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Abstract 

 
Numerical solution of linear least-squares problems is a key computational task in science and 
engineering. Effective algorithms have been developed for the linear least-squares problems in 
which the underlying matrices have full rank and are well-conditioned. However, there are few 
efficient and robust approaches to solving the linear least-squares problems in which the 
underlying matrices are rank-deficient and sparse. In this paper, we propose a new method for 
solving rank-deficient linear least-squares problems. Our proposed method is mathematically 
equivalent to an existing method but has several practical advantages over the existing method. 
Furthermore, our proposed method is applicable to solving both dense and sparse rank-
deficient linear least-squares problems. Our experimental results demonstrate the practical 
potential of our proposed method. 
 
 
Section 1: Introduction 
 
Let , .m n mA R b R×∈ ∈  The numerical solution of the linear least-squares problem 
 
 

2
min

nx R
Ax b

∈
−  (1.1) 

 
lies at the heart of many computational problems frequently arising in scientific, engineering, 
and economic disciplines. Efficient algorithms are available when the matrix 𝐴𝐴 has full rank and 
is well-conditioned. However, when the matrix is ill-conditioned or rank-deficient, numerical 
solution of (1.1) often requires some variant of rank-revealing QR factorization (RRQR) or 
singular value decomposition (SVD). The resulting solution process is relatively expensive. 
Furthermore, the solution to (1.1) is not unique. Usually, the minimum-norm solution is sought. 
 
In practical applications, the matrix 𝐴𝐴 is often large and sparse. If 𝐴𝐴 is also rank-deficient, there 
are few effective algorithms available for solving (1.1). Because of the paramount need for 
sparsity preservation, the algorithms involving RRQR or SVD developed for dense linear least 
squares problems are not suitable for sparse linear least squares problems. 
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Effective approaches (George, et al., 1980)(Heath, 1982)(Heath, 1984)(Liu, 1986)(Sun, 1996) 
(Sun, 1997) have been developed to solve sparse linear least-squares problem when the 
underlying matrix has full rank and is well-conditioned. Issues in handling rank deficiency in 
solving sparse linear least-squares problems are considered in (Ng, 1991) and (Avron, et al., 
2009). 
 

In this paper, we propose a new method for solving rank-deficient linear least-squares 
problems. We show that our proposed method is mathematically equivalent to an existing 
method. If we view both our method and the existing method as generating a sequence of 
points (i.e. approximate solutions) approaching the true solution, the two methods are 
mathematically equivalent in the sense that they generate the same sequence of points in exact 
arithmetic. However, there are two major differences between the two methods. First, the 
theoretical underpinnings of the two methods are very different. In particular, the 
mathematical derivations of the two methods are drastically different. Second, the 
computations at each iterative step are organized differently. Because of these differences, our 
proposed method offers practical advantages over the existing method in terms of algorithmic 
efficiency and applicability to handling both dense and sparse rank-deficient linear least-
squares problems. 
 
We focus our attention upon the design and analysis of our new method for solving dense and 
rank-deficient linear least-squares problems in this paper. We outline our approach to the 
solution of sparse and rank-deficient linear least-squares problems. However, detailed results 
on the sparse problems will be presented in (Coleman, et al., 2010). 
 
In Section 2 we propose a new algorithm for solving rank-deficient linear least-squares 
problems. We prove that our proposed algorithm is mathematically equivalent to an existing 
algorithm in Section 3. In Section 4, we discuss the selection of a crucial parameter used in our 
algorithm. In Section 5, we compare the practical performance of our algorithm with that of the 
existing algorithm. Finally, we discuss future work and summarize our results in Section 6. 
 
Notations. Assume 𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴). Let 𝐴𝐴 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇  be the SVD of 𝐴𝐴. Assuming 𝛴𝛴1is the leading 
submatrix of 𝛴𝛴 corresponding to the 𝑘𝑘 positive singular values, the compact SVD of 𝐴𝐴 can be 
written as 𝐴𝐴 = 𝑈𝑈1𝛴𝛴1𝑉𝑉1

𝑇𝑇 , where 
 

𝑈𝑈1 = [𝑢𝑢1, 𝑢𝑢2, … , 𝑢𝑢𝑘𝑘], 𝑉𝑉1 = [𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘], 
 
and 

 

1

2
1 ,

k

σ
σ

σ

 
 
 Σ =
 
 
 



 

  
where 𝜎𝜎1 ≥ 𝜎𝜎2 ≥ ⋯ ≥ 𝜎𝜎𝑘𝑘 > 0. 
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The minimum-norm solution to the above linear least-squares problem (1.1) is given by 
 

𝑥𝑥� = 𝐴𝐴+𝑏𝑏 = 𝑉𝑉1𝛴𝛴1
−1𝑈𝑈1

𝑇𝑇𝑏𝑏, 
 
where 𝐴𝐴+is the pseudo-inverse of 𝐴𝐴. Let ˆ ˆ.r b Ax= −  
 
 
Section 2: A New Method for Handling Rank Deficiency 
 
For 𝜆𝜆 > 0 define 
 
 1( ) ( )T Tx A A I A bλ λ −= +  (2.1) 

 
Using the compact SVD, (2.1) can be written 
 
 2 1

1 1 1 1( ) ( ) ( )Tx V I U bλ λ −= Σ + Σ  (2.2) 

 
From (2.2) it is clear that 𝑥𝑥(𝜆𝜆) → 𝑥𝑥� = 𝑉𝑉1𝛴𝛴1

−1𝑈𝑈1
𝑇𝑇𝑏𝑏 as 𝜆𝜆 → 0. 

