
Using Directed Edge Separators to Increase
Efficiency in the Determination of Jacobian
Matrices via Automatic Differentiation ∗

Thomas F. Coleman, Xin Xiong, and Wei Xu

Abstract Every numerical function evaluation can be represented as adirected
acyclic graph (DAG), beginning at the initial input variable settings, and terminating
at the output or corresponding function value(s). The “reverse mode” of automatic
differentiation (AD) generates a “tape” which is a representation of this underlying
DAG. In this work we illustrate that a directed edge separator in this underlying
DAG can yield space and time efficiency gains in the application of AD. Use of
directed edge separators to increase AD efficiency in different ways than proposed
here has been suggested by other authors [2, 4]. In contrast to these previous works,
our focus here is primarily on space. Furthermore, we explore two simple algorithms
to find good directed edge separators, and show how these ideas can be applied re-
cursively to great advantage. Initial numerical experiments are presented.

Key words: Automatic differentiation, reverse mode, adjoint method,directed
acyclic graph, computational graph, edge separator, Jacobian matrix, Ford-Fulkerson
algorithm, minimum cutset, Newton step

Thomas F. Coleman
Department of Combinatorics and Optimization, University of Waterloo, On. Canada, N2L 3G1.
tfcoleman@uwaterloo.ca

Xin Xiong
Department of Combinatorics and Optimization, University of Waterloo, On. Canada, N2L 3G1.
x6xiong@uwaterloo.ca

Wei Xu
Department of Mathematics, Tongji University, Shanghai, China, 200092.wdxu@tongji.edu.
cn

∗ This work was supported in part by Ophelia Lazaridis University Research Chair (held by
Thomas F. Coleman), the National Sciences and Engineering Research Concil of Canada and the
Natural Science Foudation of China (Project No: 11101310).

1

2 Thomas F. Coleman, Xin Xiong, and Wei Xu

1 Introduction

Many scientific and engineering computations require the repeated calculation of
matrices of derivatives. The repeated calculation of thesederivative matrices often
represents a significant portion of the overall computational cost of the overall com-
putation.

Automatic differentiation (AD) can deliver matrices of derivatives given a source
code to evaluate the functionF (or in the case of minimization, the objective func-
tion f). Good methods that exploit sparsity, constant values, or duplicate values,
have also been developed, e.g. [3, 16]. In addition, if the objective function exhibits
certain kinds of structures, and this structure is conveniently noted in the expression
of the objective function, then the efficiency of the automatic differentiation process
can be greatly enhanced [1, 6, 7, 9, 11, 14].

This paper is concerned with the case where the problem structure isnot noted á
priori and AD may subsequently be regarded as too costly either in time or space.

1.1 Automatic Differentiation and The Edge Separator

Let us consider a nonlinear mapping

F : Rn 7→ R
m

whereF(x) = [f1(x), · · · , fm(x)]T , and each component functionfi : Rn 7→ R
1 is

differentiable. The Jacobian matrixJ(x) is the m× n matrix of first derivatives:
Ji j =

∂ fi
∂x j

(i = 1, · · · ,m; j = 1, · · · ,n). Given the source code to evaluateF(x), au-

tomatic differentiation can be used to determineJ(x). Generally, the work required
to evaluateJ(x) via acombination of the forward and reverse modes of AD, and in
the presence of sparsity inJ(x), is propotional toχB(GD(J)) ·ω(F) whereχB is the
bi-chromatic number of the double intersection graphGD(J), andω(·) is the work
required, (i.e., number of basic computational steps) to evaluateF(x) -see [9]. We
note that when reverse mode AD is invoked the space required to compute the Jaco-
bian is proportional toω(F), and this can be prohibitively large. If AD is restricted
to forward mode then the space required is much less, i.e., itis proportional toσ(F),
the space required to evaluateF(x), and typicallyω(F)≫ σ(F); however, forward
mode alone can be much more costly than a combination of forward and reverse
modes. [9, 11]

Consider now the (directed) computational graph that represents the structure of
the program to evaluateF(x):

