For an investment
of $100, no more than 30 units of each instrument can be shorted and nomore than 40
units of each instrument can be bought. An (ordered) optimal portfolio holding ratio
x* from (12), computed using the interior point software MOSEK, is shown in Fig. 1.1 It
should be noted that the optimal portfolio computed using CPLEXwas very similar to
the one computed using MOSEK. In particular, the CPLEX optimal portfolio did not
have any more instruments at their bounds than the MOSEK optimal portfolio.

Let us exclude the ith instrument from the optimal portfolio if jx�i j 6 10�5. We
first observe that the optimal portfolio consists of all the instruments in the invest-
ment universe. In addition, about 77% of instrument holding ratios are equal to
either their upper or lower limits. Such an optimal portfolio is undesirable in that
it leads to large transaction as well as management costs. Moreover, any model error
1 The instruments are ordered so as to illustrate the number of holding ratios that are significantly larger
than zero, in particular, the number of holding ratios that are at their bounds.
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will be magnified for a portfolio with extreme holdings; this is illustrated for the port-
folio hedging problem in Alexander et al. (2003). Indeed, the optimization problem
with the bound constraints remains ill-posed in the sense that there are many differ-
ent portfolios with similar CVaR values; we will illustrate this next by providing a
more desirable optimal CVaR formulation which produces more attractive port-
folios with similar CVaR values.

In addition to the portfolio selection problem, another practically important
derivative portfolio optimization problem is the portfolio hedging problem. In this
context, for a given hedging horizon �t, one has an initial portfolio and an associated
portfolio lossP0ðS;�tÞ. The goal is to decrease the risk of this portfolio by selecting an
appropriate hedging portfolio from the available instruments {V1(S,t), . . ., Vn(S,t)}.
Thus the loss function for the hedging problem has the form

f ðx; SÞ ¼ P0ðS;�tÞ � xTðV ðS;�tÞ � V ðS0; 0ÞÞ.
While we devote our analysis of ill-posedness in this paper to the portfolio selec-

tion problem, similar analysis applies to the portfolio hedging problem where the
goal is to hedge a given portfolio using more liquid derivatives with CVaR as the risk
measure. Without mathematical analysis in the general setting and computational re-
sults for the smoothing technique, a shorter and simpler paper is written in Alexan-
der et al. (2003) to illustrate the effect of the ill-posedness in the derivative portfolio
hedging problem based on CVaR; hedging performances of the optimal portfolios
under different cost considerations are also compared.
4. CVaR optimization with cost

Given that the CVaR optimization problem for a portfolio of derivatives is ill-
posed, additional meaningful criteria need to be considered for a derivative portfolio
CVaR optimization problem in order to generate a stable solution. A natural mean-
ingful consideration in portfolio investment or risk management is transaction and
management cost. A portfolio, which, in addition to a small CVaR, incurs a small
transaction and management cost, is certainly more attractive. We can regard the
management cost as a function of the number of (non-zero holding) instruments
in a portfolio. Unfortunately, it is difficult to include this explicitly into an optimi-
zation formulation since it is computationally challenging to solve the resulting
mixed integer program. Our objective is to seek a portfolio which consists of a small
number of instruments by minimizing a combination of CVaR and a suitable cost
function without the need to solve a mixed integer programming problem.

Let us assume that the cost of holding an instrument is proportional to the mag-
nitude of the instrument holdings. Then we seek a portfolio which has a minimum
weighted combination of CVaR and the proportional cost:

min
x2X

/bðxÞ þ
Xn
i¼1

cijxij
 !

; ð13Þ



592 S. Alexander et al. / Journal of Banking & Finance 30 (2006) 583–605
where /b(x) is as defined in (3). Here c P 0 is the weighted cost, representing the cost
as well as the tradeoff between minimizing CVaR and cost.

