Using Directed Edge Separators to Increase
Efficiency in the Determination of Jacobian
Matrices via Automatic Differentiation *

Thomas F. Coleman, Xin Xiong, and Wei Xu

Abstract Every numerical function evaluation can be represented diseated
acyclic graph (DAG), beginning at the initial input varialgettings, and terminating
at the output or corresponding function value(s). The “reenode” of automatic
differentiation (AD) generates a “tape” which is a repreéagan of this underlying
DAG. In this work we illustrate that a directed edge separatahis underlying
DAG can yield space and time efficiency gains in the applbcatf AD. Use of
directed edge separators to increase AD efficiency in diffeways than proposed
here has been suggested by other authors [2, 4]. In corardstte previous works,
our focus here is primarily on space. Furthermore, we eggloo simple algorithms
to find good directed edge separators, and show how these ¢deebe applied re-
cursively to great advantage. Initial numerical experiteeme presented.

Key words: Automatic differentiation, reverse mode, adjoint methdiected
acyclic graph, computational graph, edge separator, Jatoiatrix, Ford-Fulkerson
algorithm, minimum cutset, Newton step

Thomas F. Coleman
Department of Combinatorics and Optimization, University oft&%@o, On. Canada, N2L 3G1.
tf col eman@wat er | 0o. ca

Xin Xiong
Department of Combinatorics and Optimization, University oft&¥@o, On. Canada, N2L 3G1.
x6xi ong@wat er | 0o. ca

Wei Xu
Department of Mathematics, Tongji University, Shanghai, Cri208092wdxu@ ongj i . edu.
cn

* This work was supported in part by Ophelia Lazaridis Univgriiesearch Chair (held by
Thomas F. Coleman), the National Sciences and Engineerin@aR&s€oncil of Canada and the
Natural Science Foudation of China (Project No: 11101310).

2 Thomas F. Coleman, Xin Xiong, and Wei Xu

1 Introduction

Many scientific and engineering computations require tipeaed calculation of
matrices of derivatives. The repeated calculation of tlies&vative matrices often
represents a significant portion of the overall computaticost of the overall com-
putation.

Automatic differentiation (AD) can deliver matrices of datives given a source
code to evaluate the functidn (or in the case of minimization, the objective func-
tion f). Good methods that exploit sparsity, constant values,uptichte values,
have also been developed, e.qg. [3, 16]. In addition, if tjeatlve function exhibits
certain kinds of structures, and this structure is convehjiaoted in the expression
of the objective function, then the efficiency of the autamdifferentiation process
can be greatly enhanced [1, 6, 7, 9, 11, 14].

This paper is concerned with the case where the problemtsteuisnot noted a
priori and AD may subsequently be regarded as too costlgithtime or space.

1.1 Automatic Differentiation and The Edge Separator

Let us consider a nonlinear mapping
F:R"— RM

whereF (x) = [f1(x), -, fm(X)]T, and each component functidn: R" — R is
differentiable. The Jacobian matri(x) is the mx n matrix of first derivatives:

Jj = g—xf}(i =1,---,mj=1---,n). Given the source code to evaludt¢x), au-
tomatic differentiation can be used to determiiie). Generally, the work required
to evaluatel(x) via acombination of the forward and reverse modes of AD, and in
the presence of sparsity i#x), is propotional toxg(GP (J)) - w(F) wherexg is the
bi-chromatic number of the double intersection gr&sJ), andw(-) is the work
required, (i.e., number of basic computational steps) &duateF (x) -see [9]. We
note that when reverse mode AD is invoked the space requireahtpute the Jaco-
bian is proportional tav(F), and this can be prohibitively large. If AD is restricted
to forward mode then the space required is much less, iig pibportional tao (F),
the space required to evaludtéx), and typicallyw(F) > o(F); however, forward
mode alone can be much more costly than a combination of fdraad reverse
modes. [9, 11]

Consider now the (directed) computational graph that sepres the structure of
the program to evaluafe(x):