 
An approximate minimum-norm least-squares solution to (1.1) is therefore given by (2.2) or, 
equivalently, the least-squares solution to the following full-rank problem: 
 

 1
2

2

min
0nx R

A b
x

Iλ∈

     −      
 (2.3) 

 
 
While there are several numerical approaches to (2.3), the stable QR factorization method can 
be used, perhaps with the use of a permutation matrix Π to limit fill in the upper triangular 
matrix 𝑅𝑅𝜋𝜋  (in the case where matrix A is sparse): 
 

 1
2 0

T
A R

Q
Iλ

∏
    ∏ =      

 (2.4) 

 
One general approach to solving the rank-deficient linear least-squares problem is to choose a 
positive value for 𝜆𝜆, solve (2.3) by using the factorization in (2.4) to obtain 𝑥𝑥(𝜆𝜆), and then refine 
𝑥𝑥(𝜆𝜆) to get (or approximate) ˆ(0) .x x=  The question we address next is how to effectively do 
this refinement. We discuss our approach to choosing the parameter 𝜆𝜆 in Section 4. 
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Let 𝑀𝑀 = 𝐴𝐴𝑇𝑇𝐴𝐴, 𝑑𝑑 = 𝐴𝐴𝑇𝑇𝑏𝑏. The solution to the full-rank problem (2.3) is the same as the solution 
to the following system of semi-normal equations:  
 
 ( )T TA A I x A bλ+ =  

 
or 
 ( )M I x dλ+ =  (2.5) 
                 
which obviously yields the solution 
 
 1( )   x M I dλ −= +  (2.6)  
 
Differentiating (2.5) with respect to 𝜆𝜆 yields 
 
 ( ) ' 0 x M I xλ+ + =  (2.7) 

 
or ' 1 2( ) ( ) .x M I x M I dλ λ− −= − + = − +  
 
Differentiating (2.7) with respect to 𝜆𝜆 yields 
 
 ( )' "2 0 x M I xλ+ + =  (2.8) 

 
or,  " 1 ' 32( ) 2( )x M I x M I dλ λ− −= − + = + . 
 
Generally,  
 ( ) 1 ( 1)( ) .k kx k M I xλ − −= − +  (2.9) 
  
 
By Taylor’s theorem, 

 ( )
1

0 ( 1)k k
k

k

x x s λ
∞

=

= + −∑  (2.10) 

     
where 1 ( )

!( ),  ( ),  ( 1, 2,...).k
k kx x s x kλ λ = 

 
 
Note that by (2.9) 
 
 1 1 ( 1) 1

1( 1)! ( ) ( ) ,   ( 2,3,...)k
k kks M I x M I s kλ λ− − − −

−−= + = − + =  (2.11) 

 
where ' 1

1 ( ) .s x M I xλ −= = − +  
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An important computational observation is that given 𝑠𝑠𝑘𝑘−1 and ΠT(M + λI)Π = RΠ
T RΠ , vector

ks  can be computed with two triangular solves, and thus in time 𝑂𝑂�𝑛𝑛𝑛𝑛𝑛𝑛(𝑅𝑅Π)�,  where 𝑛𝑛𝑛𝑛𝑛𝑛(𝑅𝑅Π) 

is the number of nonzeroes in the matrix 𝑅𝑅Π . 
 
Computationally, our algorithm can be described as follows: 
 
1)  𝑥𝑥0 = 𝑥𝑥(𝜆𝜆)  
2)  𝑠𝑠0 = 𝑥𝑥0  
3)  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, 3 , …      
              𝑠𝑠𝑖𝑖 = −(𝑀𝑀 + 𝜆𝜆𝜆𝜆)−1𝑠𝑠𝑖𝑖−1              
              𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 + (−1)𝑖𝑖𝑠𝑠𝑖𝑖𝜆𝜆𝑖𝑖   
  
At the i -th refinement step, 𝑠𝑠𝑖𝑖 = −(𝑀𝑀 + 𝜆𝜆𝜆𝜆)−1𝑠𝑠𝑖𝑖−1 is accomplished by solving 𝑅𝑅𝑇𝑇𝑅𝑅𝑠𝑠𝑖𝑖 =  −𝑠𝑠𝑖𝑖−1, 
where 𝑀𝑀 + 𝜆𝜆𝜆𝜆 =  𝑅𝑅𝑇𝑇𝑅𝑅. In practice, this version of our algorithm is numerically unstable since 
the product 𝑠𝑠𝑖𝑖𝜆𝜆𝑖𝑖  is formed at each refinement step. Typically, ||𝑠𝑠𝑖𝑖||2 is very large and 𝜆𝜆𝑖𝑖  very 
small. 
 
To overcome the numerical instability, we revise our algorithm as follows: 
 
1)  𝑥𝑥0 = 𝑥𝑥(𝜆𝜆)  
2)  𝑡𝑡0 = 𝑥𝑥0  
3)  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, 3 , …  
              𝑡𝑡 = 𝜆𝜆𝑡𝑡𝑖𝑖−1  
              𝑡𝑡𝑖𝑖 = (𝑀𝑀 + 𝜆𝜆𝜆𝜆)−1𝑡𝑡  
              𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 + 𝑡𝑡𝑖𝑖   
 
It is straightforward to show that 
 

𝑡𝑡𝑖𝑖 =  (−1)𝑖𝑖𝑠𝑠𝑖𝑖𝜆𝜆𝑖𝑖 ,         𝑖𝑖 = 1, 2, 3, … 
 

via mathematical induction. Therefore, our revised algorithm is equivalent to our original 
algorithm. However, our revised algorithm avoids forming the product 𝑠𝑠𝑖𝑖𝜆𝜆𝑖𝑖  at each refinement 
step. Therefore, the issue of numerical instability in the original algorithm has been resolved. 
 