The weighted cost parameter ci P 0 can be interpreted as a measure of relative
desirability to exclude the ith instrument from the optimal portfolio: if ci is greater
than some finite threshold value, and there exists a feasible portfolio with xi = 0,
then the optimal portfolio x* for (13) is guaranteed to exclude the ith instrument,
i.e., x�i ¼ 0. In this sense, we can regard our cost model as a model for management
cost. This property of the cost model (13) is due to the fact that the objective function
ð/bðxÞ þ

Pn
i¼1cijxijÞ is an exact penalty function of a constrained optimization prob-

lem. We refer interested readers to Fletcher (1981) for a more detailed discussion on
the exact penalty function. Note that if one models the cost as

Pn
i¼1cix

2
i for example,

the resulting optimal portfolio typically has few, if any at all, of its instruments with
a small holding ratio jx�i j (e.g., jx�i j 6 10�5). For the quadratic penalty function, the
constraint x�i ¼ 0 is only satisfied as the penalty parameter ci tends to +1.

To solve (13), we can similarly consider the augmented function
F bðx; aÞ þ

Pn
i¼1cijxij. It is clear that F bðx; aÞ þ

Pn
i¼1cijxij remains convex and contin-

uously differentiable with respect to a since
Pn

i¼1cijxij is convex and has no depen-
dence on a; the analysis of Rockafellar and Uryasev (2000) applies. Moreover
minimizing the sum of the weighted cost and CVaR of a portfolio x in any subset
X of Rn is equivalent to minimizing F bðx; aÞ þ

Pn
i¼1cijxij over ðx; aÞ 2 X � R, i.e.,

min
x2X

/bðxÞ þ
Xn
i¼1

cijxij
 !

� min
ðx;aÞ2X�R

F bðx; aÞ þ
Xn
i¼1

cijxij
 !

.

In addition, F bðx; aÞ þ
Pn

i¼1cijxij is convex with respect to (x,a) and
/bðxÞ þ

Pn
i¼1cijxij is convex with respect to x if the loss function f(x,S) is convex with

respect to x. Moreover, if X is a convex set, the minimization problem

min
ðx;aÞ2X�R

F bðx; aÞ þ
Xn
i¼1

cijxij
 !

ð14Þ

is a convex programming problem.
When (14) is approximated through Monte Carlo simulation, and X is specified

by the budget and return constraints and bounds on the holding ratios x, the CVaR
optimization problem with a proportional cost becomes a constrained piecewise
linear minimization problem:

min
ðx;aÞ

aþ 1

mð1� bÞ
Xm
i¼1

½�ðdV iÞTx� a�þ þ
Xn
j¼1

cjjxjj
 !

subject to ðV 0ÞTx ¼ 1; ðdV ÞTx ¼ �r; and l 6 x 6 u. ð15Þ

To illustrate the effect of the weighted cost parameter c on the optimal portfolio

obtained from the CVaR cost model (14), we consider the weighted cost parameter

ci ¼ x � jCVaR0j, 1 6 i 6 n, where CVaR
0
denotes the optimal CVaR from (15) with

no cost consideration, for a dollar�s investment. (Here we are implicitly assuming
that the transaction costs of instruments are the same.)
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Consider the same 196 instrument example in Section 3. We first recall that the
optimal CVaR portfolio, under no cost consideration, contains all the 196 instru-
ments. In addition 77% of holding ratios are at their bounds. Fig. 2 plots the optimal
portfolio holding ratio x*, for the same example, for the weighted cost
ci ¼ x � jCVaR0j where x = 0, 0.005, and 0.01. We note that for x = 0.005 and
0.01, the optimal portfolios are preferable in the sense that they contain only
35.7% and 29.1% of the 196 instruments, respectively.

In order to analyze the impact of the cost consideration on risks, we consider the
relative differences of VaR and CVaR under different weighted cost parameters with
respect to that under cost consideration, i.e.,

RelDifVaRðxÞ ¼def VaRðxÞ � VaR0

VaR0

���� ����; ð16Þ

RelDifCVaRðxÞ ¼def CVaRðxÞ � CVaR0

CVaR0

���� ����; ð17Þ

where CVaR0 is the optimal CVaR value from (15) under no cost consideration.
Throughout the paper, VaR and CVaR reported correspond to VaR and CVaR
based on Monte Carlo simulations. Note that the loss distribution from simulations
has jumps. Consider the loss associated with a portfolio x for m scenarios,
(loss)1 6 � � � 6 (loss)m, with each loss (loss)i having probability pi. For a confidence
level b, let ib 6 m be the index such that
0 20 40 60 80 100 120 140 160 180 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Instrument Index

H
ol

di
ng

 R
at

io

ω=0
ω=0.005
ω=0.01

Fig. 2. Holding ratios with varying costs: b = 0.95, �t ¼ 10 days.