G(F) = (V,E) (1)

whereV consists of three sets of vertices. Specifically,V =
{

Vx,Vy,Vz
}

where ver-
tices inVx represent the input variables; a vertex inVy representboth a basic or

Use Directed Separators to Determine Jacobian Matrices Efficiently 3

elementaryoperation receiving one or two inputs, producing a single ouput variable
and the outputintermediate variable; vertices inVz represent the output variables.
So input variablexi corresponds to vertexvxi ∈ Vx, intermediate variableyk corre-
sponds to vertexvyk ∈ Vy, and outputz j = [F(x)] j corresponds to vertexvz j ∈ Vz.
Note that the number of vertices inVy, i.e.,

∣

∣Vy
∣

∣, is the number of basic operations
required to evaluateF(x). Henceω(F) =

∣

∣Vy
∣

∣.
The edge setE represents the traffic pattern of the variables. For example, there

is a directed edgeek = (vyi ,vy j) ∈ E if intermediate variableyi is required by com-
putational nodevy j to produce intermediate variabley j. If ek = (vyi ,vy j) ∈ E is a
directed edge from vertexvyi to vertexvy j then we refer to vertexvyi as thetail
node of edgeek and vertexvy j as thehead node of edgeek. It is clear that ifF is
well-defined thenG(F) is an acyclic graph.

Definition 1. Ed ⊂ E is adirected edge separator in directed graphG if G−{Ed}
consists of disjoint componentsG1 andG2 where all edges inEd have the same
orientation relative toG1, G2.

(a) A computational graphG (b) An example of graphG’s directed
edge separatorEd

Fig. 1 An example of computational graphs and a sample directed edge separator

SupposeEd ⊂ Ey is an edge separator of the computational graphG(F) with
orientation forward in time. Then the nonlinear functionF(x) can be broken into
two parts:

solve fory: F1(x,y) = 0
solve forz: F2(x,y)− z = 0

}

(2)

wherey is the vector of intermediate variables defined by thetail vertices of the
edge separatorEd , andz is the output vector, i.e.,z = F(x). Let p be the number of

4 Thomas F. Coleman, Xin Xiong, and Wei Xu

tail vertices of edge setEd , i.e.,y ∈ R
p. Note: |Ed | ≥ p. The nonlinear functionF1

is defined by the computational graph aboveEd , i.e.,G1, and nonlinear functionF2

is defined by the computational graph belowEd , i.e.,G2. See Figure 1(b). We note
that the system (1) can be differentiated wrt(x,y) to yield an ‘extended’ Jacobian
matrix [8, 13]:

JE
∆
=

[

(F1)x (F1)y

(F2)x (F2)y

]

(3)

Sincey is a well-defined unique output of functionF1 : Rn+p 7→ R
p, (F1)y is a p× p

nonsingular matrix. The Jacobian ofF is the Schur-complement of (2), i.e.,

J(x) = (F2)x− (F2)y(F1)
−1
y (F1)x (4)

There are two important computational issues to note. The first is that the work to
evaluateJE is often less than that required to evaluateJ(x) directly. The second is
that less space is often required to calculate and saveJE relative to calculating and
savingJ directly by AD (when the AD technique involves the use of “reverse mode”
as in the bi-coloring technique).

It is usually less expensive, in time and space, to computeJE(x) rather thanJ(x),
using a combination of forward and reverse modes of automatic differentiation[10].
However, what is the utility ofJE(x)? The answer is thatJE(x) can often be used
directly to simulate the action ofJ and this computation can often be less expensive
(due to sparsity inJE that is not present inJ) than explicitly forming and usingJ.
For example, the Newton system ‘solveJs =−F ’ can be replaced with

solveJE

[

s
t

]

=

[

0
−F

]

. (5)

The main points are that calculating matrixJE can be less costly than calculating
matrix J, and solving (5) can also be relatively inexpensive given sparsity that can
occur inJE that may not be present inJ.