Now we discuss the implementation issues of our algorithm. For a given 0,λ > step 1) of our 
algorithm is accomplished by solving the full-rank linear least-squares problem (2.3). Let 
 

 1
2

A
C

Iλ

 
 =
 
 

 (2.12) 

and 

 .
0

f
b 

=  
 

 (2.13) 
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Then problem (2.3) can be written as 
 

2
min

nx R
Cx f

∈
−  (2.14) 

 
where C is an (𝑚𝑚 + 𝑛𝑛)-by-𝑛𝑛 matrix and f is an (𝑚𝑚 + 𝑛𝑛)-vector. First, we compute the 
“economy size” QR factorization: 
 
 ,C QR=  (2.15) 
 
where Q is an (𝑚𝑚 + 𝑛𝑛)-by-𝑛𝑛 matrix with orthonormal columns and R is an 𝑛𝑛-by-𝑛𝑛 upper 
triangular matrix. Let 

 I

II

Q
Q

Q
 

=  
 

 (2.16) 

 
where 𝑄𝑄𝐼𝐼  is an 𝑚𝑚-by-𝑛𝑛 matrix and 𝑄𝑄𝐼𝐼𝐼𝐼  is an 𝑛𝑛-by-𝑛𝑛 matrix. Second, the solution to (2.3) (i.e. 
(2.14)), denoted by 0x or ( ),x λ is obtained by performing a matrix-vector multiply followed by a 

triangular solve as follows: 
 1

0 ( ) ( ).T
Ix x R Q bλ −= =  (2.17) 

 
Mathematically, we have 
 ( ) .T TM I C C R Rλ+ = =  (2.18) 
 

Hence, at the i -th refinement step, 1( )it M I tλ −= + is accomplished by two triangular solves: 

 
   .T

iR Rt t=  (2.19) 

 
Clearly, each iterative refinement step of our algorithm requires precisely two triangular solves, 
one scalar-vector multiply, and the addition of two vectors. 
 
It is important to note that the QR factorization (2.15) is computed only once. The overall 
complexity of our algorithm consists of the arithmetic work for solving (2.3) (which consists of 
the arithmetic work for the QR factorization (2.15) and the arithmetic work for (2.17)) and the 
arithmetic work for N iterative refinement steps, where N is the total number of iterative 
refinement steps performed. As shown in Section 5, N is typically less than or around 10. 
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Section 3: Mathematical Equivalence of Our Algorithm with an Existing 
Algorithm 
 
In this section we show that our algorithm is mathematically equivalent to an existing algorithm 
in the sense that both algorithms generate the same sequence of points (i.e. approximate 
solutions) approaching the true solution. 
 
Riley (Riley, 1956) proposed the following iterative scheme (referred to as Iterated 
Regularization scheme or IR scheme for short) for solving linear least-squares problems with 
full column rank. Let 𝑥𝑥(0) be an arbitrary vector, solve 
 
 ( ) ( ) ( )1q qT TA A I x A b xλ λ++ = +  (3.1) 

 
The sequence 𝑥𝑥(𝑞𝑞) converges to 𝑥𝑥� (the true solution) if 𝜆𝜆 > 0 since the spectral radius of 
𝜆𝜆(𝐴𝐴𝑇𝑇𝐴𝐴 + 𝜆𝜆𝜆𝜆)−1 is less than 1.  
 
Golub (Golub, 1965) observed that the Riley’s iterative scheme is equivalent to the following: 
 

( )( ) qqr b Ax= −  
 ( ) ( ) ( )q qT TA A I e A rλ+ =  (3.2) 

( ) ( ) ( )1q q qx x e+ = +  
 
The vector 𝑒𝑒(𝑞𝑞) is the solution of the following linear least-squares problem: 
 

 ( )
( )

( )
2||i |n |m

q n

q

R

q

e
Ce f

∈
−  (3.3) 

 
where 

 1
2

A
C

Iλ

 
 =
 
 

 (3.4) 

and 

 
( )

( )

0

q
q r

f
 

=  
 

 (3.5) 

 
Therefore, the IR scheme can be described as follows: 
 
𝑥𝑥(0) = 0  
𝑓𝑓𝑓𝑓𝑓𝑓 𝑞𝑞 = 0, 1, 2, 3, …  
        a)  𝑟𝑟(𝑞𝑞) = 𝑏𝑏 − 𝐴𝐴𝑥𝑥(𝑞𝑞) 
        b)  Solve the linear least-squares problem (3.3). 
        c)  𝑥𝑥(𝑞𝑞+1) = 𝑥𝑥(𝑞𝑞) + 𝑒𝑒(𝑞𝑞) 
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Golub (Golub, 1965) has shown that 
 

𝑥𝑥(𝑞𝑞) = 𝜇𝜇1
(𝑞𝑞)𝑣𝑣1 + 𝜇𝜇2

(𝑞𝑞)𝑣𝑣2 + ⋯+ 𝜇𝜇𝑘𝑘
(𝑞𝑞)𝑣𝑣𝑘𝑘  

 
where 

𝜇𝜇𝑗𝑗
(𝑞𝑞) = �1 − �

𝜆𝜆
𝜆𝜆 + 𝜎𝜎𝑗𝑗2

�
𝑞𝑞

�
𝑢𝑢𝑖𝑖𝑇𝑇𝑏𝑏
𝜎𝜎𝑗𝑗

 

 
for 𝑗𝑗 = 1, 2, … , 𝑘𝑘. 
 