Table 1
Effect of weighted cost parameters on the optimal CVaR portfolio for �t ¼ 10 days

b x VaR CVaR RelDifVaR RelDifCVaR # Instr

0.95 0.000 1.5795 1.6458 0.0000 0.0000 196
0.005 1.6544 1.7251 0.0474 0.0482 70
0.050 1.9933 2.0545 0.2620 0.2483 34

0.99 0.000 1.6891 1.7171 0.0000 0.0000 196
0.005 1.7654 1.7910 0.0452 0.0431 72
0.050 2.1271 2.1443 0.2593 0.2488 34
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Xib
i¼1

pi P b >
Xib�1

i¼1

pi. ð18Þ

Then VaR is given by abðxÞ ¼ ðlossÞib and CVaR equals

/bðxÞ ¼
1

1� b

Xib
i¼1

pi � b

 !
abðxÞ þ

Xm
i¼ibþ1

piðlossÞi

24 35. ð19Þ

For a more detailed discussion of CVaR for scenario models, see Rockafellar and
Uryasev (2002).

Table 1 tabulates relative risk differences for b = 0.95 and b = 0.99 with different
weighted cost parameters for an investment horizon of 10 days. Computational re-
sults for longer maturities are similar and we do not report here. The investment uni-
verse consists of 196 instruments, see Appendix B for detailed specifications. VaR
and CVaR reported here are for investment portfolios with an initial wealth of
$100. The results are for a single simulation problem and do not represent averages.
Table 1 illustrates that, using the CVaR and cost optimization formulation (15), it is
possible to obtain CVaR optimal portfolios with significantly fewer instruments but
comparable risks. For example, for �t ¼ 10 days with x = 0.005, the optimal risks re-
flect an increase of less than 5% compared to that under no cost. Given the inevitable
existence of model error as well as computational error due to, e.g., Monte Carlo
approximation, a small difference in risk may be entirely acceptable. The number
of instruments in the optimal portfolio, however, is less than 36% of the number
of non-zero holdings under no cost, assuming a cutoff of 10�5. Not surprisingly,
we observe that, as the cost parameter increases, the risk increases and the number
of instruments in the optimal portfolio decreases.
5. Minimizing CVaR efficiently

The simulation CVaR optimization problem (15) is a piecewise linear
minimization problem subject to linear constraints. As discussed previously, one
way of computing a solution to (15) is to solve an equivalent linear programming
problem:
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min
ðx;y;z;aÞ

aþ 1

mð1� bÞ
Xm
i¼1

yi þ
Xn
j¼1

cjzj

 !
subject to

ðV 0ÞTx ¼ 1;

ðdV ÞTx ¼ �r;

y P �Bx� aem;

z� x P 0; zþ x P 0;

l 6 x 6 u; y P 0;

ð20Þ

where the m-by-n scenario loss matrix B is given by

B ¼ ½ðdV ÞT1 ; ðdV Þ
T
2 ; . . . ; ðdV Þ

T
m�

and em 2 Rm is the vector of all ones. This linear program has O(m + n) variables and
O(m + n) constraints, where m is the number of Monte Carlo samples and n is the
number of instruments. We assume that the loss (dV) is computed using computa-
tional methods such as analytic formulae and Monte Carlo simulation.