The ideas discussed above can be generalized to the case withmultiple mu-
tually independent directed edge separators,Ed1, · · · ,Edk ∈ E, where we assume
G−

{

Ed1, · · · ,Edk

}

= {G1, · · · ,Gk+1}. The connected graphsG1, · · · ,Gk+1 are pair-
wise disjoint and are ordered such that when evaluatingF , Gi can be fully evaluated
beforeGi+1, i = 1, · · · ,k.

SupposeEd1, · · · ,Edk ∈ E are pairwise disjoint separators of the computational
graphG(F) with orientation forward in time (as indicated above). Thenthe evalua-
tion of nonlinear functionF(x) can be broken intok+1 steps:

solve fory1 : F1(x,y1) = 0
...

...
solve foryk : Fk(x,y1, · · · ,yk) = 0
solve forz : Fk+1(x,y1, · · · ,yk)− z = 0

(6)

Use Directed Separators to Determine Jacobian Matrices Efficiently 5

whereyi is the vector of intermediate variables defined by thetail vertices of the
edge separatorEdi , for i = 1, · · · ,k+1 andz is the output vector, i.e.,z = F(x).

2 On Finding Separators to Increase Efficiency in the
Application of Automatic Differentiation

In Section 1.1 we observed that if a small directed edge separator divides the com-
putational graphG into roughly two equal componentsG1 andG2, then the space
requirements are minimized (roughly halved). Moreover, the required work will not
increase, and due to inreasing sparsity, will likely decrease.

Therefore, our approach is to seek a small directed edge separator that will
(roughly) bisect the fundamental computational graph. In this section, we present
two algorithms to find good separators.

2.1 Minimum Weighted Separator

This minimum weighted separator approach is based on the Ford Fulkerson (FF) al-
gorithm [12], a well known max-flow/min-cut algorithm. The Ford Fulkerson algo-
rithm finds the minimums− t cut, a set of edges whose removal separates specified
nodes and nodet, two arbitary nodes in the graph. A minimum cut does not always
correspond to a directed separator; we “post process” the min-cut solution to obtain
a directed separator.

We desire that the determined separator (roughly) divide the fundamental com-
putational graph in half. To add this preference into the optimization, we assign
capacities to edges to reflect distance from the input or output nodes, whichever
is closer. With this kind of weight distribution, a ‘small’ cut will likely be located
towards the middle of the fundamental computational graph.

To determine the weights we first calculate depth of nodes andedges.

Definition 2. We define thedepth of a nodev in a DAG to be the shorter of shortest
directed path from an input node (source) tov and the shortest directed path fromv
to an output node (sink). We define thedepth of an edgey in a DAG in an analogous
fashion.

Our proposed method is as follows:

1. Assign weights to edges to reflect depth of an edge.
2. Solve the weighted mincut problem, e.g. using the Ford-Fulkerson method.
3. If the cut is not a directed separator, modify according toAlgorithm 1.

Algorithm 1 Let E ⊂ E such that graph G−E consists of two components G1 and
G2, where source nodes are in G1 and sink nodes are in G2. If E is not a directed

6 Thomas F. Coleman, Xin Xiong, and Wei Xu

separator, then E contains both edges from G2 to G1 and edges from G1 to G2. Let
S =V (G1) and T =V (G2). A directed separator (S,T) can be generated either by
moving tail nodes of T → S edges from T to S recusively, or by moving head nodes
of T → S edges from S to T recursively. The formal description is stated as follows:

1. T1←{v : v ∈ T}∪{v : there exists a directed uv-path in G,u ∈ T}.
2. S1←V (G)−T1,E1 = E(G)−E(G(S1))−E(G(T1)).
3. S2←{v : v ∈ S}∪{v : there exists a directed vu-path in G,u ∈ S}.
4. T2←V (G)−S2,E2 = E(G)−E(G(S2))−E(G(T2)).
5. Pick the smaller between E1 and E2 as the desired separator.

2.2 Natural Order Edge Separator

A second method to generate directed separators comes from the observation that if
the ‘tape’ generated by reverse-mode AD is snipped at any point then effectively a
directed separator is located.