Therefore, as 𝑞𝑞 → ∞ 

𝑥𝑥(𝑞𝑞) =
𝑢𝑢1
𝑇𝑇𝑏𝑏
𝜎𝜎1

𝑣𝑣1 +
𝑢𝑢2
𝑇𝑇𝑏𝑏
𝜎𝜎2

𝑣𝑣2 + ⋯+
𝑢𝑢𝑘𝑘𝑇𝑇𝑏𝑏
𝜎𝜎𝑘𝑘

𝑣𝑣𝑘𝑘 = 𝑥𝑥� 

 
As indicated in (Golub, 1965), it is easy to show that 
 

𝑒𝑒(𝑞𝑞+1) = 𝜆𝜆(𝐴𝐴𝑇𝑇𝐴𝐴 + 𝜆𝜆𝜆𝜆)−1𝑒𝑒(𝑞𝑞) 
and 

�𝑒𝑒(𝑞𝑞+1)�
2
≤

𝜆𝜆
𝜆𝜆 + 𝜎𝜎𝑘𝑘2

�𝑒𝑒(𝑞𝑞)�
2

< �𝑒𝑒(𝑞𝑞)�
2
 

 
Therefore, a good termination procedure is to stop the iterative process as soon as �𝑒𝑒(𝑞𝑞)�

2
 

increases or doesn’t change. 
 
Now we prove that the IR scheme as formulated in (Golub, 1965) is equivalent to our algorithm. 
The IR scheme shows that 
 

𝑥𝑥(𝑞𝑞) = 𝑒𝑒(0) + 𝑒𝑒(1) + 𝑒𝑒(2) … + 𝑒𝑒(𝑞𝑞), 
 
where 𝑥𝑥(𝑞𝑞) is the solution vector computed by the IR scheme after 𝑞𝑞 iterative steps. Clearly, 
𝑒𝑒(0) = 𝑥𝑥0 = 𝑥𝑥(𝜆𝜆). Therefore 
 

𝑥𝑥(𝑞𝑞) = 𝑥𝑥0 + 𝑒𝑒(1) + 𝑒𝑒(2) … + 𝑒𝑒(𝑞𝑞). 
 
Our algorithm shows that 

𝑥𝑥𝑞𝑞 = 𝑥𝑥0 + 𝑡𝑡1 + 𝑡𝑡2 … + 𝑡𝑡𝑞𝑞  
 
where 𝑥𝑥𝑞𝑞  is the solution vector computed by our algorithm after 𝑞𝑞 iterative steps. We prove 
 
 ( )( ) 1,  2,  3,  q

qx x q= = …  (3.6) 

by showing 
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 ( )( )   1, 2, 3,  .q
qe t q= = …   (3.7) 

 
We can easily derive the following from our algorithm:  
 
 ( 1)( )q q

qt M I dλ λ − += +  (3.8) 

 
Let  
 1( )TG A A Iλ λ −= +  

and 
1( )T Th A A I A bλ −= +  

 
It has been shown in (Golub, 1965) that 
 
 ( ) ( )1 1q q qx G G G I h+ −= + +…+ +  (3.9) 

Therefore, 
 

𝑒𝑒(𝑞𝑞) = 𝑥𝑥(𝑞𝑞+1) − 𝑥𝑥(𝑞𝑞) 
         = (𝐺𝐺𝑞𝑞 + 𝐺𝐺𝑞𝑞−1 + ⋯+ 𝐺𝐺 + 𝐼𝐼)ℎ − (𝐺𝐺𝑞𝑞−1 + 𝐺𝐺𝑞𝑞−2 + ⋯+ 𝐺𝐺 + 𝐼𝐼)ℎ 
         = 𝐺𝐺𝑞𝑞ℎ 

 
Thus, 

 ( ) ( ) ( )11 1[  ( ) ] ( ) qq q T q T T qe G h A A I A A I A b M I dλ λ λ λ λ − +− −= = + + = +  (3.10) 

 
Combing (3.8) and (3.10), we obtain (3.7). Therefore, we have proved (3.6). In other words, the 
IR scheme is equivalent to our algorithm in the sense that both algorithms generate the same 
sequence of approximate solutions approaching the true solution in exact arithmetic. Clearly, 
the mathematical derivations of the two algorithms are very different. Our algorithm relies on 
the application of the Taylor series expansion while the existing algorithm is an iterated 
regularization method. Furthermore, the computations at each iterative step are different. In 
Section 5, we will demonstrate that our algorithm offers several practical advantages over the 
IR scheme. 
 