Linear programming is the simplest constrained optimization problem; there ex-
ists, for this class of problems, the most thorough theoretic analysis and reliable soft-
ware. Although it is known that both CPLEX (a simplex type method) and MOSEK

(an interior point method) are capable of solving very large linear programming
problems in a short amount of time, the efficiency of both methods depends heavily
on the sparsity structures of the problem. The linear programming problem arising
from the CVaR optimization problem has a large dense block; the size of this dense
block is determined by the number of scenarios and the number of instruments. We
illustrate below that the computational cost for solving a CVaR problem via the lin-
ear programming approach quickly becomes prohibitive as the number of simula-
tions and/or instruments become large.

Table 2 illustrates how the cpu time grows with the number of simulations and the
number of instruments for the CVaR optimization problem (12). The comparison is
made between CPLEX version 6.6 which implements a simplex method and the MO-

SEK Optimization Toolbox for MATLAB version 6 (for Solaris Sparc) which imple-
ments an interior point method for single problems. The problems are
implemented in MATLAB version 6.1 and run on a Sun Sparc Ultra-2 machine.
Table 2
CPU time for standard LP methods: b = 0.99

# Scenarios MOSEK (cpu sec) CPLEX (cpu sec)

# of instruments being considered

8 48 200 8 48 200

10,000 11.07 61.96 1843.90 53.68 427.97 2120.84
25,000 30.02 162.13 14,744.64 351.44 2345.43 9907.99
50,000 43.62 642.24 – 1673.82 9296.98 –
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Table 2 clearly illustrates that, using the standard linear programming software,
the computational cost as well as the memory requirement quickly become prohib-
itive as the number of Monte Carlo samples and the number of instruments increase.
For example, with 200 instruments and more than 25,000 simulations, a significant
amount of the elapsed time is spent in swapping relevant data in and out of the cache
memory. With 200 instruments and 50,000 scenarios, the elapsed time is significantly
longer than that of the 48 instrument example, with the memory swapping dominat-
ing the elapsed time, and the entry is marked by ‘‘ – ’’ in the table.

As an alternative to the linear programming approach for the CVaR optimization
problem, we investigate a computationally efficient method which directly exploits
the property of the CVaR optimization problem; our ultimate objective is to be able
to solve large scale CVaR portfolio problems.

We want to solve a portfolio CVaR optimization problem

min
ðx;aÞ2X�R

F bðx; aÞ þ
Xn
i¼1

cijxij
 !

through Monte Carlo simulation. We assume subsequently that the cumulative
loss distribution function is continuous. The augmented CVaR function F bðx; aÞ
is continuously differentiable under the assumption that the loss distribution
has no jumps. The linear programming approach arises from approximating the
continuously differentiable function Fb(x,a) by the piecewise linear objective
function

F bðx; aÞ ¼ aþ 1

mð1� bÞ
Xm
i¼1

½�ðdV ÞTi x� a�þ.

As the number of Monte Carlo simulations increases, the piecewise linear approxi-
mation F bðx; aÞ approaches the continuously differentiable function Fb(x,a).

As an alternative to the piecewise linear approximation F ðx; aÞ, we consider a con-
tinuously differentiable piecewise quadratic approximation eF ðx; aÞ to the continu-
ously differentiable function F(x,a). Let

eF bðx; aÞ ¼
def

aþ 1

mð1� bÞ
Xm
i¼1

q�ð�ðdV ÞTi x� aÞ; ð21Þ

where q�(z) is a continuously differentiable piecewise quadratic function which
approximates the piecewise linear function maxðz; 0Þ: given a resolution parameter
� > 0,

q�ðzÞ ¼
def

z if z P �;
z2

4�
þ 1

2
zþ 1

4
� if � � 6 z 6 �;

0 otherwise.

8><>: ð22Þ

To illustrate the smoothness of F ðx; aÞ and eF ðx; aÞ, let us consider the function
g(a) = E([S�a]+) assuming that S is a standard normal. Fig. 3 graphically illustrates
the accuracy and smoothness of the approximations
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1

m

Xm
i¼1

½Si � a�þ

and 1
m

Pm
i¼1q�ðSi � aÞ as compared to g(a); the top subplot is for m = 3 (the asterisks

on the x-axis represent Si) and the bottom subplot is for m = 10,000. It can be
observed that, as the number of independent samples m increases, the difference
between 1

m

Pm
i¼1½Si � a�þ and 1

m

Pm
i¼1q�ðSi � aÞ becomes smaller. In addition the func-

tion 1
m

Pm
i¼1½Si � a�þ appears smoother.

