
Parallelism in Structured Newton Computations

Thomas F. Coleman and Wei Xu

Department of Combinatorics and Optimization
University of Waterloo

Waterloo, Ontario, Canada. N2L 3G1
E-mail: tfcoleman@uwaterloo.ca
E-mail: wdxu@math.uwaterloo.ca

Many vector-valued functions, representing expensive computation, are also structured compu-
tations. A structured Newton step computation can expose useful parallelism in many cases.
This parallelism can be used to further speed up the overall computation of the Newton step.

1 Introduction

A fundamental computational procedure in practically all areas of scientific computing
is the calculation of the Newton step (in n-dimensions). In many cases this computation
represents the dominant cost in the overall computing task. Typically the Newton step
computation breaks down into two separable subtasks: calculation of the Jacobian (or
Hessian) matrix along with the right-hand-side, and then the solution of a linear system
(which, in turn, may involve a matrix factorization). Both subtasks can be expensive though
in many problems it is the first, calculation of the function and derivative matrices, that
dominates.

In most cases when the Newton step computation is relatively expensive, the function
that yields the Newton system is itself a ‘structured’ computation. A structured computa-
tion is one that breaks down into a (partially ordered) straight-line sequence of (accessible)
macro computational subtasks. For example, ifF is a function that is computed by eval-
uating the sequenceF1, F2, F3, in order, thenF is a structured computation. The general
structured situation can be described as follows:F is a structured computation,z = F (x),
if F is evaluated by computing a (partially-ordered) sequence of intermediate vectorsy
defined below:

Solve fory1 : FE
1 (x, y1) = 0

Solve fory2 : FE
2 (x, y1, y2) = 0

...
...

Solve foryp : FE
p (x, y1, y2, · · · , yp) = 0

“Solve” for outputz : z − FE
p+1(x, y1, y2, · · · , yp) = 0





. (1)

For convenience define

FE(x, y1, · · · , yp) =




FE
1 (x, y1)

FE
2 (x, y1, y2)

...
FE

p (x, y1, · · · , yp)
FE

p+1(x, y1, · · · , yp)




.

1

The Newton process for (1) can be written,

JE




δx
δy1

δy2

...
δyp




= −FE =




0
0
0
...
−F




, (2)

where the square Jacobian matrixJE is a block lower-Hessenberg matrix:

JE =




∂F1
∂x

∂F1
∂y1

∂F2
∂x

∂F2
∂y1

∂F2
∂y2

...
...

...
.. .

∂Fp

∂x
∂Fp

∂y1
· · · · · · ∂Fp

∂yp
∂Fp+1

∂x
∂Fp+1

∂y1
· · · · · · ∂Fp+1

∂yp




. (3)

It has been illustrated2,3 that by exploiting the structure illustrated in (1), it is possible to
compute the Newton step, at any point x, significantly faster than by following the standard
2-step procedure: form the Jacobian (Hessian) matrix ofF , and then solve a linear system.
The key insight is that the Jacobian matrix of the larger system illustrated in (1) is typically
sparse andthus can be computed much more cheaply than the (possibly) dense Jacobian
matrix ofF . Moreover, given that the Jacobian matrix has been computed, it is possible to
compute the Newton step to the original systemF (x) = 0, by working directly with the
large (sparse) matrix, and possibly avoiding the formulation ofJ(x), the Jacobian matrix
of F .

In this paper we show that these structural ideas also expose parallelism which can be
used to further speed up the computation of the Newton step. The rest of the paper is orga-
nized as follows. Two extremal examples for exposing parallelism are studied in Section
2. One is the generalized partially separable problem, which is the best case for the par-
allelism. The other example is the composite function of a dynamic system, which is the
worst case. Generally, most problems are somewhere between the above two cases. In Sec-
tion 3, we construct an example for the structured general case and expose the parallelism
to speed up the Newton step. Finally, conclusions are given in Section 4.

2 Two extremal cases

Many practical problems can be covered by the structural notions presented in Section
1. Here, we describe two examples. These two examples represent the two extreme cases.
The first example, a generalized partially separable problem, yields a set of decoupled com-
putations, which is the best for parallelism. The second example is a composite function
of a dynamic system, representing a recursive computation.

A square generalized partial separable (GPS) function is a vector mappingF : Rn →
Rn. The evaluation ofz = F (x) may involve the following steps:

Solve foryi : yi − Ti(x) = 0 i = 1, · · · , p
Solve forz : z − F̄ (y1, · · · , yp) = 0.