 
Section 4: Selection of Lambda 
 
Given that the singular values of 𝐴𝐴 are 𝜎𝜎1, 𝜎𝜎2, … , 𝜎𝜎𝑘𝑘 , 0, … , 0. It is easy to show that the singular 
values of the extended matrix 𝐶𝐶 as defined in (2.12) are as follows: 
 

�(𝜎𝜎1
2 + 𝜆𝜆), �(𝜎𝜎2

2 + 𝜆𝜆), … ,�(𝜎𝜎𝑘𝑘2 + 𝜆𝜆), √𝜆𝜆, … , √𝜆𝜆 

 
Therefore, the conditioning number of the extended matrix 𝐶𝐶 
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𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑅𝑅) = �𝜎𝜎1
2 + 𝜆𝜆
𝜆𝜆

 , 

 
where 𝐶𝐶 = 𝑄𝑄𝑄𝑄 is the QR factorization of 𝐶𝐶 as defined in (2.15). Clearly, the conditioning 
number of 𝑅𝑅 will be large if 𝜆𝜆 is small. This will have negative impact on the numerical accuracy 
of solving triangular systems involving 𝑅𝑅 as required by both our algorithm and the existing 
algorithm. Hence, 𝜆𝜆 cannot be too small. On the other hand, the following discussion shows 
that 𝜆𝜆 cannot be too large either. 
 
Let 𝛿𝛿 be a lower bound of the smallest non-zero singular value 𝜎𝜎𝑘𝑘 . Golub (Golub, 1965) 
suggested that 𝜆𝜆 be chosen so that 
 

 2 0.1λ
λ δ

<
+

 (4.1) 

 
Clearly, a wide range of choices for 𝜆𝜆 and 𝛿𝛿 would satisfy (4.1). Our approach is to choose the 
greatest lower bound for 𝜎𝜎𝑘𝑘 , which is 𝜎𝜎𝑘𝑘  itself. Hence, we have 
 

 2 0.1
k

λ
λ σ

<
+

 (4.2) 

 
Obviously, an infinite number of choices for 𝜆𝜆 would satisfy (4.2). In particular, we choose 
𝜆𝜆 = 𝛽𝛽𝜎𝜎𝑘𝑘2. Then 
 

 
2

2 2   0.1
1

k

k k

βσ β
βσ σ β

= <
+ +

 (4.3) 

 
Thus, 

𝛽𝛽 <
1
9

 

 
Our experimental results have shown that 𝛽𝛽 = 0.01 produces satisfactory results. So our choice 
for 𝜆𝜆 is 0.01𝜎𝜎𝑘𝑘2. To distinguish different choices for 𝜆𝜆 in the following discussion, let 
 

𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 = 0.01𝜎𝜎𝑘𝑘2. 
 
It is well-known that computing the SVD of a matrix is an expensive process. At least, it is 
considerably more expensive than computing the QR factorization of the same matrix. So our 
approach avoids computing the SVD of the given matrix. Hence, we have no direct knowledge 
of 𝜎𝜎𝑘𝑘 . In other words, we cannot compute 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠  exactly. Our approach to choosing 𝜆𝜆 is to obtain 
an approximate value for 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 . Our approach is described as follows: 
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• Compute the QR factorization of 𝐴𝐴:  𝐴𝐴 = 𝑄𝑄1𝑅𝑅1, where 𝑄𝑄1is 𝑚𝑚-by-𝑚𝑚, and 𝑅𝑅1is 𝑚𝑚-by-𝑛𝑛. 

 
• Let 𝑊𝑊 denote the set of absolute values of the nonzero diagonal elements of 𝑅𝑅1. Let 

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  denote the smallest and largest elements of 𝑊𝑊, respectively. 
 

Both 𝜆𝜆1 = 𝛽̂𝛽𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2  and 𝜆𝜆2 = 𝛽̂𝛽 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

2

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2 , where 𝛽̂𝛽 = 0.00025 produce satisfactory results. 

Furthermore, we observe that 
 

𝜆𝜆𝑄𝑄𝑄𝑄 =
1
2

(𝜆𝜆1 + 𝜆𝜆2) = 𝛽̂𝛽
𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

2

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚2
(𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚2 + 1)

2
 

 
produces improved results over 𝜆𝜆1or 𝜆𝜆2. 

 
The following table shows 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠  and 𝜆𝜆𝑄𝑄𝑄𝑄  for six dense problems. Except for the problem 
600x300, 𝜆𝜆𝑄𝑄𝑄𝑄  is a good approximation for 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 . 
 
 
 
 
 
 
 
 
 
 
 
 
Section 5: Performance Comparison 
 
First, we consider the implementation details of the IR scheme. Each iterative step of the IR 
scheme solves a linear least-squares problem with the same (𝑚𝑚 + 𝑛𝑛)-by-𝑛𝑛 matrix C as defined 
in (2.12). As in our algorithm, the (economy) QR factorizationC QR= defined in (2.15) is 
computed only once. Assume that the matrix Q is partitioned as in (2.16). 
 
There are two possible implementations of the IR scheme: 
 

• Option 1: The matrix 𝑄𝑄 is saved (actually, it is only necessary to save the submatrix 𝑄𝑄𝐼𝐼). 
Then at the 𝑞𝑞-th iterative step, we solve the following triangular system: 

 
𝑅𝑅𝑒𝑒(𝑞𝑞) = 𝑄𝑄𝑇𝑇𝑓𝑓(𝑞𝑞) = 𝑄𝑄𝐼𝐼𝑇𝑇𝑟𝑟(𝑞𝑞) 

 

Dense Problems rank 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠  𝜆𝜆𝑄𝑄𝑄𝑄  
600x300 238 2.2441e-11 6.0530e-14 

1500x1000 812 8.2283e-16 5.1143e-16 
2000x1500 1212 3.7025e-17 2.4798e-17 
3000x2000 1632 1.6702e-21 4.0261e-20 
3500x500 383 1.8902e-19 5.2419e-19 

3500x1000 812 9.4053e-18 8.5434e-18 
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Compared with our algorithm, this implementation of the IR scheme performs two extra 
matrix-vector multiplications 𝐴𝐴𝑥𝑥(𝑞𝑞) and 𝑄𝑄𝐼𝐼𝑇𝑇𝑟𝑟(𝑞𝑞) per iterative step. But it solves only one 
n n×  triangular system instead of two as in our algorithm. 
 