Using eF ðx; aÞ as a continuously differentiable approximation to F(x,a), we solve
the following continuous piecewise quadratic convex programming problem

min
ðx;aÞ

eF bðx; aÞ þ
Xn
j¼1

cjjxjj
 !

;

subject to ðV 0ÞTx ¼ 1; ðdV ÞTx ¼ �r; and l 6 x 6 u. ð23Þ

Note that, for (20), each simulation introduces an additional variable (and con-
straint) in its equivalent linear program formulation when the piecewise linear func-
tion F ðx; aÞ is used to approximate F(x,a). On the other hand, when the continuously

differentiable function eF ðx; aÞ is used to approximate F(x,a), problem (23) has
(n + 1) independent variables and its equivalent nonlinear program formulation only
has O(n) independent variables and constraints.

An optimization method for a convex nonlinear programming problem (23) typ-
ically generates an infinite sequence of approximations converging to a solution. At
each iteration, however, it typically requires a function and a gradient evaluation and
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O(n3) linear algebraic operations. The function/gradient evaluation costs O(mn). If
exact second-order derivatives are used, then the Hessian calculation in the worst
case is O(n2k) where k is the total number of simulations with j� ðdV ÞTi x� aj 6 �.
Given that CVaR optimization minimizes the tail loss with a typical confidence level
of b P 0.9, k is usually very small relative to m for most iterations.

Table 3 makes a comparison between the cpu times of the proposed smoothing
formulation and the linear programming approach (interior point method software
MOSEK is used here) for individual problems. We consider the derivative portfolio
CVaR optimization problem whose investment universe consists of vanilla call
and put options on the same four correlated assets described in Section 4 with the
strikes and maturities described in Table 8 in Appendix B. The implementation of
the smoothing method is based on an interior point method (Coleman and Li,
1996) for nonlinear minimization with bound constraints and is implemented in
MATLAB v6.1. The comparison is made on a Sun Sparc Ultra-5_10 machine. We ob-
serve that the smoothing method is much more efficient than the linear programming
approach with up to a 1187% efficiency speedup. In addition, the 200 instruments
and 50,000 simulations example can now be solved in less than 35 cpu minutes with
the smooth formulation due to less memory requirement and better computational
efficiency.

Next, we illustrate the accuracy and computational efficiency of this smoothing
technique in greater detail. We consider here a different set of derivative portfolios
on the same four correlated assets described in Section 4. The portfolios consist of
an equal number of vanilla calls, vanilla puts, binary calls and binary puts on each
asset. Once again the options are specified by all combinations of strikes (Kn · S0)
and expiry times (T n ��t), where n is the number of instruments (description in Table
8 in Appendix B.) The investment horizon we use here is �t ¼ 62:5 days.

For various costs, Table 4 compares the CPU usage of MOSEK and our smoothing
technique. We observe that the smoothing technique is more efficient compared to
the linear programming method software MOSEK; the best cpu efficiency speedup is
achieved with no cost consideration. However, with a larger parameter of
x = 0.01, MOSEK requires less cpu than when x = 0.005, possibly due to the im-
proved conditioning of the problem for a larger x.

For comparison, we consider the relative difference in risks QVaR and QCVaR,
where QVaR is defined as
Table 3
CPU times for MOSEK vs. smoothing: b = 0.99

# scenarios MOSEK (cpu sec) Smoothing (cpu sec)

# of instruments being considered

8 48 200 8 48 200

10,000 6.47 42.04 4244.30 2.45 16.78 419.52
25,000 33.50 98.91 10,784.10 5.37 35.48 838.15
50,000 36.01 318.72 – 9.90 62.08 2080.16



Table 4
CPU times for varying costs and problem sizes, b = 0.95, �t ¼ 62:5 days, and resolution parameter
� = 0.005

m n x = 0 x = 0.005 x = 0.01

MOSEK SMTH MOSEK SMTH MOSEK SMTH

25,000 20 49.60 10.57 49.97 14.91 48.31 14.62
100 826.95 92.58 885.72 267.14 687.96 177.41
196 7484.89 875.29 4141.79 851.79 2258.44 1088.83