G(F)=(V.E) (1)

whereV consists of three sets of vertices. SpecificAlly- {VX,Vy,VZ} where ver-
tices inVy represent the input variables; a vertexMprepresenboth a basic or

Use Directed Separators to Determine Jacobian Matrices Hiffigie 3

elementaryperation receiving one or two inputs, producing a single ouput vagiab
and the outputintermediate variable; vertices inV; represent the output variables.
So input variable corresponds to vertex, € Vy, intermediate variablgy corre-
sponds to vertexy, € Vy, and outputzj = [F(x)]j corresponds to vertex,; € V.
Note that the number of vertices ¥, i.e., |/, is the number of basic operations
required to evaluate (x). Hencew(F) = |V, |.

The edge seE represents the traffic pattern of the variables. For exantipéee
is a directed edgex = (v, Vy;) € E if intermediate variablg; is required by com-
putational node, to produce intermediate variabyg. If ex = (v, V,) €EE is a
directed edge from vertew, to vertexvy; then we refer to vertexy, as thetail
node of edgeex and vertexvy; as thehead node of edgee. It is clear that ifF is
well-defined therG(F) is an acyclic graph.

Definition 1. E4 C E is adirected edge separator in directed graplG if G — {Eq}
consists of disjoint componen; and G, where all edges ity have the same
orientation relative t@4, G.

(@0) H2"2E-652)

costsin (20)@42)*(551-652)

cos(sin(2) £:242)+ (5

©0s (Sin(21 } 2"+ (531

[costein(zst)2x+ T B2+ 1 Az A PIsinG Y- eos6all | [costeing2yx272)+(61-672)+[27%1 52 5@ Misingd) +cos0a)] |
(a) A computational grap (b) An example of graplG's directed

edge separatdty

Fig. 1 An example of computational graphs and a sample directed edgext@pa

SupposeEy C Ey is an edge separator of the computational gr&gF) with
orientation forward in time. Then the nonlinear functiBix) can be broken into
two parts:

solve fory: Fi(x,y) =0 } B
solve forz. F2(x,y) —z=0

wherey is the vector of intermediate variables defined by tidié vertices of the
edge separatdfy, andzis the output vector, i.ez= F(x). Let p be the number of

4 Thomas F. Coleman, Xin Xiong, and Wei Xu

tail vertices of edge sdy, i.e.,y € RP. Note: |Eq4| > p. The nonlinear functiof;
is defined by the computational graph ab&gi.e.,G1, and nonlinear functiof,
is defined by the computational graph belBy i.e., Gz. See Figure 1(b). We note
that the system (1) can be differentiated xty) to yield an ‘extended’ Jacobian

matrix [8, 13]: Ry (B
Y 1)x (F1
R s ©

Sincey is a well-defined unique output of functiéi : R™P — RP, (Fy)yisapx p
nonsingular matrix. The Jacobianfis the Schur-complement of (2), i.e.,

I(x) = (Fe)x— (R)y(Fu)y *(Fu)x (4)

There are two important computational issues to note. Theiéithat the work to
evaluateJg is often less than that required to evalua(g) directly. The second is
that less space is often required to calculate and avelative to calculating and
savingJ directly by AD (when the AD technique involves the use of ‘#ese mode”
as in the bi-coloring technique).

Itis usually less expensive, in time and space, to comi(te) rather thanl(x),
using a combination of forward and reverse modes of autardéterentiation[10].
However, what is the utility oflg(x)? The answer is thalg (x) can often be used
directly to simulate the action dfand this computation can often be less expensive
(due to sparsity ie that is not present id) than explicitly forming and using.
For example, the Newton system ‘sold&= —F’ can be replaced with

solveJe [ﬂ = {OF} : 5)

The main points are that calculating matdix can be less costly than calculating
matrix J, and solving (5) can also be relatively inexpensive givearspy that can
occur inJe that may not be present th

The ideas discussed above can be generalized to the casenuliiple mu-
tually independent directed edge separatég,---,Eqg, € E, where we assume
G—{Eq, - ,Eq.} ={G1, -+ ,Gis1}. The connected grapl@, - - - , Gy1 are pair-
wise disjoint and are ordered such that when evaluatin@; can be fully evaluated
beforeGj,1,i=1,--- k.