If 𝐴𝐴 is sparse, 𝑄𝑄(or 𝑄𝑄𝐼𝐼) is often dense. Therefore, saving 𝑄𝑄(or 𝑄𝑄𝐼𝐼) would not be practical 
for sparse linear least-squares problems. Evidently, this implementation of the IR 
scheme is not suitable for solving sparse linear least-squares problems. 

 
• Option 2: The matrix 𝑄𝑄(or 𝑄𝑄𝐼𝐼) is not saved. Then at the 𝑞𝑞-th iterative step, we solve the 

following system of semi-normal equations (SNE): 
 

𝑅𝑅𝑇𝑇𝑅𝑅𝑒𝑒(𝑞𝑞) = 𝐴𝐴𝑇𝑇𝑟𝑟(𝑞𝑞) 
 
Compared with our algorithm, this option performs two extra matrix-vector 
multiplications 𝐴𝐴𝑥𝑥(𝑞𝑞) and 𝐴𝐴𝑇𝑇𝑟𝑟(𝑞𝑞) per iterative step. In other words, our algorithm is 
more efficient than this implementation of the IR scheme. 

 
In the following discussion, Option 1 and Option 2 will be referred to as the Algorithm IR-Q and 
the Algorithm IR-SNE, respectively. 
 
All three algorithms solve exactly the same extended linear least-squares problem (2.3). The 
running time for solving (2.3) includes running times for forming the extended matrix 𝐶𝐶, 
computing the (economy) QR factorization of 𝐶𝐶, and solving the resulting triangular 
system 𝑅𝑅𝑥𝑥0 = 𝑄𝑄𝐼𝐼𝑇𝑇𝑏𝑏. The following table shows the running times for solving (2.3) on six dense 
problems 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now we compare running times of the three algorithms for the iterative refinement process. 
We measure the running time for ten iterative steps for each of the three algorithms. The 
running times are summarized in the following table. 
 
 

Dense Problems 
 

Running Times for Solving the Extended LS Problem 
(Seconds) 

600x300 0.0550 
1500x1000 0.7882 
2000x1500 2.1226 
3000x2000 4.9765 
3500x500 0.5450 

3500x1000 1.5034 
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Overall, IR-Q is the most efficient approach since it performs only one triangular solve per 
iterative step. However, when the matrix 𝐴𝐴 is very skinny (that is 𝑚𝑚 ≫ 𝑛𝑛, e.g. 3500x500), it is 
not as efficient as our algorithm. The reason is that the forming the matrix-vector products 
𝐴𝐴𝑥𝑥(𝑞𝑞) and 𝑄𝑄𝐼𝐼𝑇𝑇𝑟𝑟(𝑞𝑞) would be more expensive than a single triangular solve. The most severe 
drawback of Algorithm IR-Q lies in the fact that it is not suitable for solving sparse linear least-
squares problems. 
 
Clearly, our algorithm is more efficient than IR-SNE since IR-SNE performs two extra matrix-
vector multiplications 𝐴𝐴𝑥𝑥(𝑞𝑞) and 𝐴𝐴𝑇𝑇𝑟𝑟(𝑞𝑞) per iterative step. Furthermore, our algorithm becomes 
increasingly more efficient as the underlying matrix gets skinnier. 
 
We used 𝜆𝜆 = 𝜆𝜆𝑄𝑄𝑄𝑄 , discussed in the previous section, in our experiments. All three algorithms 
converge in about the same number of iterative steps. They converge under ten iterations for 
five of the six test problems. They converge in 12 iterations for the remaining test problem 
3000-by-2000. 
 
As suggested in (Golub, 1965), a good termination criterion is to measure the size of the update 
vector 𝑡𝑡𝑞𝑞  at each step. The iterative process should stop as soon as �𝑡𝑡𝑞𝑞�2

 doesn’t change or 

increases. For both algorithm IR-Q and our algorithm, once they converge, the following 
relative change to 𝑥𝑥𝑞𝑞  being computed 
  

 2

2

q

q

t

x
 (5.1) 

 
remains unchanged (at least the first five significant digits of the ratio (5.1) remain unchanged) 
for a considerable number of subsequent iterations. This is a clear signal for terminating the 
iterative process. In practice, as soon as the first five significant digits of the ratio (5.1) of two 
consecutive iterations agree, the iterative process terminates. This stopping criterion can be 
easily implemented. It is worth noting that algorithm IR-SNE doesn’t have this convergent 
property. 

 
Dense Problems 

 

Running Times for 10 Iterative Steps 
(Seconds) 

IR-Q IR-SNE Our Algorithm 
600x300 0.0031 0.0103 0.0084 

1500x1000 0.0593 0.1685 0.1210 
2000x1500 0.1137 0.3640 0.2813 
3000x2000 0.2111 0.6392 0.4836 
3500x500 0.0506 0.0799 0.0229 

3500x1000 0.1077 0.2149 0.1166 



 

 

14 
 

 
IR-Q and our algorithm are virtually identical in terms of numerical properties. Using the 
stopping criterion outlined above, the number of steps required for convergence for both IR-Q 
and our algorithm are given in the following table: 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
The algorithm IR-SNE also converges around the same number of steps as shown in the above 
table. However, the termination criterion for IR_SNE is not as easy to implement as the other 
two algorithms because of the lack of the convergent property discussed above. 
 