50,000 20 129.67 24.40 120.99 35.15 124.37 47.16
100 2893.16 182.08 1242.03 449.98 1068.60 412.04
196 – 1413.31 – 1672.05 – 1545.49
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QVaR ¼def VaRs � VaRm

jVaRmj
; ð24Þ

where VaRs and VaRm are VaR values computed by the smoothing technique and
MOSEK, respectively. Note that we report CVaR as well as VaR since minimizing
CVaR typically leads to a small VaR and VaR itself is an important risk measure.
It is implicitly assumed that the number of scenarios and x are fixed in computing
QVaR. The quotient QCVaR is defined in a similar manner.

Table 5 compare risks of the optimal portfolios computed by linear programming
method software MOSEK and the smoothing method for different weighted cost
parameters; we observe that the relative difference is less than 1.5% for this example.

For smoothing method, the continuously differentiable approximation eF ðx; aÞ to
F(x,a) depends on the resolution parameter �. Typically this parameter is set to a
value between 0.05 to 0.005; the resolution parameter value should be smaller for
a larger number of simulations since this leads to better approximation. The resolu-
tion parameter of 0.005 typically leads to a negligible difference in optimal risks
between the portfolios computed from the linear programming method and the
smoothing method. Table 6 illustrates the effect of the resolution parameter �, on
the cpu requirement and relative risk difference to that computed from MOSEK. We
make a few interesting observations. Firstly, the risks computed from the smoothing
method can be smaller than those computed by MOSEK; this suggests that the smooth
Table 5
Comparison of VaR/CVaR values computed by MOSEK and the proposed smoothing technique for
b = 0.95, �t ¼ 62:5 days, and resolution parameter � = 0.005

m n x = 0 x = 0.005

QVaR (%) QCVaR (%) QVaR (%) QCVaR (%)

25,000 20 �0.6701 0.2114 �0.7111 0.1984
100 �0.7007 0.9433 �1.3946 0.2442
196 �1.1442 1.4990 �0.6874 0.1637

50,000 20 �0.5598 �0.2362 �0.4370 0.0520
100 �0.7407 0.3438 �0.8173 0.1572



Table 6
Comparison of VaR/CVaR values computed by MOSEK and the proposed smoothing technique for
different resolution parameters �, x = 0.01, b = 0.95, and �t ¼ 62:5 days

m n QVaR (%) QCVaR (%) CPU time

� = 0.005
25,000 20 �0.7348 0.1856 14.62

100 �0.5261 0.8342 177.41
196 �0.5941 1.7078 1088.83

50,000 20 �0.4684 0.0385 47.16
100 �1.0684 �0.1008 412.04
196 – – 1545.49

� = 0.0005
25,000 20 �0.0005 0.0000 33.61

100 �0.0015 0.0001 238.13
196 �0.0028 0.0007 647.71

50,000 20 �0.0009 �0.0002 48.34
100 �0.0051 �0.0012 449.56
196 – – 1720.36

Table 7
Initial prices, annual expected rate of return, and covariance matrix

Initial asset prices

100 50 30 100

Annual expected rate of return

0.1091 0.0619 0.0279 0.0649

Annual covariance matrix

0.2890 0.0690 0.0080 0.0690
0.0690 0.1160 0.0200 0.0610
0.0080 0.0200 0.0220 0.0130
0.0690 0.0610 0.0130 0.0790
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approximation is an acceptable approximation to the augmented CVaR function,
if not more preferable. Secondly, as � becomes smaller, the relative risk difference
becomes smaller, as one might have expected.
6. Concluding remarks

In this paper, we analyze the well-posedness of the derivative portfolio risk min-
imization problem with CVaR and VaR as the choice of risk measures. We illustrate
that this minimization problem is typically ill-posed for derivative portfolios. In par-
ticular, we have shown that, when the derivative values are computed through delta–
gamma approximations, there typically are an infinite number of portfolios with the