}
, (4)

2

y1 y4y2 y3

yp+1

y1

y2

y3

yp+1

Level 0

Level 1

Level 0

Level 1

Level 2

Level p

Figure 1. Directed acyclic graphs corresponding to the generalized partially separable function and the composite
dynamic system.

whereTi(i = 1, · · · , p) andF̄ are nonlinear functions. Clearly, the GPS case is the best
one can hope for from the point of view of (macro-) parallelism since each computation of
intermediate variableyi is independent. The structured computation approach often allows
for the identification of less obvious (macro-) parallelism. However, the worst case is the
composite function of a dynamic system which involves heavy recursion:

Solve foryi : yi − Ti(yi−1) = 0, i = 1, · · · , p
Solve forz : z − F̄ (yp) = 0,

}
. (5)

In this case there is no obvious (macro) parallelism. The component functionsTi and
corresponding Jacobian matricesJi must be computed sequentially. The expanded Jaco-
bian matrices of generalized partially separable function in (4) and the composite dynamic
system (5) are, respectively,

JE
GPS =




−J1 I
−J2 I

...
.. .

−Jp I
0 J̄1 J̄2 · · · J̄p




and JE
DS =




−J1 I
−J2 I

. . .
. . .
−Jp I

J̄




.

Typically, as illustrated above, many of the block entries ofJE in (3) are zero-blocks,
and we can associate a directed acyclic graph,

−→
G(JE), to represent this block structure.

Specifically
−→
G(JE) hasp + 1 nodes,y1, · · · , yp, yp+1 = z and there is a directed edgeyj

from yi iff ∂Fi

∂yj
6= 0(i = 1 : p + 1, j = 1 : p, i 6= j). Thus, the corresponding directed

acyclic graphs for the GPS and composite functions are shown in Figure 1. It illustrates
that the generalized partially separable case is the most ‘parallelism-friendly’ since there
are only two levels andp of totalp + 1 nodes can be computed concurrently. Figure 1 also
illustrates that the composite dynamic system case is the worst with respect to parallelism

3

since there arep levels for a total ofp + 1 nodes and this sequence of nodes has to be
computed sequentiallya.

To illustrate the benefit of parallelism, consider the following experiment on a GPS
problem. We define a composite functionT (x) = F̂ (A−1F̃ (x)), whereF̂ and F̃ are
Broyden functions1, y = B(x), (their Jacobian matrices are tridiagonal), which is in the
following form

y1 = (3− 2x1)x1 − 2x2 + 1,
yi = (3− 2xi)xi − xi−1 − 2xi+1 + 1, i = 2, 3, · · · , n− 1
yn = (3− 2xn)xn − xn−1 + 1,

wheren is the size of the vector variablex. The structure ofA is based on5-point Laplacian
defined on a square(

√
n + 2)-by-(

√
n + 2) grid. For each nonzero element ofA, Aij

is defined as the function ofx, that isAij = rjxj whererj is a random variable, e.g.
rj = N(1, 0), that isrj is normally distributed around1 with variance0. So, the GPS
function can be defined as follows

G(x) =
MB−1

K
[T1(x) + T2(x) + · · ·+ TK(x)],

whereTi(x) is same asT (x) except the uncertainties inA, B is sparse symmetric positive
definite tridiagonal,M is tridiagonal andK is a scalar. The explicit form of Jacobian
matrix ofG(x) is

J =
MB−1

K
(J1 + J2 + · · ·+ JK),

whereJi is the Jacobian matrix ofTi(x). It is clear that parallelism can be used to con-
currently evaluate each pair(yi, Ji), i = 1, · · · , p. A simple master-slave scheduling
mechanism can be used to assign tasks to processors and collect results. The MatlabMPI
package5 developed by Kepner at MIT is used to implement the parallel computation. The
experiments were carried out on a SGI Altix 3700 system with 64 1.4GHz Itanium2 pro-
cessors and 192 GB RAM running under SuSE Linux Enterprise System (SLES) 10 with
SGI’s ProPack 5 added on. Matlab 7.0.1 (R14) does not support the 64-bit Itanium archi-
tecture, so we use “Matlab -glnx86” to run Matlab in 32-bit emulation mode. Twenty-four
processors, one for master and the other twenty three for slaves, were employed to solve
nonlinear equations of generalized partially separable problems with vector variable sizes
ranged from 625 to 2500 andK = 240. In the parallel computation of the Newton method
exploiting the structure, each processor computes the summation of 10Ji’s independently.
Then, the master collects the summation from slaves to compute the JacobianJ , and solves
the dense Newton system by ‘\’ in Matlab. We do not construct the expanded Jacobian ma-
trix, JE