SupposeEy, ,--- , Eg, € E are pairwise disjoint separators of the computational
graphG(F) with orientation forward in time (as indicated above). Thiea evalua-
tion of nonlinear functior (x) can be broken int&+ 1 steps:

solve fory; : Fi(x,y1) =0
(6)

solve foryy : F(X,y1,---,¥k) =0
solve forz : R 1(X,y1, - ,¥k) —2=0

Use Directed Separators to Determine Jacobian Matrices Hiffigie 5

wherey; is the vector of intermediate variables defined by ti#ik vertices of the
edge separatdgy, fori =1,---,k+ 1 andzis the output vector, i.ez= F(X).

2 On Finding Separators to Increase Efficiency in the
Application of Automatic Differentiation

In Section 1.1 we observed that if a small directed edge agpadivides the com-
putational graplG into roughly two equal componen@; andG,, then the space
requirements are minimized (roughly halved). Moreoves,réquired work will not
increase, and due to inreasing sparsity, will likely deseeca

Therefore, our approach is to seek a small directed edgeaaepahat will
(roughly) bisect the fundamental computational graphhie section, we present
two algorithms to find good separators.

2.1 Minimum Weighted Separator

This minimum weighted separator approach is based on ttieFrdkerson (FF) al-
gorithm [12], a well known max-flow/min-cut algorithm. Theid Fulkerson algo-
rithm finds the minimuns—t cut, a set of edges whose removal separates specified
nodes and nodd, two arbitary nodes in the graph. A minimum cut does not avay
correspond to a directed separator; we “post process” thecatisolution to obtain

a directed separator.

We desire that the determined separator (roughly) dividguhdamental com-
putational graph in half. To add this preference into thanogation, we assign
capacities to edges to reflect distance from the input orubuipdes, whichever
is closer. With this kind of weight distribution, a ‘smallutwill likely be located
towards the middle of the fundamental computational graph.

To determine the weights we first calculate depth of nodesedgds.

Definition 2. We define thelepth of a nodev in a DAG to be the shorter of shortest
directed path from an input node (sourceytand the shortest directed path fram
to an output node (sink). We define tthepth of an edgey in a DAG in an analogous
fashion.

Our proposed method is as follows:

1. Assign weights to edges to reflect depth of an edge.
2. Solve the weighted mincut problem, e.g. using the Foritéfson method.
3. Ifthe cutis not a directed separator, modify accordinglgorithm 1.

Algorithm 1 Let E C E such that graph G — E consists of two components G; and
G,, where source nodes are in G; and sink nodes arein G». If E is not a directed

6 Thomas F. Coleman, Xin Xiong, and Wei Xu

separator, then E contains both edges from G, to G; and edges from G; to G». Let
S=V(Gy) and T =V(G,). Adirected separator (S T) can be generated either by
moving tail nodes of T — Sedgesfrom T to Srecusively, or by moving head nodes
of T — Sedgesfrom Sto T recursively. The formal description is stated as follows:

1 Ty« {v:ve T}U{v:thereexistsadirected uv-pathin G,ue T}.
2. § +V(G)~T1.E1 = E(G) —E(G(S1)) — E(G(Ta)).

3. S+ {v:ve Stu{v: there exists a directed vu-path in G,u € S}.
4. T+ V(G) - $.E2 = E(G) ~ E(G(S)) — E(G(T2)).

5. Pick the smaller between E; and E; as the desired separator.

2.2 Natural Order Edge Separator

A second method to generate directed separators comestieooiservation that if
the ‘tape’ generated by reverse-mode AD is snipped at amyt ploeén effectively a
directed separator is located.

Suppose we are given a compuational gr&hnd the correponding computa-
tional tapeT with length|V(G)|. A natural partition G1,G2) of Gis G = G(T(1:
i)),G2=G(T(i+1:V(G)|)), wherei is some integer between 1 apt(G)| — 1.
Since cells in the tape are in chronological order, all bapierations represented
in G; are evaluated before those represente@intherefore all edges betweén,

G are directed fronG; to G,. Since these edges form a directed edge separator,
we can then chooseto get the preferred edge separator in terms of separatr siz
and partition ratio.