Table 8
Strike equals Kn · S0 and expiries equal T n ��t for �t ¼ 10 days

8 instrument example

K8 1
T8 4

48 instrument example

K48 0.8 1 1.25
T48 2 4

200 instrument example

K200 0.8 0.9125 1.025 1.1375 1.25
T200 2 3.5 5 6.5 8

20 instrument example (underlying assets included)

K20 1
T20 4

100 instrument example (underlying assets included)

K100 0.9 1 1.1
T100 3 6

196 instrument example (underlying assets included)

K196 0.8 1.025 1.25
T196 2 4 6 8
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same VaR and CVaR. Thus, the derivative portfolio selection problem of minimizing
risk subject to a specified return typically has an infinite number of solutions when
using delta–gamma approximations. When the derivative values are computed using
more accurate methods such as Black–Scholes formulae and Monte Carlo tech-
niques, the optimal CVaR or VaR problem is typically ill-posed.

We illustrate that one may not be able to remove the ill-posedness of the CVaR/
VaR optimization problem by simply adding constraints. When simple bound con-
straints are imposed on the instrument holdings, the optimal CVaR portfolio typi-
cally has a large number of non-zero instrument holdings (mostly at their
bounds). This type of optimal portfolio may not be desirable and can be problematic
since it may entail large management and transaction costs, and it tends to magnify
modeling error.

We propose the inclusion of a weighted cost consideration in the CVaR optimi-
zation problem. We model the cost as proportional to the magnitude of instrument
holding; this cost model is capable of controlling transaction cost as well as manage-
ment cost. We illustrate that minimizing CVaR together with this cost model leads to
more desirable portfolios with significantly smaller transaction costs, fewer non-zero
instrument holdings, and comparable CVaR (and VaR) measures.

We propose a computationally efficient method for solving a simulation based
CVaR optimization problem by exploiting the fact that the objective function in
the CVaR optimization problem approaches a continuously differentiable function
as the number of Monte Carlo samples increases to infinity. With a preliminary
implementation of the proposed method in MATLAB, a comparison is made with
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the standard linear programming approach. We illustrate that solving a continuously
differentiable piecewise quadratic approximation to the CVaR optimization problem
is much more efficient, producing an optimal CVaR, for appropriately chosen reso-
lution parameters, very close to that obtained without cost consideration. Further-
more, it is more suitable for solving large scale CVaR portfolio optimization
problems.

Although we have focused, in this paper, on the optimal derivative portfolio
investment problem for both theoretical analysis and computational illustrations,
similar analysis and computational results on the effectiveness of the CVaR and cost
minimization formulation are presented in Alexander et al. (2003) for derivative
portfolio hedging problems.
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Appendix A. CVaR and delta–gamma approximation

In Section 3 we assumed that each instrument depended on a single risk factor. In
general, an instrument value may depend on more than one risk factor. Assuming
there are d risk factors, in the analysis that follows we discuss the conditioning of
minimizing derivative portfolio VaR/CVaR for this general case. We first need to
set up a matrix of second-order sensitivities of derivatives to the underlying risk fac-
tors. Assume that for each h, 1 6 h 6 n, Vh depends on rh risk factors, where rh 6 d.
Then, the second-order sensitivity matrix Ch, corresponding to Vh, has at most r2h
non-zero entries. Further, since Ch is symmetric, it has at most rhðrhþ1Þ

2
distinct non-

zero entries. Assuming an ordering on the risk factors, construct the sets
Rh = {(i,j):Vh is dependent on risk factors i and j, i.e., Ch(i,j)50,i 6 j} for
h = 1, . . ., n. Then

ðdSÞTChðdSÞ ¼
X

ði;iÞ2Rh

Chði; iÞdS2
i þ

X
ði;jÞ2Rh;i6¼j

2Chði; jÞdSidSj.

Consider bR ¼
Sn

h¼1Rh. We also set an order on bR as follows: for ði1; j1Þ;
ði2; j2Þ 2 bR,

ði1; j1Þ < ði2; j2Þ if i1 < i2;

ði1; j1Þ < ði2; j2Þ if i1 ¼ i2 and j1 < j2.