GPS , in this experiment because forming the explicit form ofJ is quite efficient. In
the parallel computation of the Newton method without exploiting the structure, we treat
the Jacobian matrixJ as full and use the forward mode AD to compute derivatives . Each
processor computes the same number of columns of JacobianJ independently. After that,
the master collects the columns from slaves to constructJ and solves the dense Newton
system using ‘\’. The package ADMAT-2.0, a new version of ADMAT4, is employed to

aIn this paper, we talk a worst case view since some of the computations in nodei depend on results from node
i− 1. We assume, for simplicity, that there is no concurrency between these nodes.

4

implement the structured and the forward mode AD. Table 1 displays the results of the run-
ning time of the standard Newton method exploiting and without exploiting the structure
in sequential and parallel computation, respectively.

Newton method Newton method
exploiting the structure without exploiting the structure

Sequential Parallel Sequential Parallel
n computation computation Speedup computation computation Speedup

625 121.92 8.52 14.31 268.87 73.97 3.63
900 310.47 19.41 16.00 564.07 172.11 3.28
1024 469.37 26.71 17.57 735.09 266.47 2.83
1600 1526.17 81.16 18.80 2817.22 824.97 3.41
2500 5556.49 265.46 20.93 27685.07 8556.37 3.19

Table 1. Running times of the Newton method for solving a GPS problem in sequential and parallel computation
implemented on 24 processors in seconds.

As the problem size increases, the computation of the Jacobian matricesJi becomes
increasingly expensive, and this dominates the computation time of a single Newton step.
The speedup due to parallelism approaches 20 exploiting the structure and is less than 4
without exploiting it, using 24 processors. In the computation of Jacobian matrixJ , the
product ofA−1 with some matrix is required. To compute the product, we use ‘\’ in
Matlab to solve a multiple right-hand sides linear system, instead of computing the inverse
of A. However, the running time of solving a multiple right-hand sides linear system is
not proportional to the size of the right-hand sides. For example,A andB are matrices of
625-by-625 andC is a matrix of625-by-25. The time for computingA−1B is only 3 to 4
times longer than computingA−1C althoughC is 25 times smaller thanB. In other words,
the product withA−1 restricts the speedup of parallelism. It explains that the speedup is
less than 4 without exploiting the structure.

MatlabMPI was implemented through the file system in Matlab, rather than using “real
message passing ”. In other words, message passing between the master and slave proces-
sors can be quite time-consuming. However, in our program, we minimize the communi-
cations among processors. In a single Newton step, only two communications are required.
One is sending the result back to the master from slaves. The other is distributing the up-
datedx from the master to slaves for the next Newton step. Thus, the message passing
in MatlabMPI does not slow down the parallel computation on the generalized partially
separable problem. The time spent on communication is less than 5% running time in our
experiments.

The other example is a dynamic system computation. Consider the autonomous ODE,

y′ = F (y),

whereF (·) is a Broyden function and supposey(0) = x0, we use an explicit one-step
Euler method to compute an approximationyk to a desired final statey(T). Thus, we

5

Newton method Newton method
n exploiting the structure without exploiting the structure Speedup

200 0.3120 0.0940 3.3191
400 3.0620 0.2970 10.3098
800 26.6100 1.0790 24.6846
1000 52.3460 1.6090 32.6576

Table 2. Running times of one Newton step through two approaches and the speedup of exploiting the structure
AD on a dynamical system.

obtain a recursive function in following form,

y0 = x
for i = 1, · · · , p

Solve foryi : yi − F (yi−1) = 0
Solve forz : z − yp = 0,

where we takep = 5 in the experiment. This experiment was carried out on a laptop
with Intel Duo 1.66GHz processor and 1GB RAM running Matlab 6.5. The Jacobian
matrixJ is treated as full when the structure is ignored. Table 2 records the running times
and the speedup in sequential computation since there is no apparent parallelism in this
example. Subsequently, Table 2 illustrates that the cost of Newton step with structured AD
is linear while the cost of the unstructured is cubic. In other words, exploiting the structure
accelerates the computation of the Newton step.

3 General case

Of course the generalized partially separable case represents the best situation with respect
to parallelism whereas the right-hand of Figure 1, the composite function, represents the
worst - there is no apparent parallelism at this level. In general, this structured approach
will reveal some easy parallelism which can be used to further accelerate the Newton step
computation. In this section, we will look at an “in-between” example, to illustrate the
more general case.