Let 

𝑟𝑟(𝑞𝑞) = 𝑟𝑟𝑞𝑞  = 𝑏𝑏 − 𝐴𝐴𝑥𝑥(𝑞𝑞) = 𝑏𝑏 − 𝐴𝐴𝑥𝑥𝑞𝑞      (𝑞𝑞 = 1, 2, 3, … ) 
 
Define 

𝑅𝑅𝑅𝑅�𝑥𝑥𝑞𝑞� =  
�𝑥𝑥� − 𝑥𝑥𝑞𝑞�2

||𝑥𝑥�||2
 

and 
 

𝑅𝑅𝑅𝑅�𝑟𝑟𝑞𝑞� =  
�𝑟̂𝑟 − 𝑟𝑟𝑞𝑞�2

||𝑟̂𝑟||2
 

 
for 𝑞𝑞 ≥ 0. 𝑅𝑅𝑅𝑅 stands for Relative Error. 
 
The following three tables show experimental results on the test problem 2000-by-1500. In the 
tables, column 1 represents iterative steps (from 0 to 10), column 2 shows 𝑅𝑅𝑅𝑅�𝑥𝑥𝑞𝑞�, and column 
3 shows 𝑅𝑅𝑅𝑅�𝑟𝑟𝑞𝑞�. The last column shows ||𝑡𝑡𝑞𝑞 ||2/||𝑥𝑥𝑞𝑞||2.  
 
 
 
 
 

 
Dense Problems 

 

Number of Steps for Convergence 
(IR-Q and our algorithm) 

600x300 3 
1500x1000 6 
2000x1500 5 
3000x2000 12 
3500x500 6 

3500x1000 5 
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Table 1: Dense Problem 2000-by-1500 (Our Algorithm) 
 

IT       𝑅𝑅𝑅𝑅�𝑥𝑥𝑞𝑞�          𝑅𝑅𝑅𝑅�𝑟𝑟𝑞𝑞�      ||𝑡𝑡𝑞𝑞 ||2/||𝑥𝑥𝑞𝑞 ||2 
0    6.3065e-003  2.4782e-004            0 
1    4.2058e-005  1.6469e-006  6.3023e-003 
2    4.3457e-006  1.1063e-008  4.1703e-005 
3    5.7820e-006  2.8667e-010  1.4719e-006 
4    7.2276e-006  2.4866e-010  1.4455e-006 
5    8.6731e-006  2.5100e-010  1.4455e-006 
6    1.0119e-005  2.5207e-010  1.4455e-006 
7    1.1564e-005  2.5067e-010  1.4455e-006 
8    1.3010e-005  2.5192e-010  1.4455e-006 
9    1.4455e-005  2.5199e-010  1.4455e-006 
10  1.5901e-005  2.5323e-010  1.4455e-006 

   
 
   

Table 2: Dense Problem 2000-by-1500 (Algorithm IR-Q) 
  
   
  
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Dense Problem 2000-by-1500 (Algorithm IR-SNE) 
 

  
 
 
 
 
 
 
 
 
 
 
 

IT       𝑅𝑅𝑅𝑅�𝑥𝑥𝑞𝑞�          𝑅𝑅𝑅𝑅�𝑟𝑟𝑞𝑞�      ||𝑡𝑡𝑞𝑞 ||2/||𝑥𝑥𝑞𝑞 ||2 
 0    6.3065e-003  2.4782e-004          0 
 1    4.2058e-005  1.6469e-006  6.2648e-003 
 2    4.3457e-006  1.1058e-008  4.1702e-005 
 3    5.7820e-006  2.9249e-010  1.4719e-006 
 4    7.2276e-006  2.4562e-010  1.4455e-006 
 5    8.6731e-006  2.4256e-010  1.4455e-006 
 6    1.0119e-005  2.4222e-010  1.4455e-006 
 7    1.1564e-005  2.4858e-010  1.4455e-006 
 8    1.3010e-005  2.4483e-010  1.4455e-006 
 9    1.4455e-005  2.4470e-010  1.4455e-006 
 10  1.5901e-005  2.4480e-010  1.4455e-006 

IT       𝑅𝑅𝑅𝑅�𝑥𝑥𝑞𝑞�          𝑅𝑅𝑅𝑅�𝑟𝑟𝑞𝑞�      ||𝑡𝑡𝑞𝑞 ||2/||𝑥𝑥𝑞𝑞 ||2 
 0    6.3065e-003  2.4782e-004           0 
 1    4.2098e-005  1.6469e-006  6.2648e-003 
 2    4.9380e-006  1.1022e-008  4.1746e-005 
 3    6.2523e-006  3.0371e-010  2.3706e-006 
 4    7.3532e-006  2.4815e-010  2.1699e-006 
 5    8.4908e-006  2.5428e-010  2.4117e-006 
 6    9.7705e-006  2.9390e-010  2.3501e-006 
 7    1.0947e-005  2.6434e-010  2.3575e-006 
 8    1.2334e-005  2.2960e-010  2.4873e-006 
 9    1.3579e-005  2.6337e-010  2.3336e-006 
 10  1.4774e-005  2.4588e-010  2.3539e-006 
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Section 6: Future Work and Concluding Remarks 
 