Now we construct the second-order sensitivity matrix C 2 Rd̂�n for all instruments
under consideration, where d̂ is the cardinality of bR. Row i of C corresponds to the ith

smallest element of bR which we shall refer to as bRi. Now
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Cðl; hÞ ¼def

0 if bRl 62 Rh;

o
2V 0

h

oS2
i

; where bRl ¼ ði; iÞ if bRl 2 Rh;

2
o2V 0

h

oSioSj
; where bRl ¼ ði; jÞ if bRl 2 Rh; i 6¼ j.

8>>>>><>>>>>:
ð25Þ

We also construct the vector dbS 2
2 Rd̂ which represents the required correspond-

ing second-order change in risk factors, ðdbS2
Þl ¼

def
dSidSj, where bRl ¼ ði; jÞ.

Theorem A.1. Assume that a portfolio is formed from instruments {V1, . . ., Vn} and

the underlying risk factors of {V1, . . ., Vn} are {S1, . . ., Sd}. For a fixed investment

horizon �t > 0, 1 6 i 6 n, assume that

V �t
i � V 0

i ¼
oV 0

i

ot

� �
d�t þ oV 0

i

oS

� �T

dSð Þ þ 1

2
dSð ÞTCi dSð Þ.

Then the following is true:

1. If n > d̂ þ d þ 1, where d̂ is the cardinality of R̂, and there exists a portfolio whose

VaR = VaR* and CVaR = CVaR*, where VaR* and CVaR* are the minimal VaR

and CVaR, then there are an infinite number of optimal portfolios that have the min-

imal VaR and CVaR.

2. If X ¼ fx : ðV 0ÞTx ¼ 1; ðdV ÞTx ¼ �rg and n > d̂ þ d þ 3, then the optimal CVaR and

VaR portfolios defined by minx2X/bðxÞ and minx2XabðxÞ, for any 0 < b < 1, lie in a

linear subspace of dimension n� ðd̂ þ d þ 3Þ.
Proof. The results in the theorem hold due to the fact that there are an infinite num-
ber of portfolios with the same VaR and CVaR under the assumed assumption.

We first note that if portfolios x(1), xð2Þ 2 Rn satisfy

f ðxð1Þ; SÞ � f ðxð2Þ; SÞ; for all possible S;

then these two portfolios have the same VaR value and the same CVaR value.
Let

K ¼def oV 0

ot

� �
;

oV 0

oS

� �
;
1

2
C

� �
2 Rn�ðd̂þdþ1Þ. ð26Þ

The proof is straight forward from the observation that

f ðx; SÞ ¼ � xT
oV 0

ot

� �
d�t þ oV 0

oS

� �
dSð Þ þ 1

2
C dŜ

2
� �� �

;

¼� xTK

d�t

dS

ðdbS 2
Þ

2664
3775.



Table 9
Strike equals Kn · S0 and expiries equal T n ��t for �t ¼ 62:5 days

20 instrument example (underlying assets included)

K20 1
T20 2

100 instrument example (underlying assets included)

K100 0.9 1 1.1
T100 2 4

196 instrument example (underlying assets included)

K196 0.8 1.025 1.25
T196 1.5 2 3 4
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If n > d̂ þ d þ 1, there exists a non-zero z 2 Rn satisfying

KTz ¼ 0.

Then f(x + hz,S) = f(x,S) for any S and h.
For the second result, similarly there exists a non-zero z 2 Rn which lies in the null

space of ½K; V 0; dV �T (this null space has dimension n� ðd̂ þ d þ 3Þ).
Note that in the worst case, d̂ ¼ dðdþ1Þ

2 . This completes our proof. h
Appendix B. Data specifications

Table 7 describes the initial underlying prices, the expected annual rates of return,
and the covariance matrix of the rate of return, respectively.

Tables 8 and 9 describe the strike prices and the expiry of various portfolios used
in the paper for different investment horizons; they are classified according to the
total number of instruments in the portfolio universe.
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