We consider the evaluation ofz = F (x) in following steps:

Solve foryi : yi − Ti(x) = 0 i = 1, · · · , 6
Solve fory7 : y7 − T7((y1 + y2)/2) = 0
Solve fory8 : y8 − T8((y2 + y3 + y4)/3) = 0
Solve fory9 : y9 − T9((y5 + y6)/2) = 0
Solve fory10 : y10 − T10((y7 + y8)/2) = 0
Solve fory11 : y11 − T11((y8 + y9)/2) = 0
Solve forz : z − 0.4(y10 + y11)− 0.2y5 = 0.





, (6)

where Ti(x)(i = 1, · · · , 6) is same as the functionG(x) in Section 2 except have
K = 3000, Tj(x)(j = 7, · · · , 11) is the same as the functionT (x) in Section 2, but with
different uncertainties. It is clear that the computation ofTi(x) (i = 1, · · · , 6) dominates

6

1y 2y

7y

3y 4y

8y

5y 6y

9y

10y 11y

12y

()EG J
� �

Level 0

Level 1

Level 2

Level 3

Figure 2. Directed acyclic graph corresponding to12-by-12 Jacobian matrixJE .

the running time of evaluatingz = F (x). The structure of the corresponding expanded
Jacobian matrix is illustrated as follows,

JE =




X X
X X
X X
X X
X X
X X

X X X
X X X X

X X X
X X X

X X X
X X X




,

and the corresponding directed acyclic graph
−→
G(JE) is given in Figure 2. The level sets

in
−→
G(JE) (Figure 2.) can be used to identify the (macro-) parallelism in the structured

Newton computation. All the nodes on leveli can be computed concurrently. Then, after
all the nodes on leveli are computed, we can start to compute all the nodes on leveli+1. In
the experiment for exploiting the structure, we divide the six nodes on level zero into three
groups. Each group employed 8 CPUs, one for master and others for slaves. The master
processor is in charge of collecting results from ‘slaves’ in its own group and sending the
results to the master processors in other groups if necessary. There are only three nodes on
level 1, so only master processors do the computation and communication. On level two,
one of the master processor is idled while only one master processor is working on level

7

Newton method Newton method
exploiting the structure without exploiting the structure

Sequential Parallel Sequential Parallel
n computation computation Speedup computation computation Speedup

100 401.60 19.24 20.87 428.77 201.32 2.13
169 807.31 38.41 21.02 1002.07 240.45 4.17
225 1286.73 61.25 21.01 1694.07 335.18 5.05
400 3795.80 180.21 20.93 5373.92 602.02 3.19
625 8878.24 481.71 18.43 12954.22 1017.71 12.73
900 19681.72 1045.37 18.83 26883.98 2105.77 13.34

Table 3. Running times of the Newton method in sequential and parallel computation implemented on 24 pro-
cessors.

3. Table 3 records the results of the Newton method exploiting and without exploiting the
structure. When exploiting the structure, the time spent on communication is about10% of
running time much more than the percentage without exploiting it, which is2%. In Figure
2, it shows that communications are required between slaves and master in each group on
level zero and among master processors on other levels. Thus, the structured AD approach
spent more time on communication than the forward mode, but it is still significantly faster
than the forward mode case.

4 Conclusions

In this paper, we have illustrated how a standard Newton step also exposes useful paral-
lelism in most cases. This parallelism can be used to further speed up the computation of
the Newton step. We studied two extreme cases. One is the general partially separable
case, the best case for (macro) parallelism. The other is the composite function of a dy-
namic system as shown in (5), where there is no exposed parallelism (though in this case
the structural techniques proposed in (4) conveniently work particularly well). Generally,
most cases are somewhere between these two extreme cases.

References

1. C.G. Broyden,A class of methods for solving nonlinear simulations equations, Math-
ematics of Computations19, 577-593 (1965).

2. T. F. Coleman and W. Xu,Fast Newton computations, in progress.
3. T. F. Coleman and A. Verma,Structured and efficient Jacobian calculation, In M.

Berz, C.Bischof, G. Corliss and A. Griewank, editors, Computational Differentiation:
Techniques, Applications and Tools , 149–159 (1996), Philadelphia, SIAM.

4. T. F. Coleman and A. Verma,ADMIT-1: Automatic differentiation and MATLAB in-
terface Toolbox, ACM Transactions on Mathematical Software16, 2000 (150-175).

5. J. Kepner, Parallel programming with MatlabMPI,
http://www.ll.mit.edu/MatlabMPI .

8