Suppose we are given a compuational graphG and the correponding computa-
tional tapeT with length|V (G)|. A natural partition (G1,G2) of G is G1 = G(T (1 :
i)), G2 = G(T (i+1 : |V (G)|)), wherei is some integer between 1 and|V (G)|−1.
Since cells in the tape are in chronological order, all basicoperations represented
in G1 are evaluated before those represented inG2, therefore all edges betweenG1,
G2 are directed fromG1 to G2. Since these edges form a directed edge separator,
we can then choosei to get the preferred edge separator in terms of separator size
and partition ratio.

Multiple Separators

Either of the proposed directed separator methods can be applied, recursively, to
yield multiple separators. We do exactly this in our code andin our computational
experiments below, always working on the largest remainingsubgraph (details will
be provided in [10]).

3 Experiments

In this section we provide computational results on some preliminary experiments
to automatically reveal ‘AD-useful’ structure using the separator idea. These exper-
iments are based on the minimum weighted separator algorithm and natural order
separator algorithm described in previous section, to find directed edge separators
that bisect the fundamental computational graph.

Use Directed Separators to Determine Jacobian Matrices Efficiently 7

We use the AD-tool, ADMAT [5], to generate the computationalgraphs. How-
ever, for efficiency reasons, ADMAT sometimes condenses thefundamental compu-
tational graph to produce a condensed computational graph.In a condensed compu-
tatonal graph nodes may represent matrix operations such asmatrix-multiplication.
Therefore our weighting heuristic is adjusted to account for this.

In our numerical experiments we focus on two types of structures that represent
the two shape extreme cases.

3.1 Thin Computational Graphs

A function involving recusive iterations usually producesa “thin” computational
graph.
Example.Define

F

x1

x2

x3

=

x3 ·cos(sin(2x1 + x2
2))

5x1−6x2

2xx2
2 + xx1

2

 (7)

and
F1 = F ◦F ◦F ◦F ◦F ◦F

Note thatF1’s computational graph is long and narrow (i.e. ‘thin’).
After three interations, three separators in Figure 2 are found. The graph is di-

vided into four subgraphs. Visually, these edge separator are good in terms of size
and evenly dividing the graph.

3.2 Fat Computational Graphs

A “fat” computational graph is produced when macro-computations are independent
of each other. A typical example is:

F2 =
6

∑
i=1

F(x+ randi(3,1))

whereF is defined by equation (7) in the previous experiment.
The separators found by our two algorithms on this example are useful but are

less than ideal in contrast to the separators found in the “long thin” class. Additional
experiments using different weighting schemes, are ongoing.

8 Thomas F. Coleman, Xin Xiong, and Wei Xu

(a)
Mini-
mum
Weighted
Separa-
tor

(b)
Natural
Order
Separa-
tor

Fig. 2 Obtained separators ofF1’s condensed computational graph by the two different algorithms

(a) Minimum Weighted Separator (b) Natural Order Separator

Fig. 3 Obtained separators ofF2’s condensed computational graph by the two different algorithms

4 Accelerating the Calculation of the Jacobian matrix

To illustrate how separators accelerate computation, we construct the following nu-
meric example:

Let

f

x1

x2

x3

=

x2+3x3
4√

x1x3
x1+2x2+x3

4

and
Fk = f ◦ f ◦ · · · ◦ f where there arek f ’s (8)

It is obvious thatFn ≡ Fk1 ◦Fk2 ◦ · · · ◦Fkm providedn = ∑m
i=1 ki.

Use Directed Separators to Determine Jacobian Matrices Efficiently 9

We calculate the Jacobian matrixJ ∈R3×3 of F2400(x0) atx0 = [6,9,3]T . We will
use ADMAT reverse mode to obtainJ both directly and by constructing directed
separators.

Fig. 4 Acceleration of separator method

The performance plot in Figure 4 does not count in time used tolocate separa-
tors. The ‘running time’ refers to the time used to obtain Jacobian matrix once the
separators are found. Work is ongoing to perform the separator determine step ef-
ficiently, in space and time. We note that this separator structure can (typically) be
re-used over many iterations.