Efficiency Enhancement 
 
In our implementations, we have computed two separate QR decompositions -- the QR 
decomposition of the original matrix 𝐴𝐴 to obtain 𝜆𝜆𝑄𝑄𝑄𝑄  and the QR decomposition of the 
extended matrix 𝐶𝐶 to obtain 𝑥𝑥(𝜆𝜆). We plan to explore the approach in which the QR 
decomposition of 𝐶𝐶 is not computed from scratch rather it is built upon the QR decomposition 
of 𝐴𝐴. The problem will then become how to compute the following QR decomposition 
efficiently 
 

 
1

1
2

ˆ
R

QR
Iλ

 
  =
 
 

 (6.1) 

 
where 𝐴𝐴 = 𝑄𝑄1𝑅𝑅1is the QR decomposition of the matrix 𝐴𝐴. Mathematically, 
 

 
1 1 1

1 1
1 1 1
2 2 2

0 0 ˆ
0 0

A Q R RQ Q
C QR QR

I II I Iλ λ λ

             = = = = =                
 (6.2) 

 
In this context, the matrix √𝜆𝜆𝐼𝐼 is considered an 𝑛𝑛-by-𝑛𝑛 upper triangular matrix. Depending on 
whether 𝑅𝑅1 is stored row-by-row or column-by-column, the QR decomposition defined in (6.1) 
can be computed by a sequence of Givens rotations or a sequence of Householder reflections.  
 
If 𝑅𝑅1is dense, we need 𝑛𝑛(𝑛𝑛 + 1)/2 Givens rotations or 𝑛𝑛 Householder reflections to perform 
the QR decomposition (6.1). If 𝑅𝑅1is sparse, choosing an appropriate storage scheme for 𝑅𝑅1 is 
critical. Assume that 𝑅𝑅1is stored row-by-row, we need 𝑛𝑛𝑛𝑛𝑛𝑛(𝑅𝑅1) = 𝑛𝑛𝑛𝑛𝑛𝑛(𝑅𝑅) Givens rotations to 
compute the QR factorization. In this situation, Householder reflections would be very 
inefficient. 
 
Note that the sparsity structure of 𝑅𝑅1is the same as that of 𝑅𝑅. We can determine the sparsity 
structure of 𝑅𝑅 in a preliminary step. Therefore, we don’t need to compute the sparsity structure 
of 𝑅𝑅 again in carrying out (6.2). Furthermore, the sparsity structure 𝑅𝑅 can fully accommodate 
the process of merging √𝜆𝜆𝐼𝐼 into 𝑅𝑅1 without the need to dynamically allocate additional storage 
for 𝑅𝑅. 
 
We plan to investigate whether the proposed method of combining the two QR decompositions 
is more efficient than computing the two QR decompositions separately for both dense and 
sparse problems. 
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The following describes our overall approach to solving rank-deficient linear least-squares 
problems. 
 

1. For a given m-by-n rank-deficient matrix 𝐴𝐴, compute the QR decomposition 𝐴𝐴 = 𝑄𝑄1𝑅𝑅1. 
The matrix 𝑄𝑄1 is not saved if 𝐴𝐴 is sparse. 
 

2. Calculate 𝜆𝜆𝑄𝑄𝑄𝑄  as described in Section 4. 
 

3. Compute the QR decomposition of the extended matrix 𝐶𝐶 as defined in (2.12) from 
scratch or using the method of combining the two QR decompositions described above. 
 

4. Compute 𝑥𝑥0 = 𝑥𝑥(𝜆𝜆) using the results of the QR decomposition of 𝐶𝐶. 
 

5. Perform the iterative refinement process. 
 
The application of our algorithm to the solution of sparse and rank-deficient linear least-
squares problems is discussed in (Coleman, et al., 2010). 
 
Sparse Linear Least-Squares Problems with Dense Rows 
 
In practice, a sparse linear least-squares problem frequently contains a number of dense or 
nearly dense rows. The corresponding upper triangular factor 𝑅𝑅 becomes nearly or completely 
full. Therefore, the straightforward application of the QR decomposition method is not a viable 
approach to the solution of the sparse least-squares problems with dense rows. Heath (Heath, 
1982) proposed a method for handling dense rows. Through row permutation, a sparse linear 
least-squares problem with dense rows can be easily transformed into the following equivalent 
problem 
 

 
2

min
nx R

A b
x

E f∈

   
−   

   
 (6.3) 

 
where 𝐴𝐴 consists of sparse rows and 𝐸𝐸 the dense rows of the original matrix, respectively. The 
solution to (6.3) is obtained by first computing the solution to the sparse linear least-squares 
problem 

2
min x Ax b− as usual and then updating the solution by the rows in 𝐸𝐸. We refer the 

reader to (Heath, 1982) for details. The crucial assumption made in the method described in 
(Heath, 1982) is that 𝐴𝐴 has full column rank. However, practical problems might not satisfy this 
assumption. If the matrix 𝐴𝐴 is rank-deficient, our proposed method described in this paper can 
be applied to obtain a solution to the problem

2
min x Ax b− . Handling dense rows in sparse 

linear least-squares problems is also considered in (Sun, 1995). 
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Concluding Remarks 
 
In this paper, we have proposed a new method for handling rank deficiency in solving sparse 
linear least-squares problems. Our proposed method is mathematically equivalent to an 
existing method. We have shown that our method has several practical advantages over the 
existing method in terms of efficiency and applicability to rank-deficient sparse problems. Our 
experimental results show the practical promise of our approach. We have outlined several 
future directions of research to further enhance the efficiency of our algorithm and to apply our 
algorithm to the solution of sparse linear least-squares problems with dense rows. 
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