Multiple Separators

Either of the proposed directed separator methods can He@dppecursively, to
yield multiple separators. We do exactly this in our code analur computational
experiments below, always working on the largest remaisirggraph (details will
be provided in [10]).

3 Experiments

In this section we provide computational results on somérpiary experiments
to automatically reveal ‘AD-useful’ structure using thepagator idea. These exper-
iments are based on the minimum weighted separator algoathd natural order
separator algorithm described in previous section, to finected edge separators
that bisect the fundamental computational graph.

Use Directed Separators to Determine Jacobian Matrices Hiffigie 7

We use the AD-tool, ADMAT [5], to generate the computatiogedphs. How-
ever, for efficiency reasons, ADMAT sometimes condenseiitidamental compu-
tational graph to produce a condensed computational ghajplcondensed compu-
tatonal graph nodes may represent matrix operations sutiagx-multiplication.
Therefore our weighting heuristic is adjusted to accountHts.

In our numerical experiments we focus on two types of stmestthat represent
the two shape extreme cases.

3.1 Thin Computational Graphs

A function involving recusive iterations usually produaesthin” computational
graph.
Example. Define

X1 X3 - COgSIN(2X +X3))
F x| |= 5xq — 6xp (7
X3 2X§2 +X>2<1

and
Fi=FoFoFoFoFoF

Note thatF;’s computational graph is long and narrow (i.e. ‘thin’).

After three interations, three separators in Figure 2 anedo The graph is di-
vided into four subgraphs. Visually, these edge separa&gaod in terms of size
and evenly dividing the graph.

3.2 Fat Computational Graphs

A “fat” computational graph is produced when macro-compoie are independent
of each other. A typical example is:

FZ:AiF(x+rand(3,l))

whereF is defined by equation (7) in the previous experiment.

The separators found by our two algorithms on this examp@euaeful but are
less than ideal in contrast to the separators found in theg‘thin” class. Additional
experiments using different weighting schemes, are omgoin

8 Thomas F. Coleman, Xin Xiong, and Wei Xu

Mini- Natural
mum Order
Weighted Separa-
Separa- tor

tor

Fig. 2 Obtained separators Bf's condensed computational graph by the two different allyorst

(a) Minimum Weighted Separator (b) Natural Order Separator

Fig. 3 Obtained separators Bf's condensed computational graph by the two different allyorst

4 Accelerating the Calculation of the Jacobian matrix

To illustrate how separators accelerate computation, wetoact the following nu-
meric example:

Let X243X;
Xl 2 7 3
f X2 = W/ X1X3
X3 X1+2Xo+X3
1
and
Fk=fofo...of where there ark f's (8)

Itis obvious thaf, = R o R, o+ o R, providedn= 3", k.

Use Directed Separators to Determine Jacobian Matrices Hiffigie 9

We calculate the Jacobian matdixc R®*3 of Fa400(Xo) atxo = [6,9,3]T. We will
use ADMAT reverse mode to obtaihboth directly and by constructing directed
separators.

0 140

T T T
* space used
T time used

~100

=
=1

+60

Mermary Usage (MB)
=
Running Time ()

[
=
+

~60

ol
¥

0

. a0
0 0.a 1 148 2 25 3 3.8 4 448 4
Mumber of Separators

Fig. 4 Acceleration of separator method

The performance plot in Figure 4 does not count in time usdddate separa-
tors. The ‘running time’ refers to the time used to obtainole@n matrix once the
separators are found. Work is ongoing to perform the sepadatermine step ef-
ficiently, in space and time. We note that this separatoctira can (typically) be
re-used over many iterations.

5 Concluding Remarks

Our initial experiments and analysis indicate that sepamaif nonlinear systems
with use of directed separators can significantly reduceplage and time require-
ments. Directed separators have also been proposed tovienihr® performance of
hierarchical preaccumulation strategies[2, 15]. Issadxetinvestigated include:

e The amortization remarks above assume that the structdfdinvariant with
X. This is not always the case.

e To further reduce memory usage, we are investigating use térline” algo-
rithm, i.e., generation of separators with only partiabimfiation.