5 Concluding Remarks

Our initial experiments and analysis indicate that separation of nonlinear systems
with use of directed separators can significantly reduce thespace and time require-
ments. Directed separators have also been proposed to improve the performance of
hierarchical preaccumulation strategies[2, 15]. Issues to be investigated include:

• The amortization remarks above assume that the structure ofF is invariant with
x. This is not always the case.

• To further reduce memory usage, we are investigating use of an “online” algo-
rithm, i.e., generation of separators with only partial information.

10 Thomas F. Coleman, Xin Xiong, and Wei Xu

References

1. Bischof, C.H., Bouaricha, A., Khademi, P., Moré, J.J.: Computing gradients in large-scale
optimization using automatic differentiation. INFORMS J. Computing 9, 185–194 (1997)

2. Bischof, C.H., Haghighat, M.R.: Hierarchical approachesto automatic differentiation. In:
M. Berz, C. Bischof, G. Corliss, A. Griewank (eds.) ComputationalDifferentiation: Tech-
niques, Applications, and Tools, pp. 83–94. SIAM, Philadelphia, PA (1996)

3. Bischof, C.H., Khademi, P.M., Bouaricha, A., Carle, A.: Efficient computation of gradients
and Jacobians by dynamic exploitation of sparsity in automatic differentiation. Optimization
Methods and Software7, 1–39 (1997)

4. Bücker, H.M., Rasch, A.: Modeling the performance of interfacecontraction. ACM Trans-
actions on Mathematical Software29(4), 440–457 (2003). DOI http://doi.acm.org/10.1145/
962437.962442

5. Cayuga Research Associates, L.: Admat-2.0 users guide (2009). URL http://www.
cayugaresearch.com/

6. Coleman, T.F., Jonsson, G.F.: The efficient computation of structured gradients using auto-
matic differentiation. SIAM Journal on Scientific Computing20(4), 1430–1437 (1999). DOI
10.1137/S1064827597320794

7. Coleman, T.F., Santosa, F., Verma, A.: Efficient calculationof Jacobian and adjoint vector
products in wave propagational inverse problem using automatic differentiation. J. Comp.
Phys.157, 234–255 (2000)

8. Coleman, T.F., Verma, A.: Structure and efficient Jacobian calculation. In: M. Berz,
C. Bischof, G. Corliss, A. Griewank (eds.) Computational Differentiation: Techniques, Ap-
plications, and Tools, pp. 149–159. SIAM, Philadelphia, PA (1996)

9. Coleman, T.F., Verma, A.: The efficient computation of sparse Jacobian matrices using au-
tomatic differentiation. SIAM J. Sci. Comput.19(4), 1210–1233 (1998). DOI 10.1137/
S1064827595295349. URLhttp://link.aip.org/link/?SCE/19/1210/1

10. Coleman, T.F., Xiong, X.: New graph approaches to the determination of Jacobian and Hessian
matrices, and Newton steps, via automatic differentiation (in preparation)

11. Coleman, T.F., Xu, W.: Fast (structured) Newton computations. SIAM Journal on Scien-
tific Computing31(2), 1175–1191 (2008). DOI 10.1137/070701005. URLhttp://link.
aip.org/link/?SCE/31/1175/1

12. Ford, L., Fulkerson, D.: Maximal flow through a network. Canadian Journal of Mathematics
8, 399–404 (1956)

13. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia-
tion. No. 19 in Frontiers in Appl. Math. SIAM, Philadelphia,PA (2000)

14. Rall, L.B.: Automatic Differentiation: Techniques and Applications,Lecture Notes in Com-
puter Science, vol. 120. Springer, Berlin (1981). DOI 10.1007/3-540-10861-0

15. Tadjouddine, E.M.: Vertex-ordering Algorithms for Automatic Differentiation of Computer
Codes. The Computer Journal51(6), 688–699 (2008). DOI 10.1093/comjnl/bxm115. URL
http://comjnl.oxfordjournals.org/cgi/content/abstract/51/6/688

16. Xu, W., Coleman, T.F.: Efficient (Partial) Determination of Derivative Matrices via Automatic
Differentiation (To appear in SIAM journal on Scientific Computing, 2012)