10

Thomas F. Coleman, Xin Xiong, and Wei Xu

References

10.

11.

12.

13.

14.

15.

16.

. Bischof, C.H., Bouaricha, A., Khademi, P., MorJ.J.: Computing gradients in large-scale

optimization using automatic differentiation. INFORMS J. Cotipy9, 185-194 (1997)

. Bischof, C.H., Haghighat, M.R.: Hierarchical approactesutomatic differentiation. In:

M. Berz, C. Bischof, G. Corliss, A. Griewank (eds.) ComputatioD#ferentiation: Tech-
niques, Applications, and Tools, pp. 83—94. SIAM, PhiladelpRA (1996)

. Bischof, C.H., Khademi, P.M., Bouaricha, A., Carle, A.: &fint computation of gradients

and Jacobians by dynamic exploitation of sparsity in automatffierdintiation. Optimization
Methods and Software, 1-39 (1997)

. Bicker, H.M., Rasch, A.: Modeling the performance of interfaoatraction. ACM Trans-

actions on Mathematical Softwag&9(4), 440-457 (2003). DOI http://doi.acm.org/10.1145/
962437.962442

. Cayuga Research Associates, L.: Admat-2.0 users guide (200®L hit p: / / www.

cayugar esear ch. com

. Coleman, T.F., Jonsson, G.F.: The efficient computation oftstredt gradients using auto-

matic differentiation. SIAM Journal on Scientific Computipg(4), 1430-1437 (1999). DOI
10.1137/S1064827597320794

. Coleman, T.F., Santosa, F., Verma, A.: Efficient calculabbdacobian and adjoint vector

products in wave propagational inverse problem using autendéterentiation. J. Comp.
Phys.157, 234-255 (2000)

. Coleman, T.F., Verma, A.: Structure and efficient Jacobidoutztion. In: M. Berz,

C. Bischof, G. Corliss, A. Griewank (eds.) Computational Differation: Techniques, Ap-
plications, and Tools, pp. 149-159. SIAM, Philadelphia, PA9@)

Coleman, T.F., Verma, A.: The efficient computation of sparsehlan matrices using au-
tomatic differentiation. SIAM J. Sci. Compul9(4), 1210-1233 (1998). DOI 10.1137/
S1064827595295349. URit t p: //1i nk. ai p. org/ | i nk/?SCE/ 19/ 1210/ 1
Coleman, T.F., Xiong, X.: New graph approaches to the'aétation of Jacobian and Hessian
matrices, and Newton steps, via automatic differentiation @paration)

Coleman, T.F., Xu, W.: Fast (structured) Newton computatioBIAM Journal on Scien-
tific Computing31(2), 1175-1191 (2008). DOI 10.1137/070701005. URLt p: / /| i nk.

ai p.org/link/?SCE 31/1175/1

Ford, L., Fulkerson, D.: Maximal flow through a network. @dian Journal of Mathematics
8, 399-404 (1956)

Griewank, A.: Evaluating Derivatives: Principles andHigiques of Algorithmic Differentia-
tion. No. 19 in Frontiers in Appl. Math. SIAM, PhiladelphidA (2000)

Rall, L.B.: Automatic Differentiation: Techniques ang@ications,Lecture Notes in Com-
puter Science, vol. 120. Springer, Berlin (1981). DOI 10.1007/3-540-6080

Tadjouddine, E.M.: Vertex-ordering Algorithms for Auatatic Differentiation of Computer
Codes. The Computer Jourril(6), 688—699 (2008). DOI 10.1093/comjnl/bxm115. URL
http://conjnl.oxfordjournals.org/cgi/content/abstract/51/6/688
Xu, W., Coleman, T.F.: Efficient (Partial) DeterminatidrDerivative Matrices via Automatic
Differentiation (To appear in SIAM journal on Scientific Conimg, 2012)

